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Simulation of the three-qubit repetition code on the chain of
superconducting qubits with couplers
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In superconducting quantum circuits, a promising method for implementing high-fidelity two-qubit gates is the
microwave drive of a coupler. This paper presents the simulation of the three-qubit repetition code, taking into
account the physical mechanism of two-qubit operation implementation: the effect of parasitic population of the
excited state of the coupler is investigated, and the successful correction of this error using quantum error correction

codes is demonstrated.
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Quantum error-correcting codes are needed to implement
fault-tolerant scalable quantum computing. Error detection
with superconducting qubits has been demonstrated for
the first time in pioneering study [1]. Tabilizing error-
correcting codes, such as a repetition code [2] and a surface
code [3], are currently the ones that were studied in most
detail. Sequential error detection with a repetition code has
been demonstrated for the first time in [4] in experiments
with superconducting qubits, and a surface code was
implemented in [5]. Surface code scaling was accomplished
in pioneering studies [6,7] with superconducting processors,
and a logical qubit surpassing in coherence characteris-
tics all the physical qubits on which it is encoded was
demonstrated. Other experimentally implemented quantum
error correction algorithms (e.g., LDPC codes [8,9]) are
also known. Alongside with superconducting qubits, other
platforms for fault-tolerant quantum computing (ions [10]
and neutral atoms [11]) are being developed.

In stabilizing error correction codes, logical quantum
states are protected from noise by encoding them using
a set of physical qubits that are called data qubits. The
measurement of ancillary qubits positioned between the
data ones provides an opportunity to determine the parity
of state of adjacent data qubits, a change in which is
indicative of an error. Arbitrary perturbations of states
of data qubits are transformed into a composition of
discrete X and Z errors due to projective measurements
of ancillary qubits, the results of which are referred to
as error syndromes [2,3,12]. In order to determine what
the errors were and which qubits were affected, sequences
of measured error syndromes are decoded using classical
algorithms. One problem with this approach is that leakages
from the computational subspace are not transformed into X
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or Z errors in measurements of ancillary qubits [13]. Leaks
are characteristic of superconducting qubits, which are
multi-level systems with a computational subspace of two
lowest energy states. Moreover, non-computational states of
superconducting qubits may be used to implement multi-
qubit gates [14-16], where imperfect calibration translates
into residual populations of non-computational levels.

A promising (in terms of scalability) option for imple-
menting tunable coupling between superconducting qubits
is the use of a coupler qubit (C) between computational
qubits (Q). One way to perform two-qubit operations in
such an architecture is microwave excitation of the coupler.
This microwave scheme is implemented with fluxonium
qubits serving as computational ones and transmons or flux-
oniums used as couplers [15,16]. Among the advantages of
microwave operations in the QCQ architecture are the sup-
pression of ZZ interactions between computational qubits to
a level of several kilohertz and the non-necessity of detuning
of the magnetic flux from the optimal value at which the
maximum qubit coherence times are achieved [17]. This
helps achieve high entanglement efficiency combined with
low parasitic interactions in the idle state.

The operation of microwave gates relies on the strong
interaction between a coupler and computational qubits. It
induces a dispersion shift (on the order of 100 MHz) [15,16]
of the first excited state of a coupler qubit, which de-
pends on the states of two adjacent computational qubits
(Fig. 1,a). Therefore, the frequency detuning of the
control signal from the transition frequency of the coupler
qubit depends on the states of computational qubits, which
translates into different phases at computational states.

A method for implementing a CZ gate in the Q,CQ;
architecture through the application of a 27 pulse with
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Figure 1. Experimental implementation of a CZ gate. a — 0—1 transition of the coupler that depends on the states of neighboring
computational qubits. b — Trajectory of the state vector of the coupler qubit and its final position on the Bloch sphere after the CZ
operation. The deviation by angle § from state |0) is caused by the 2s-pulse calibration error.

a frequency close to the [101)g,c0,—|111)g,cq, transition
to the coupler was proposed in [15]. Conditional phase
ar is accumulated in computational state |11)g,o, over the
period of Rabi oscillations. Setting the microwave frequency
close to the |101)g,co,—|111)g,co, transition, one may
excite oscillations between these states only, leaving the
others unaffected. To achieve high two-qubit gate fidelity,
the coupler must return to the ground state at the end
of the pulse. In practice, a certain small population may
remain in the excited state of the coupler qubit, which
is attributable primarily to imperfect calibration of the 2m
pulse (Fig. 1,b). This leakage from the computational
subspace calls into question the possibility of application
of microwave operations in standard correction algorithms.
Specifically, the mentioned parasitic population interferes
with single-qubit operations, altering the frequency of
adjacent computational qubits. To test the performance
of the correction code in this architecture, one needs to
simulate it with account for the population of the coupler.

The possibility of correcting the leakage into the excited
state of the coupler with stabilizing codes was investigated
using the example of a three-qubit repetition code (Fig. 2, a).
The logical state is encoded in the three-qubit repetition
code by three data qubits, and error syndromes are
measured with the use of two ancillary qubits by performing
successive CNOT operations and measuring the states of
the ancillary qubits. If p is the probability of occurrence of
an independent physical error within one correction cycle,
then the probability of a logical error after the execution of
the correction algorithm at small p is proportional, in the
leading order, to p?, which is what is behind the advantage
that the three-qubit repetition code provides [2].

In experiments, a CNOT gate is implemented by perform-
ing the CZ operation between data qubit D and ancillary
qubit A, which is preceded and followed by Hadamard
operators H on the ancillary qubit. We present the CZ
operation as X-rotation by angle ¢ = 27 + § between states
[101)pca and |111)pca, where § < 1 is the systematic
calibration error. The corresponding unitary operator in the

data—coupler—ancillary qubits basis |[DCA) is

1 0 0 0 O 0 0 0

01 0 0 O 0 0 0

0O 01 0O 0 0 0

0O 0 01 0 0 0 0

Uz=1o 0001 o0 0 o0 (1)

0 00 0O cos% 0 —isin%

00 0 0 O 0 1 0

0 00 00 —isinf 0 cos%

In addition, we assume that the Hadamard operator fails
if at least one of the adjacent couplers is in an excited state.
This corresponds to an inverted control input at the coupler
qubit in the circuit. The corresponding unitary operator in
the coupler—ancillary—coupler qubits basis |CAC) is

1 1
7 0 7 0 00 0O
0 1 0 00 O0O0OO0
1 1
7 0 v 0 00 00O
Uy = 0 0 0 1 00O0O (2)
0 0 0 01 00O
0 0 0 O0O0T1O0TO0
0O 0 0 O0O0O0OT1OPO0
0O 0 0 00 O0O01
If data qubits are prepared in logical state

|0y, = |000)p,p,p;, calibration error § does not lead
to errors, since the sequential application of operators
Uy, Ucz, and Uy preserves all qubits in the ground state.
However, error § will have consequences for logical state
1), = |111)p,p,p,- Let us consider an example scenario
of emergence of errors in application of the repetition
code to logical state |1), (Fig. 2,b). It is assumed that an
error syndrome measurement is performed at data qubits
D; and D, with the use of ancillary qubit A;, which is
connected to the data qubits via couplers C; and C,. In
this example, the quantum circuit is assumed to have no
other error channels (unrelated to the population of the
coupler). Subjecting state |D{C1A;C2D;)® = [10001) to
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Figure 2. a — Three-qubit repetition code correcting X or Z errors (three correction cycles are shown). b — Example of propagation
of an error at a coupler in the three-qubit repetition code correcting X errors. Scenario [0)4, — |1)4, — |0)4, is illustrated. The quantum
circuit encodes logical state |1),. D1, D>, and D3 — data qubits; A; and A, — ancillary qubits; C;, C2, C3, and C4 — couplers.

quantum operations from the correction cycle, one obtains
the following entangled state:

1 8
|D1C1AC2D,) Y = 3 (1 + cos? 5) 110001)

1 8
+5 (1 — cos? 5) |10101)

- @sma(uonw + |11101>>

1 . ,96
— —sin” —[11111). 3
s’ 31) 3)

According to expression (3), when the state of ancillary
qubit A; is measured, state |0)4, will be obtained with a
probability of

1

|(1+ cos*(8/2)) /21> = 1 — §2/4+ O(8%).

The probability to obtain state |1),, which is an incorrect
result of measuring the parity of state of data qubits D;
and Dy, is §%/4 + O(83). The repetition of this error in
several cycles in a row may lead to incorrect decoding of
the measured syndromes and, consequently, logical errors.
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Table 1. Asymptotic probabilities of error scenarios associated
with the coupler population in three correction cycles

Number Scenario Probability
of errors
0 0) = [0) = 10) | 1—3pc+0(p%)
1) —[0) — 10) 1 ,
1 0) — [1) — 10) 3pe +0(p7)
0) —10) — |1)
1) — 1) — 10) L \
2 0) — (1) —|1) 5P +O0(pe)
1) —10) — 1)
3 1) — 1) — 1) TomPi + O0(p?)

Let us introduce quantity p. = 8% parameter of the
physical error associated with the coupler population.
Calculating states |D1C1A;C,D,)!") after the ith correction
cycle, one may find the asymptotic values of probabilities
of various scenarios of measurement of error syndromes
|x1)a, = |x2)a, — -+ — |xn)a,, Where |x;)4, is the result
of measuring ancillary qubit A; within the i-th correction
cycle. For example, if we consider a chain of three
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Table 2. Error model used to simulate the three-qubit repetition code

Physical error

Parameter

Relaxation

y1 = - — ratio of operation time 7 and

T
relaxation time 7

Pure dephasing

Y4 = 7— — ratio of operation time 7 and

Ty
pure dephasing time T

Readout error

pm — probability of an X error in measurement

of an ancillary qubit

Leakage to the excited state
of a coupler qubit

Correction of X-errors

T T T T T T T T a

2 i e Simulation _
Z 1023F — Theory Cp? .
< i i
2
N 1073.5 L |
N
’Q\) - -
§ 1041.5 L 4
&
3 L i

10755 _.l 1 1 1 1 1 1 1 i

104.0 1073.5 1073.0 1072‘5

Physical error parameter p

p. = 82, 5 — systematic error of
calibration of a 27 pulse

Correction of Z-errors
1071 — T T T T T T T =)

B e Simulation
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Logical error probability
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Figure 3. Dependences of the logical error probability on physical error parameter p for the repetition code correcting X errors (a) and
Z errors (b). Dots and lines represent the results of simulation and the theoretical quadratic dependence, respectively.

correction cycles, the probability of favorable scenario
|0)4, — |0)a, — [0)4, is 1 —3p./4+ O(p3'?). The prob-
abilities of scenarios with one error in three correction
cycles are p./4+ O(p?). These probabilities are linear
with respect to parameter p., but such scenarios will
not lead to logical errors: the decoder will process them
correctly in the same way as ancillary qubit readout errors.
The asymptotic probabilities of other scenarios are listed
in Table 1. Calculations revealed that the probabilities of
scenarios with two errors in three cycles are, in the leading
order, proportional to p?, which exceeds the correction limit
of the three-qubit repetition code. Thus, the imperfection of
a CNOT gate does not in itself lead to logical errors with
their probability linear in parameter p.. This gives reason to
believe that the repetition code will work efficiently in the
proposed error model where the coupler influence is taken
into account.

Simulation was performed in order to test the perfor-
mance of the correction code in the considered architecture.
The error model used in calculations included relaxation and
pure dephasing channels [18], the ancillary qubit readout
error, and the influence of coupler qubits discussed above.
The parameters characterizing each physical error are
presented in Table 2. In calculations, all these parameters

were assumed to be equal to p (physical error parameter).
The performance criterion of the three-qubit repetition code
is a parabolic dependence of the probability of a logical
error on the introduced physical error parameter p. The
Qiskit library [19] was used to simulate quantum circuits.
The MWPM (minimum weight-perfect matching) algorithm
was used to decode error syndromes [20]. The repetition
code correcting X and Z- errors was simulated separately.
In the repetition codes correcting X- and Z errors, data
qubits were initialized in states |0);, |1); and |+)r, |—)1,
respectively. Twenty correction cycles were performed in
each algorithm. To gather statistics, both algorithms were
run 2 - 10% times. Quadratic dependences of the probability
of a logical error on the physical error parameter were
obtained in each simulation experiment (Fig. 3). Thus, it was
demonstrated that the error associated with the population
of couplers is corrected successfully by the repetition code.
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