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In superconducting quantum circuits, a promising method for implementing high-fidelity two-qubit gates is the

microwave drive of a coupler. This paper presents the simulation of the three-qubit repetition code, taking into

account the physical mechanism of two-qubit operation implementation: the effect of parasitic population of the

excited state of the coupler is investigated, and the successful correction of this error using quantum error correction

codes is demonstrated.
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Quantum error-correcting codes are needed to implement

fault-tolerant scalable quantum computing. Error detection

with superconducting qubits has been demonstrated for

the first time in pioneering study [1]. Tabilizing error-

correcting codes, such as a repetition code [2] and a surface

code [3], are currently the ones that were studied in most

detail. Sequential error detection with a repetition code has

been demonstrated for the first time in [4] in experiments

with superconducting qubits, and a surface code was

implemented in [5]. Surface code scaling was accomplished

in pioneering studies [6,7] with superconducting processors,

and a logical qubit surpassing in coherence characteris-

tics all the physical qubits on which it is encoded was

demonstrated. Other experimentally implemented quantum

error correction algorithms (e. g., LDPC codes [8,9]) are

also known. Alongside with superconducting qubits, other

platforms for fault-tolerant quantum computing (ions [10]
and neutral atoms [11]) are being developed.

In stabilizing error correction codes, logical quantum

states are protected from noise by encoding them using

a set of physical qubits that are called data qubits. The

measurement of ancillary qubits positioned between the

data ones provides an opportunity to determine the parity

of state of adjacent data qubits, a change in which is

indicative of an error. Arbitrary perturbations of states

of data qubits are transformed into a composition of

discrete X and Z errors due to projective measurements

of ancillary qubits, the results of which are referred to

as error syndromes [2,3,12]. In order to determine what

the errors were and which qubits were affected, sequences

of measured error syndromes are decoded using classical

algorithms. One problem with this approach is that leakages

from the computational subspace are not transformed into X

or Z errors in measurements of ancillary qubits [13]. Leaks
are characteristic of superconducting qubits, which are

multi-level systems with a computational subspace of two

lowest energy states. Moreover, non-computational states of

superconducting qubits may be used to implement multi-

qubit gates [14–16], where imperfect calibration translates

into residual populations of non-computational levels.

A promising (in terms of scalability) option for imple-

menting tunable coupling between superconducting qubits

is the use of a coupler qubit (C) between computational

qubits (Q). One way to perform two-qubit operations in

such an architecture is microwave excitation of the coupler.

This microwave scheme is implemented with fluxonium

qubits serving as computational ones and transmons or flux-

oniums used as couplers [15,16]. Among the advantages of

microwave operations in the QCQ architecture are the sup-

pression of ZZ interactions between computational qubits to

a level of several kilohertz and the non-necessity of detuning

of the magnetic flux from the optimal value at which the

maximum qubit coherence times are achieved [17]. This

helps achieve high entanglement efficiency combined with

low parasitic interactions in the idle state.

The operation of microwave gates relies on the strong

interaction between a coupler and computational qubits. It

induces a dispersion shift (on the order of 100MHz) [15,16]
of the first excited state of a coupler qubit, which de-

pends on the states of two adjacent computational qubits

(Fig. 1, a). Therefore, the frequency detuning of the

control signal from the transition frequency of the coupler

qubit depends on the states of computational qubits, which

translates into different phases at computational states.

A method for implementing a CZ gate in the Q1CQ2

architecture through the application of a 2π pulse with
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Figure 1. Experimental implementation of a CZ gate. a — 0−1 transition of the coupler that depends on the states of neighboring

computational qubits. b — Trajectory of the state vector of the coupler qubit and its final position on the Bloch sphere after the CZ

operation. The deviation by angle δ from state |0〉 is caused by the 2π-pulse calibration error.

a frequency close to the |101〉Q1CQ2
−|111〉Q1CQ2

transition

to the coupler was proposed in [15]. Conditional phase

π is accumulated in computational state |11〉Q1Q2
over the

period of Rabi oscillations. Setting the microwave frequency

close to the |101〉Q1CQ2
−|111〉Q1CQ2

transition, one may

excite oscillations between these states only, leaving the

others unaffected. To achieve high two-qubit gate fidelity,

the coupler must return to the ground state at the end

of the pulse. In practice, a certain small population may

remain in the excited state of the coupler qubit, which

is attributable primarily to imperfect calibration of the 2π

pulse (Fig. 1, b). This leakage from the computational

subspace calls into question the possibility of application

of microwave operations in standard correction algorithms.

Specifically, the mentioned parasitic population interferes

with single-qubit operations, altering the frequency of

adjacent computational qubits. To test the performance

of the correction code in this architecture, one needs to

simulate it with account for the population of the coupler.

The possibility of correcting the leakage into the excited

state of the coupler with stabilizing codes was investigated

using the example of a three-qubit repetition code (Fig. 2, a).
The logical state is encoded in the three-qubit repetition

code by three data qubits, and error syndromes are

measured with the use of two ancillary qubits by performing

successive CNOT operations and measuring the states of

the ancillary qubits. If p is the probability of occurrence of

an independent physical error within one correction cycle,

then the probability of a logical error after the execution of

the correction algorithm at small p is proportional, in the

leading order, to p2, which is what is behind the advantage

that the three-qubit repetition code provides [2].

In experiments, a CNOT gate is implemented by perform-

ing the CZ operation between data qubit D and ancillary

qubit A, which is preceded and followed by Hadamard

operators H on the ancillary qubit. We present the CZ

operation as X -rotation by angle ϕ = 2π + δ between states

|101〉DCA and |111〉DCA, where δ ≪ 1 is the systematic

calibration error. The corresponding unitary operator in the

data−coupler−ancillary qubits basis |DCA〉 is

UCZ =

























1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 cos ϕ

2
0 −i sin ϕ

2

0 0 0 0 0 0 1 0

0 0 0 0 0 −i sin ϕ

2
0 cos ϕ

2

























. (1)

In addition, we assume that the Hadamard operator fails

if at least one of the adjacent couplers is in an excited state.

This corresponds to an inverted control input at the coupler

qubit in the circuit. The corresponding unitary operator in

the coupler−ancillary−coupler qubits basis |CAC〉 is

UH =
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If data qubits are prepared in logical state

|0〉L = |000〉D1D2D3
, calibration error δ does not lead

to errors, since the sequential application of operators

UH , UCZ, and UH preserves all qubits in the ground state.

However, error δ will have consequences for logical state

|1〉L = |111〉D1D2D3
. Let us consider an example scenario

of emergence of errors in application of the repetition

code to logical state |1〉L (Fig. 2, b). It is assumed that an

error syndrome measurement is performed at data qubits

D1 and D2 with the use of ancillary qubit A1, which is

connected to the data qubits via couplers C1 and C2 . In

this example, the quantum circuit is assumed to have no

other error channels (unrelated to the population of the

coupler). Subjecting state |D1C1A1C2D2〉(0) = |10001〉 to
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Figure 2. a — Three-qubit repetition code correcting X or Z errors (three correction cycles are shown). b — Example of propagation

of an error at a coupler in the three-qubit repetition code correcting X errors. Scenario |0〉A1 → |1〉A1 → |0〉A1 is illustrated. The quantum

circuit encodes logical state |1〉L. D1, D2, and D3 — data qubits; A1 and A2 — ancillary qubits; C1 , C2 , C3, and C4 — couplers.

quantum operations from the correction cycle, one obtains

the following entangled state:

|D1C1A1C2D2〉(1) =
1

2

(

1 + cos2
δ

2

)
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+
1

2

(
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2
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According to expression (3), when the state of ancillary

qubit A1 is measured, state |0〉A1
will be obtained with a

probability of

|
(

1 + cos2(δ/2)
)

/2|2 = 1− δ2/4 + O(δ3).

The probability to obtain state |1〉A1
, which is an incorrect

result of measuring the parity of state of data qubits D1

and D2, is δ2/4 + O(δ3). The repetition of this error in

several cycles in a row may lead to incorrect decoding of

the measured syndromes and, consequently, logical errors.

Table 1. Asymptotic probabilities of error scenarios associated

with the coupler population in three correction cycles

Number
Scenario Probability

of errors

0 |0〉 → |0〉 → |0〉 1− 3
4

pc + O(p
3/2
c )

|1〉 → |0〉 → |0〉

1 |0〉 → |1〉 → |0〉 1
4

pc + O(p2
c)

|0〉 → |0〉 → |1〉

|1〉 → |1〉 → |0〉
2 |0〉 → |1〉 → |1〉 1

256
p3

c + O(p4
c)

|1〉 → |0〉 → |1〉

3 |1〉 → |1〉 → |1〉 1
1024

p5
c + O(p6

c)

Let us introduce quantity pc = δ2: parameter of the

physical error associated with the coupler population.

Calculating states |D1C1A1C2D2〉(i) after the ith correction

cycle, one may find the asymptotic values of probabilities

of various scenarios of measurement of error syndromes

|x1〉A1
→ |x2〉A1

→ · · · → |xN〉A1
, where |x i〉A1

is the result

of measuring ancillary qubit A1 within the i-th correction

cycle. For example, if we consider a chain of three
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Table 2. Error model used to simulate the three-qubit repetition code

Physical error Parameter

Relaxation
γ1 = τ

T1
— ratio of operation time τ and

relaxation time T1

Pure dephasing
γφ = τ

Tφ
— ratio of operation time τ and

pure dephasing time Tφ

Readout error
pm — probability of an X error in measurement

of an ancillary qubit

Leakage to the excited state pc = δ2, δ — systematic error of

of a coupler qubit calibration of a 2π pulse

Physical error parameter p

–4.010 –3.510 –3.010 –2.510

–5.510

–4.510

–3.510

–2.510

L
o
g
ic

a
l 

er
ro

r 
p
ro

b
a
b
il

it
y

Correction of X-errors

Simulation
2Theory C p

Physical error parameter p

–4.010 –3.510 –3.010 –2.510

–510

–410

–310

–210
L

o
g
ic

a
l 

er
ro

r 
p
ro

b
a
b
il

it
y

Correction of Z-errors
–110

Simulation
2Theory C p

a b

Figure 3. Dependences of the logical error probability on physical error parameter p for the repetition code correcting X errors (a) and

Z errors (b). Dots and lines represent the results of simulation and the theoretical quadratic dependence, respectively.

correction cycles, the probability of favorable scenario

|0〉A1
→ |0〉A1

→ |0〉A1
is 1− 3pc/4 + O(p3/2

c ). The prob-

abilities of scenarios with one error in three correction

cycles are pc/4 + O(p2
c). These probabilities are linear

with respect to parameter pc , but such scenarios will

not lead to logical errors: the decoder will process them

correctly in the same way as ancillary qubit readout errors.

The asymptotic probabilities of other scenarios are listed

in Table 1. Calculations revealed that the probabilities of

scenarios with two errors in three cycles are, in the leading

order, proportional to p3
c , which exceeds the correction limit

of the three-qubit repetition code. Thus, the imperfection of

a CNOT gate does not in itself lead to logical errors with

their probability linear in parameter pc . This gives reason to

believe that the repetition code will work efficiently in the

proposed error model where the coupler influence is taken

into account.

Simulation was performed in order to test the perfor-

mance of the correction code in the considered architecture.

The error model used in calculations included relaxation and

pure dephasing channels [18], the ancillary qubit readout

error, and the influence of coupler qubits discussed above.

The parameters characterizing each physical error are

presented in Table 2. In calculations, all these parameters

were assumed to be equal to p (physical error parameter).
The performance criterion of the three-qubit repetition code

is a parabolic dependence of the probability of a logical

error on the introduced physical error parameter p. The

Qiskit library [19] was used to simulate quantum circuits.

The MWPM (minimum weight-perfect matching) algorithm
was used to decode error syndromes [20]. The repetition

code correcting X and Z- errors was simulated separately.

In the repetition codes correcting X - and Z errors, data

qubits were initialized in states |0〉L, |1〉L and |+〉L, |−〉L,

respectively. Twenty correction cycles were performed in

each algorithm. To gather statistics, both algorithms were

run 2 · 106 times. Quadratic dependences of the probability

of a logical error on the physical error parameter were

obtained in each simulation experiment (Fig. 3). Thus, it was
demonstrated that the error associated with the population

of couplers is corrected successfully by the repetition code.
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