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The bottom of a dimensional subband in a superlattice with strongly

coupled shallow quantum wells
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Based on the analytical solution of the dispersion equation, the energy position of the bottom of the dimensional

subband in shallow superlattices is estimated. It is shown that for the upper valleys of GaAs/AlAs superlattices

used in heterostructures of field-effect transistors, the depth of the bottom of the dimensional subband relative to

the top of the barrier is at the level of 0.11−0.13 eV.
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Experimental data [1] and theoretical estimates [2–4]
reveal that the use of short-period GaAs/AlAs superlattices

may improve significantly the characteristics of heterostruc-

ture field-effect transistors. However, this raises the question

as to how hot electrons will behave in the region of the

strong field domain when moving into the upper valleys of

a semiconductor, given that X and Ŵ valleys are inverted

in AlxGa1−xAs at aluminum molar fraction x = 0.4. Thus,

while the AlAs layer forms a barrier with a height of 1.04 eV

for the GaAs/AlAs heterojunction along the Ŵ valley, it turns

into a quantum well with a depth of approximately 0.26 eV

along the X valley of AlAs [5] (Fig. 1). A natural question

arises: is it possible that electrons transitioning in a narrow-

gap channel to the upper valleys and transitioning further to

AlAs quantum wells will relax and be trapped there? Such

processes may potentially have a negative impact on the

device characteristics. This is essentially a question of how

the distance from the lower quantum level in a well along

the X valley to the edge of the well relates to the thermal

energy of electrons. It is rather easy to estimate the height

of quantum levels for one or two barriers [6]. However,

this issue is also of interest in the case of a significantly

larger number of barriers [1,2]. The lower quantum level

in a set of quantum wells (a fragment of a superlattice)
cannot be lower than the bottom of the miniband of the

superlattice itself. Therefore, to assess the possible influence

of such processes, one needs to know the height of the

bottom of the dimensional subband of the superlattice under

consideration.

The dispersion equation for the Kronig–Penney potential

(Fig. 1), which characterizes this structure, has been

proposed long ago and is presented in numerous textbooks

(e. g., [6,7]).

In the context of Bloch functions

9(x) = u(x) exp(iKx) (1)

(u(x) is the amplitude of the Bloch function periodic with

the superlattice period and K is the wave vector) with

the condition that K is a real number and determines the

allowed states in all possible cases, it is a rather complex

transcendental equation in three variables of the following

form:
cos

(

K(a + b)
)

= cos(ka)ch(γb)

−0.5

[

k

γ
−

γ

k

]

sin(ka)sh(γb), (2)

which, apparently, largely defies analysis without significant

simplification. The situation is not helped much by

the fact that two variables (wave vector k and damping

decrement γ) are related:

γ =

√

2m2

~2
(U0 − E), k =

√

2m1

~2
E. (3)
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Figure 1. Schematic band diagram of the AlAs/GaAs superlattice:

solid line — X valley; dashed line — Ŵ valley. The zero point is

the bottom of the Ŵ valley of GaAs.
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Here, U0 is the barrier height, E is the electron energy

(measured from the bottom of the X valley of AlAs), m1

and m2 are the effective electron masses in the well and in

the barrier, and ~ is the Planck constant.

Therefore, various approaches (see, e. g., [7]), which

revealed a number of general trends (specifically, sagging of

the bottom of the conduction band relative to the quantum

level in weakly coupled wells), have been devised. However,

it seems that the issue of a superlattice with a set of small

tightly coupled wells separated by thin barriers, similar to

the one described above, has simply not arisen before.

Let us examine Eq. (2) at K = 0. In this case, it takes

the form

k2 sin(ka)sh(γb) + 2kγ
(

1− cos(ka)ch(γb)
)

− γ2 sin(ka)sh(γb) = 0. (4)

Expanding all the functions into a Taylor series under the

assumption of smallness of their arguments, we obtain

sin(ka) ≈ ka, cos(ka) ≈ 1−
(ka)2

2
,

sh(γb) ≈ γb, ch(γb) ≈ 1 +
(γb)2

2
. (5)

Naturally, this expansion is relevant only if the corre-

sponding arguments are small enough. Both sine and cosine

are characterized quite accurately by the first terms of the

series with the argument

k a < π/4. (6)

Thus, the height of the quantum level in the shallow well

under consideration must be at least 15 times smaller than

in an infinitely deep well with the same distance between

the walls. In the examined case, this value for an infinitely

deep well is ∼ 1.2 eV with an AlAs barrier thickness of

three monolayers (approximately 7.5 Å) [1] and an effective

electron mass of 0.55m0 in the X valley [5]. The level

height for a single well with a depth of 0.26 eV is 0.18 eV;

therefore, its depth is 0.08 eV. Noted that different sources

(see, e. g., [8,9]) provide varying data on effective masses

and intervalley gaps.

In approximation (5), Eq. (3) is reduced to the expression

k2a(a + b) − γ2b(a + b) +
γ2k2a2b2

2
= 0, (7)

and its solution with respect to the wave vector with account

for the smallness of arguments of the functions included

in it (which means that the last term in (7) is discarded)
becomes very simple:

k2
≈

b

a
γ2. (8)

Taking (3) into account, one obtains the following for the

corresponding energy:

E ≈

m2b

m1a + m2b
U. (9)

If the effective masses are similar or equal,

E ≈

b

a + b
U. (10)

We have examined the solution of the problem at K = 0

and, accordingly, cos
(

K(a + b)
)

= 1. In this case, any

small variation of K leads to an increase in wave vector k .

Without loss of generality, we may write for convenience

that cos
(

(K + 1K)(a + b)
)

= 1− αγ2b2. Here, α is a small

quantity. It is easy to demonstrate then that the wave vector

magnitude in the examined system increases:

k2
≈

b

a
γ2

(

1 +
2bα

a + b

)

. (11)

Thus, formula (10) characterizes in this case the allowed

state in the lattice with minimum energy (the bottom of

the dimensional subband). It should be noted that the

condition of smallness of argument (6) is not satisfied even

with (10) taken into account in the lattice of interest to us.

However, the Taylor series expansion may then be expressed

approximately as

sin(ka) ≈ ka −

(k0a)2ka

6
,

cos(ka) ≈ 1−
(ka)2

2
+

(k0a)2(ka)2

24
,

sh(γb) ≈ γb +
(γ0b)2γb

6
,

ch(γb) ≈ 1 +
(γb)2

2
+

(γ0b)2(γb)2

24
, (12)

where k0, γ0 are solutions (8) of Eq. (7).
In the approximation of equality of the effective masses in

the well and barrier (0.55m0 and 0.5m0) [5], we introduce

notation

G2 = γ2 + k2 =
2m∗

~2
U (13)

insert expansion (12) into Eq. (4), and, having performed

elementary transformations, obtain

k2
≈ γ2 b

a

(

1 +
ab(2b2 + 2ab − 2a2)G2

12(a + b)2

)

×

(

1 +
ab(2b2 + 4ab − a2)G2

12(a + b)2

)

−1

. (14)

Solution (14) is valid at k a < π/2, which is quite suffi-

cient for the given problem (k(U0) a = π/2.15). Figure 2

shows the plot of function

f

(

b

a
, aG

)

=

(

1 +
b(b2 + 2ab − 2a2)a2G2

12a(a + b)2

)

×

(

1 +
b(2b2 + 4ab − a2)a2G2

12a(a + b)2

)

−1

. (15)

2∗ Technical Physics Letters, 2025, Vol. 51, No. 11



20 A.B. Pashkovskii

b/a

0.5

0

2.5

1.0

2.0

3.0

1.5

0.9

1.0

1.5

1.0

0.8

0.7

f(
x,

 y
)

aG

Figure 2. Variation of correction function (15) with ratio of barrier thickness b to quantum well size a and product aG = a
√

γ2 + k2 .

This plot, which represents the correction coefficient

to (7), makes it is clear that the value of correction function

(15) is 0.75−0.85 within the range of parameters of interest

to us.

It should be noted that the correction to (8) in (14) differs

fundamentally from what could be derived from (7):

k2
≈

γ2b

a

(

1−
aγ2b2

2(a + b)

)

, (16)

if the last term in (7) is not discarded due to smallness. This

is attributable to the fact that all terms of the corresponding

order of smallness are taken into account in (14), but the

same is not true of (7) if the last term is not discarded.

Expansion (12) may be refined further by adding terms

of the next order of smallness:

sin(ka) ≈ ka −

(k0a)2ka

6
+

(k0a)4ka

120
,

cos(ka) ≈ 1−
(ka)2

2
+

(k0a)2(ka)2

24
−

(k0a)4(ka)2

720
,

sh(γb) ≈ γb +
(γ0b)2γb

6
+

(γ0b)4γb

120
,

ch(γb) ≈ 1 +
(γb)2

2
+

(γ0b)2(γb)2

24
+

(γ0b)4(γb)2

720
. (17)

Inserting it into Eq. (3), one may refine formula (13):

k2
≈

γ2b

a

(

1 +
ab(b2 + 2ab − 2a2)G2

12(a + b)2

+
a2b2(b3 + 3ab2

− 10a2b + 3a3)G4

360(a + b)3

)

×

(

1 +
ab(2b2 + 4ab − a2)G2

12(a + b)2

+
a2b2(3b3 + 5ab2

− 12a2b + a3)G4

360(a + b)3

)

−1

. (18)

The magnitude of this refinement is less than 10% even

at ka = π (Fig. 3). This figure presents the plot of function

f

(

b

a
, aG

)

=

(

1 +
b(b2 + 2ab − 2a2)a2G2

12a(a + b)2

+
b2(b3 + 3ab2

− 10a2b + 3a3)a4G4

360a2(a + b)3

)

×

(

1 +
b(2b2 + 4ab − a2)a2G2

12a(a + b)2

+
b2(3b3 + 5ab2

− 12a2b + a3)a4G4

360a2(a + b)3

)

−1

−

(

1 +
b(b2 + 2ab − 2a2)a2G2

12a(a + b)2

)

×

(

1 +
b(2b2 + 4ab − a2)a2G2

12a(a + b)2

)

−1

. (19)
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Figure 3. Variation of correction function (19) with ratio of barrier thickness b to quantum well size a and product aG = a
√

γ2 + k2 .

With (8), (12), and (19) taken into account, the bottom of

the dimensional subband in the system under consideration

is located at a depth (distance from the top of the

barrier to the bottom of the subband) of 0.11−0.13 eV. On

the one hand, this is significantly (3−3.5 times) greater

than the electron energy at crystal lattice temperatures

up to 450K (the maximum allowed temperature in the

channel of a GaAs-based transistor). On the other hand,

the upper valleys usually contain fairly hot electrons, and

such a potential barrier is not very effective for them.

However, additional donor-acceptor doping is apparently

needed to eliminate possible relaxation effects and increase

the efficiency of the barrier system on the substrate side in

such structures [2]. On the gate side, the potential associated

with surface states is likely to be sufficient (especially in

very thin structures).

As the thickness of AlAs layers increases, the bottom of

the subband will sink toward the bottom of the quantum

well, while the height of the barrier to be overcome by an

electron escaping from the well will increase. Even with

a layer width of 10 atomic monolayers, the level height in

the corresponding single quantum well is just 0.05 eV; when

the width exceeds 12 monolayers, a second quantum level

appears.

The obtained results suggest that the depth of the

bottom of the dimensional subband relative to the top of

the corresponding barrier is at the level of 0.11−0.13 eV

for the upper valleys of GaAs/AlAs superlattices used in

heterostructures of field-effect transistors; i. e., the effective

barrier height is almost two times lower than the one

in a structure with AlAs layers thicker than 10 atomic

monolayers.
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