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The bottom of a dimensional subband in a superlattice with strongly
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Based on the analytical solution of the dispersion equation, the energy position of the bottom of the dimensional
subband in shallow superlattices is estimated. It is shown that for the upper valleys of GaAs/AlAs superlattices
used in heterostructures of field-effect transistors, the depth of the bottom of the dimensional subband relative to

the top of the barrier is at the level of 0.11—-0.13 eV.
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Experimental data [1] and theoretical estimates [2-4]
reveal that the use of short-period GaAs/AlAs superlattices
may improve significantly the characteristics of heterostruc-
ture field-effect transistors. However, this raises the question
as to how hot electrons will behave in the region of the
strong field domain when moving into the upper valleys of
a semiconductor, given that X and I' valleys are inverted
in Al,Ga;_,As at aluminum molar fraction x = 0.4. Thus,
while the AlAs layer forms a barrier with a height of 1.04 eV
for the GaAs/AlAs heterojunction along the I' valley, it turns
into a quantum well with a depth of approximately 0.26 eV
along the X valley of AlAs [5] (Fig. 1). A natural question
arises: is it possible that electrons transitioning in a narrow-
gap channel to the upper valleys and transitioning further to
AlAs quantum wells will relax and be trapped there? Such
processes may potentially have a negative impact on the
device characteristics. This is essentially a question of how
the distance from the lower quantum level in a well along
the X valley to the edge of the well relates to the thermal
energy of electrons. It is rather easy to estimate the height
of quantum levels for one or two barriers [6]. However,
this issue is also of interest in the case of a significantly
larger number of barriers [1,2]. The lower quantum level
in a set of quantum wells (a fragment of a superlattice)
cannot be lower than the bottom of the miniband of the
superlattice itself. Therefore, to assess the possible influence
of such processes, one needs to know the height of the
bottom of the dimensional subband of the superlattice under
consideration.

The dispersion equation for the Kronig—Penney potential
(Fig. 1), which characterizes this structure, has been
proposed long ago and is presented in numerous textbooks
(e.g., [6,7)).

In the context of Bloch functions

W(x) =

u(x) exp(iKx) (1)
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(u(x) is the amplitude of the Bloch function periodic with
the superlattice period and K is the wave vector) with
the condition that K is a real number and determines the
allowed states in all possible cases, it is a rather complex
transcendental equation in three variables of the following

form:
cos(K(a + b)) = cos(ka)ch(yb)

—0.5 E - %] sin(ka )sh(yb), 2)

which, apparently, largely defies analysis without significant
simplification. = The situation is not helped much by
the fact that two variables (wave vector k and damping
decrement y) are related:
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Figure 1. Schematic band diagram of the AlAs/GaAs superlattice:
solid line — X valley; dashed line — T valley. The zero point is
the bottom of the I valley of GaAs.
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Here, Uy is the barrier height, E is the electron energy
(measured from the bottom of the X valley of AlAs), m
and my are the effective electron masses in the well and in
the barrier, and £ is the Planck constant.

Therefore, various approaches (see, e.g., [7]), which
revealed a number of general trends (specifically, sagging of
the bottom of the conduction band relative to the quantum
level in weakly coupled wells), have been devised. However,
it seems that the issue of a superlattice with a set of small
tightly coupled wells separated by thin barriers, similar to
the one described above, has simply not arisen before.

Let us examine Eq. (2) at K = 0. In this case, it takes
the form

k*sin(ka)sh(yb) + 2ky (1 — cos(ka)ch(yb))
— y?sin(ka)sh(yb) = 0. 4)

Expanding all the functions into a Taylor series under the
assumption of smallness of their arguments, we obtain

2
sin(ka) ~ ka, cos(ka) ~ 1 — (k;) ,
b 2
sh(yb) ~ yb, ch(yb) = 1+ (VZ) . (5)

Naturally, this expansion is relevant only if the corre-
sponding arguments are small enough. Both sine and cosine
are characterized quite accurately by the first terms of the
series with the argument

ka < m/4. (6)

Thus, the height of the quantum level in the shallow well
under consideration must be at least 15 times smaller than
in an infinitely deep well with the same distance between
the walls. In the examined case, this value for an infinitely
deep well is ~ 1.2eV with an AlAs barrier thickness of
three monolayers (approximately 7.5 A) [1] and an effective
electron mass of 0.55mg in the X valley [5]. The level
height for a single well with a depth of 0.26eV is 0.18 eV,
therefore, its depth is 0.08 eV. Noted that different sources
(see, e.g., [8,9]) provide varying data on effective masses
and intervalley gaps.

In approximation (5), Eq. (3) is reduced to the expression

22212
P oo )

and its solution with respect to the wave vector with account
for the smallness of arguments of the functions included
in it (which means that the last term in (7) is discarded)
becomes very simple:

k*a(a + b) — p*b(a + b) +

K~ Zp2. (8)

Taking (3) into account, one obtains the following for the
corresponding energy:

Q|

mzb
E~—— (. 9
mia + mpb ©)
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If the effective masses are similar or equal,

b
E ~ U. 10
a+b (10)

We have examined the solution of the problem at K = 0
and, accordingly, cos(K(a +b)) =1. In this case, any
small variation of K leads to an increase in wave vector k.
Without loss of generality, we may write for convenience
that cos((K + AK)(a + b)) = 1 — ap?b®. Here, a is a small
quantity. It is easy to demonstrate then that the wave vector
magnitude in the examined system increases:

b 2b
kzz—y2<1+ “>. (11)
a

a+b

Thus, formula (10) characterizes in this case the allowed
state in the lattice with minimum energy (the bottom of
the dimensional subband). It should be noted that the
condition of smallness of argument (6) is not satisfied even
with (10) taken into account in the lattice of interest to us.
However, the Taylor series expansion may then be expressed
approximately as

2
sin(ka) ~ ka — M,
6
(ka)*  (koa)*(ka)?
2 24 ’
(yob)*yb

sh(yb) ~ yb + e

(v0)* | (10b)*(yb)
h(yb) ~ 1 12
ehiph) 1+ L0  PDIZE (1)
where kg, o are solutions (8) of Eq. (7).
In the approximation of equality of the effective masses in
the well and barrier (0.55my and 0.5my) [5], we introduce

notation

cos(ka) ~ 1 —

2m*
72
insert expansion (12) into Eq. (4), and, having performed
elementary transformations, obtain

b
kK~ p? (1+

a

><(1+

Solution (14) is valid at k a < /2, which is quite suffi-
cient for the given problem (k(Up)a = x/2.15). Figure 2
shows the plot of function

b b(b* + 2ab — 2a*)a*G?
f(;,aG) N <1+ 12a(a + b)?

G*=yp*+k =

U (13)

ab(2b* + 2ab — 2a*)G?
12(a + b)?

ab(2b? + 4ab — a*)G? ) !

12(a + b)? (14)

b(2b% + 4ab — a®)a?G*\ !
><<1+( +a a>aG> (15)

12a(a + b)?
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Figure 2. Variation of correction function (15) with ratio of barrier thickness b to quantum well size @ and product aG = a+/y? + k2.

This plot, which represents the correction coefficient
to (7), makes it is clear that the value of correction function
(15) is 0.75—0.85 within the range of parameters of interest
to us.

It should be noted that the correction to (8) in (14) differs
fundamentally from what could be derived from (7):

2 2,2
2 V() _ayTh
kow a (1 2(a —|—b)>’ (16)

if the last term in (7) is not discarded due to smallness. This
is attributable to the fact that all terms of the corresponding
order of smallness are taken into account in (14), but the
same is not true of (7) if the last term is not discarded.

Expansion (12) may be refined further by adding terms
of the next order of smallness:

sin(ka) ~ ka — (k0a6)2ka (kolaz);ka’
sh(yb) ~ yb + (Vobgzyb (yolbz);yb’

Inserting it into Eq. (3), one may refine formula (13):

2 a y?b (1 ab(b® + 2ab — 2a*)G?

a 12(a + b)?

a’b*(b® + 3ab?® — 10a>b + 3a®)G*
360(a + b)?
X <1 +

a?b*(3b3 + 5ab* — 12a%b + a®)G*\ !
360(a + b)? '

ab(2b* + 4ab — a*)G?
12(a + b)?

(18)

The magnitude of this refinement is less than 10 % even
at ka = «r (Fig. 3). This figure presents the plot of function

b b(b* + 2ab — 2a*)a*G?
~,aG )= (1
f(a “ ) ( + 12a(a + b)?

b*(b® 4 3ab® — 10a°b + 3a*)a*G*
360a2(a + b)?

e b(2b* + 4ab — a*)a*G*
12a(a + b)?

b2(3b% + Sab® — 12a%b + a3)a*G*\ !
360a2(a + b)?

(4 b(b* + 2ab — 2a*)a*G*
12a(a + b)?

(19)

(1 bV +dab —a?)a’G? !
12a(a + b)?
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Figure 3. Variation of correction function (19) with ratio of barrier thickness b to quantum well size a and product aG = a+/y? + k2.

With (8), (12), and (19) taken into account, the bottom of
the dimensional subband in the system under consideration
is located at a depth (distance from the top of the
barrier to the bottom of the subband) of 0.11-0.13 eV. On
the one hand, this is significantly (3—3.5 times) greater
than the electron energy at crystal lattice temperatures
up to 450K (the maximum allowed temperature in the
channel of a GaAs-based transistor). On the other hand,
the upper valleys usually contain fairly hot electrons, and
such a potential barrier is not very effective for them.
However, additional donor-acceptor doping is apparently
needed to eliminate possible relaxation effects and increase
the efficiency of the barrier system on the substrate side in
such structures [2]. On the gate side, the potential associated
with surface states is likely to be sufficient (especially in
very thin structures).

As the thickness of AlAs layers increases, the bottom of
the subband will sink toward the bottom of the quantum
well, while the height of the barrier to be overcome by an
electron escaping from the well will increase. Even with
a layer width of 10 atomic monolayers, the level height in
the corresponding single quantum well is just 0.05eV; when
the width exceeds 12 monolayers, a second quantum level
appears.

The obtained results suggest that the depth of the
bottom of the dimensional subband relative to the top of
the corresponding barrier is at the level of 0.11-0.13eV
for the upper valleys of GaAs/AlAs superlattices used in
heterostructures of field-effect transistors; i.e., the effective
barrier height is almost two times lower than the one
in a structure with AlAs layers thicker than 10 atomic
monolayers.
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