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восстановленного ниобата лития

© А.В. Сосунов 1, А.В. Шипицын 1, И.В. Петухов 1, А.А. Мололкин 2, М.А. Базалевский 2

1 Пермский государственный национальный исследовательский университет, Пермь, Россия
2 Университет науки и технологий

”
МИСИС“, Москва, Россия

E-mail: avsosunov@psu.ru

Поступило в Редакцию 11 августа 2025 г.

В окончательной редакции 1 октября 2025 г.

Принято к публикации 1 октября 2025 г.

Изучаются структура и электрооптические свойства волноводов в восстановленном ниобате лития для

задач повышения технологичности и стабильности интегрально-оптических схем. Установлено повышение

оптических потерь за счет увеличения дефектности материала в ходе восстановительного отжига. Также

наблюдается снижение электрооптического коэффициента на 13.6% по сравнению с таковым для образцов

конгруэтного ниобата лития. Поиск компромиссного решения между электрооптическими и пироэлектри-

ческими свойствами восстановленного ниобата лития для его эффективного использования в задачах

интегральной фотоники и оптоэлектроники является в дальнейшем ключевой задачей.
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Ниобат лития (НЛ) является пиро-, пьезо- и сегнето-

электриком и широко используется в качестве матери-

ала подложки в интегральной фотонике и оптоэлектро-

нике. НЛ применяется при изготовлении модуляторов

фазы и амплитуды излучения [1,2], датчиков электри-

ческого напряжения [3] и систем навигации [4]. Также
огромный потенциал применения имеют тонкие пленки

НЛ [5].

Интегрально-оптические схемы на основе НЛ имеют

существенный недостаток, связанный с проблемой дрей-

фа рабочей точки [3,4,6–10]. Решение этой проблемы

весьма актуально для фотонных вычислений, квантовых

коммуникаций и датчиков физических величин [11–13].
Дрейф рабочей точки главным образом обусловлен

электрическими неоднородностями в приповерхност-

ном слое кристалла НЛ из-за его пироэлектрических

свойств [6].

Одним из решений по снижению пироэлектрического

эффекта в НЛ является восстановительный отжиг [10].
Поэтому целью работы является анализ структуры и

электрооптических свойств восстановленного НЛ для

оценки его применимости в интегрально-оптических

устройствах.

В качестве исследуемых материалов использова-

ли пластины НЛ X -среза производства АО
”
Фомос-

Материалы“ (Россия) размером 10× 15× 1mm, отпо-

лированные с двух сторон. Восстановительный отжиг

проводили в вакуумной печи при температуре 700 ◦С

в течение 2 h. Электросопротивление образцов изме-

ряли с помощью универсального электрометрического

вольтметра В7Э-42 с диапазоном измерения сопротив-

ления до 1018 �. В качестве электродов использова-

ли прижимные медные пластины. Верхний электрод

имел прямоугольную форму размером 10× 2mm, а

нижний — форму круга диаметром 11mm. Образец

помещали между двумя этими электродами и измеряли

электросопротивление R, которое затем пересчитывали

в удельное электросопротивление образца ρ по формуле

ρ =
RS

l
, (1)

где S — площадь верхнего электрода, l — толщина

образца.

Структуру образцов изучали с помощью дифракцион-

ного структурного анализа на длине волны Kβ -линии

кобальтового излучения λ = 1.62075�A. Кристаллогра-

фическая плоскость отражения для НЛ X -среза — (110).
Спектр пропускания исследуемых образцов в диапа-

зоне длин волн 1500−1600 nm оценивали с помощью

ИК-фурье-спектрометра Spectrum Two (PerkinElmer) с

разрешением 1.0 cm−1 в направлении кристаллофизиче-

ской оси X .

Одной из важнейших характеристик интегрально-

оптических устройств являются вносимые оптические

потери α в волноводах, которые определяются экспонен-

циальным законом затухания мощности излучения

P(z ) = P0e
−αz , (2)

где P(z ) — оптическая мощность на расстоянии z ,

P0 — начальная оптическая мощность, α — коэффи-

циент вносимых оптических потерь. В данном случае

речь идет о протонообменных волноводах. Вносимые

оптические потери зависят от концентрации дефектов в

объеме волноводного слоя и коэффициента пропускания.
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Сравнительный анализ свойств восстановленного и стандартного НЛ. а — уширение дифракционного максимума; b — спектр

пропускания 1500−1600 nm; c — электрооптическая чувствительность; d — фундаментальная мода на длине волны 1550 nm для

волновода, сформированного в кристалле восстановленного НЛ.

Для оценки структурных изменений в кристалле после

технологических воздействий широко применяется ди-

фракционный структурный анализ. Ширина дифракци-

онного максимума на полувысоте (FWHM) позволяет

судить о степени дефектности кристаллической решетки

материала.

Вносимые оптические потери оценивали в канальных

одномодовых волноводах методом волокно−волокно

(fiber-to-fiber) на длине волны 1550 nm с использо-

ванием многоканального измерителя оптической мощ-

ности PM2000 (FiberPro, Inc.). Процесс изготовления

канальных волноводов, фотолитография и этап стыковки

кристалл−оптическое волокно в представленном крат-

ком сообщении опускаются.

Электрооптический эффект характеризуется линей-

ным изменением показателя преломления 1nz при при-

ложении внешнего электрического поля Ez вдоль поляр-

ной оси кристалла Z (эффект Поккельса):

1nz = −

1

2
n
3
er33Ez , (3)

где ne — необыкновенный показатель преломления,

r33 — максимальный электрооптический коэффициент.

Таким образом, измеряя электрооптическую чувстви-

тельность интерферометра N

1λ = N1V, (4)

где 1λ — изменение длины волны, 1V — изменение

приложенного напряжения, можно рассчитать электро-

оптический коэффициент r33 восстановленного НЛ.

В настоящей работе электрооптический коэффици-

ент r33 восстановленного НЛ рассчитывали с помощью

электрооптического интерферометра путем измерения

его электрооптической чувствительности при подаче по-

стоянного напряжения в диапазоне от 0 до 25V c шагом

0.5V на систему емкостных управляющих электродов,

изготовленных из материала титан−золото в диапазоне

длин волн от 1500 до 1600 nm. Регистрацию спектра

интерферометра проводили с помощью спектроанализа-

тора YOKOGAWA AQ6370D.

Результаты измерений структурных и электроопти-

ческих свойств восстановленного НЛ представлены

на рисунке.

Восстановительный отжиг НЛ приводит к снижению

пироэлектрического эффекта за счет повышения прово-
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димости материала [11]. Удельное электросопротивле-

ние образцов снижается с 1014 до 108 � · cm в зависи-

мости от времени или температуры отжига. В настоя-

щей работе ρ составило 1.2 · 1014 � · cm для исходной

пластины НЛ и 5.7 · 1011 � · cm восстановленного об-

разца НЛ. Процесс восстановления НЛ характеризуется

формированием центров окраски (черный НЛ) в связи с

удалением молекулярного О2 и Li2O c формированием

дефектов NbLi и четырех электронов, образующихся при

разрыве ковалентной связи между ионами Nb и O [11].
Образование дефектов NbLi характеризуется уширением

дифракционного максимума (см. рисунок,а), что приво-

дит к увеличению оптических потерь с 10 до 20 dB. При

этом спектры пропускания в диапазоне 1500−1600 nm

практически совпадают, разница менее 1% (см. рису-
нок, b), что полностью согласуется с результатами [14].
Это означает, что основной вклад в оптические потери

вносят именно дефекты. Изображение поля фундамен-

тальной моды волновода приведено на рисунке, d .

Электрооптические свойства НЛ напрямую зависят от

валентного состояния Nb. Максимальный электроопти-

ческий отклик НЛ проявляется при преобладании Nb5+

и снижается при появлении Nb4+/Nb3+, что связано с

дефектами и неидеальной структурой кристалла [11].

В настоящей работе для оценки этой зависимости был

выполнен расчет электрооптического коэффициента r33

восстановленного НЛ. В основе расчета лежал метод

нахождения полуволнового напряжения Vπ электроопти-

ческого интерферометра на основе НЛ. Для нахождения

r33 была использована формула, связывающая электро-

оптические свойства c геометрическими параметрами

устройства [15]:

r33 =
λd

2n3
eŴLVπ

, (5)

где λ — рабочая длина волны, d — расстояние между

электродами, ne — показатель преломления НЛ [2],
L — длина активной области волноводов, Ŵ — интеграл

перекрытия. Значения интеграла перекрытия специаль-

ным образом не рассчитывали, поскольку он обусловлен

исключительно геометрией электрооптического интер-

ферометра. В настойщей работе были изготовлены

интерферометры с идентичной геометрией (величина
интеграла перекрытия одинаковая) как на основе стан-

дартных необработанных пластин НЛ, так и на основе

восстановленного НЛ. Основное различие между ма-

териалами заключается в электронной структуре, обу-

словленной частичным изменением валентности Nb, что

мало влияет на интеграл перекрытия оптического и

электрического полей.

Полученное в результате расчетов значение элек-

трооптического коэффициента r33 составило 26.7 pm/V.

Данный результат оказался на 13.6% ниже, чем значение

r33 = 30.9 pm/V, которое является эталонным для необ-

работанного конгруэнтного НЛ [2], что хорошо видно

по уменьшению электрооптической чувствительности

интерферометра, изготовленного на основе восстанов-

ленного НЛ (см. рисунок, с). Полученные результаты

согласуются с данными других авторов. В частности,

исследования показывают, что при восстановленном от-

жиге и уменьшении содержания кислорода в кристалле

увеличивается доля Nb4+, что сопровождается сниже-

нием электрооптического коэффициента и нелинейно-

оптических характеристик НЛ [16,17]. Наблюдаемое сни-
жение электрооптического коэффициента не является

критическим, а поиск оптимального решения между

оптическими потерями, электрооптическими свойства-

ми и стабильностью работы интегрально-оптических

устройств является ключевой задачей для последующих

исследований.

Несмотря на ухудшение основных электрооптиче-

ских свойств восстановленного НЛ, он имеет большой

потенциал при изготовлении интегрально-оптических

устройств с повышенной стабильностью характеристик.

В дальнейшем планируются разработка и тестирование

опытных образцов датчика электрического напряжения.
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