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флуоресцентно-меченными олигонуклеотидами для создания

воспроизводимых ДНК-наносенсорных и фотонных устройств
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Проведено систематическое сравнительное исследование эффективности четырех протоколов активации

стеклянной поверхности (двух химических и двух физико-химических) в комбинации с различными

концентрациями (3-аминопропил)триэтоксисилана (APTES: 1%, 2% и 4% vol.). Впервые на силанизиро-

ванной стеклянной подложке в качестве иммобилизуемого олигонуклеотида использовался универсальный

молекулярный маяк (UMB), меченный флуоресцеином (FAM). Эффективность методов оценивалась путем

измерения краевого угла смачивания и флуоресцентного анализа с расчетом отношения сигнал/фон (S/B).
Показано, что протоколы с использованием кислородной плазмы обеспечивают наибольшую гидрофильность

поверхности (краевой угол 4.9◦−5.5◦), однако демонстрируют более низкое отношение S/B по сравнению

с химическими методами. Наилучшие результаты достигнуты при использовании Протокола 1 (химическая
активация раствором серной кислоты и перекиси водорода) с концентрацией APTES 2%, что обеспечило

максимальное отношение S/B (5.2± 0.9). Таким образом, в результате работы был выбран оптимальный

протокол иммобилизации UMB на поверхности стекла, который может лечь в основу создания перспектив-

ных ДНК-наносенсоров и фотонных устройств.
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1. Введение

Развитие нанотехнологий создаёт фундамент для на-

правленного конструирования функциональных матери-

алов и устройств, свойства которых контролируются на

молекулярном уровне. В этом контексте технологии на

основе нуклеиновых кислот занимают особое положе-

ние благодаря уникальному сочетанию характеристик,

обеспечивающих их широкое применение. Ключевое

преимущество заключается в возможности программи-

руемой самосборки структур с нанометровой точностью

посредством уотсон-криковских взаимодействий [1], что
позволяет создавать объекты заданной формы с высокой

точностью [2,3]. Эта способность к молекулярной сборке

лежит в основе разработки высокоспецифичных сен-

сорных и терапевтических систем [4–6], эффективность
которых дополняется высокой биосовместимостью и

биодеградируемостью ДНК-наноструктур [7–9]. Важным
аспектом является также возможность формирования

гетероструктур путём иммобилизации олигонуклеоти-

дов на поверхности различных материалов, таких как

плазмонные [10] и магнитные наночастицы [11], графено-
вые наноструктуры [12], полимеры [13] и диоксид крем-

ния [14], что открывает перспективы для использования

при поиске однонуклеотидных замен, мутаций и оценке

экспрессии генов.

ДНК-технологии также демонстрируют значительный

потенциал и в других междисциплинарных исследо-

ваниях. Так, перспективным направлением становится

интеграция ДНК-технологий в специфических областях

фотоники, что позволяет создавать принципиально но-

вые системы с уникальными свойствами. Так, ДНК

может служить высокоэффективной матрицей для ин-

теграции органических красителей, квантовых точек и

хромофоров, предотвращая их агрегацию и позволяя

создавать нелинейные оптические материалы с выражен-

ными нелинейными показателем преломления и двух-

фотонным поглощением [15–19]. Было также показано,

что стабилизация молекул красителя в ДНК-матрице на

стеклянной подложке приводит к значительному увели-

чению квантового выхода флуоресценции за счет подав-

ления безызлучательных переходов, что создает основу

для разработки биосовместимых волноводных лазеров и

высокоэффективных флуоресцентных сенсоров [20–22].
Внедрение в фотонные системы ДНК-структур позво-

ляет с нанометровой точностью организовывать плаз-

монные наночастицы и квантовые точки в пространстве,
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позволяя конструировать сложные устройства, такие как

плазмонные наноантенны, волноводы, метаповерхности

и фотонные кристаллы [23,24]. Более того, интеграция

ДНК-сенсоров непосредственно в оптические волноводы

формирует основу для создания лабораторий-на-чипе,

обеспечивая высокочувствительную детекцию биологи-

ческих аналитов [25,26].

Несмотря на разнообразие направлений в ДНК-

фотонике, особую роль играют системы на основе оли-

гонуклеотидов, иммобилизованных на стекле. Подобные

системы обладают уникальным набором характеристик,

критически важных для оптических применений: высо-

кая прозрачность в диапазоне от видимого до ИК излу-

чения (400−1700 nm) [27–29], низкие оптические потери
в волноводах (порядка 0.06 dB/cm) [30], химическая

инертность и устойчивость к большинству реагентов,

обеспечивающая долговременную стабильность иммоби-

лизованных структур, а также простота фабрикации из-

готовления и низкая стоимость. Эти достоинства делают

такие системы чрезвычайно перспективной платформой

для создания современных фотонных и сенсорных си-

стем [31–33].

Ключевым этапом в создании высокочувствительных

биосенсоров является оптимальная функционализация

стеклянных подложек олигонуклеотидами, для этого

требуется подбор подходящих химических и физических

показателей поверхности для стабильного и специфич-

ного связывания с сохранением биологической активно-

сти. Очистка и активация поверхности — один из ос-

новных этапов, обеспечивающих однородное покрытие,

повторяемость и долговечность функционализированной

поверхности. Более того, такие параметры как нежела-

тельная ориентация и конформация молекул, фоновый

сигнал и неспецифическое связывание молекул могут

снижать чувствительность и селективность сенсора. Все

вместе это подводит к необходимости комплексного

анализа и оптимизации функционализации стеклянных

подложек олигонуклеотидами [34].

Несмотря на широкую применимость методов, осно-

ванных на иммобилизованных на стеклянной подлож-

ке олигонуклеотидах, в настоящее время отсутствуют

систематические сравнения протоколов модификации

поверхностей. Данный факт делает необходимым про-

ведение комплексных экспериментов по подбору опти-

мальных протоколов перед началом исследований. В

настоящей работе была проведена многофакторная оп-

тимизация, в рамках которой рассматривались несколько

протоколов силанизации стекла с использованием (3-
аминопропил)триэтоксисилана (APTES), являющегося

одним из ключевых факторов модификации. С этой

целью были отобраны по 2 протокола химической и

физической активации стекла с последующим исполь-

зованием различных концентраций APTES (1%, 2% и

4%v/v). В качестве иммобилизуемого олигонуклеоти-

да был применен универсальный молекулярный маяк

(UMB). Насколько нам известно, UMB был впервые

иммобилизирован на стеклянной подложке, силанизиро-

ванной с использованием APTES [35]. Проведенная в

рамках работы оптимизация модификации поверхности

сенсоров закладывает фундамент для разработки вы-

сококачественных и воспроизводимых ДНК-сенсоров и

фотонных устройств, поскольку устанавливает стандар-

тизированный и эффективный протокол подготовки по-

верхности, критически важный для их чувствительности

и стабильности.

2. Материалы и методы

2.1. Материалы и оборудование

(3-аминопропил)триэтоксисилан/APTES (Thermo-

Fisher Scientific, США), стекла для микропрепаратов

26 на 76mm (Минимед, Россия), этиловый спирт

(Ekos, Россия), ацетон (Ekos, Russia), гидроксид

натрия (Sigma-Aldrich, USA), гидроксид калия

(Sigma-Aldrich, USA), изопропиловый спирт (Ekos,
Россия), хлороформ (Ekos, Россия), метиловый спирт

(Химмед, Россия), глутаровый альдегид (ThermoFisher

Scientific, USA), фосфатно-солевой буфер (PBS) (Biolot,
Россия), уксусная кислота (Ekos, Россия), раствор

олигонуклеотидов (DNA SYNTHESIS, Россия), раствор
серной кислоты (Ленреактив, Россия) и перекиси

водорода 30% (Aldosa, Россия) (в соотношении

3 : 1). Орбитальный шейкер Vibramax 100 (Heidolph,
Германия), ультразвуковая ванна

”
Сапфир“ ТТЦ

(Sapphire, Россия), сухожаровой шкаф Binder ED 53

Avantgarde.Line (Binder GmbH, Германия), плазменная
установка низкого давления (Diener ZEPTO 13.56MHz,

Ebhausen, Германия).

2.2. Методы

2.2.1. Очистка и активация стекол Для иммо-

билизации олигонуклеотидов, поверхность стекла пред-

варительно активировалась. Для реализации процесса

активации было выбрано четыре протокола, различаю-

щихся по типу воздействия (химическое, физическое) и

количеству этапов.

В Протоколе 1 предметные стёкла помещались в

емкость Колпина для окрашивания объёмом 40ml, на-

половину наполненную раствором этанола и гидроксида

натрия (10M) в соотношении 3 : 7, и в течение 30min

инкубировались на орбитальном шейкере. Затем очища-

лись дистиллированной водой и сушились в атмосфере

азота. После этого стёкла наполовину погружались в

раствор серной кислоты и перекиси водорода в отноше-

нии 3 : 1 и подвергались инкубации в течение 30min на

орбитальном шейкере. После активации стёкла промы-

вались дистиллированной водой и сушились в атмосфере

азота [36].
При использовании Протокола 2 предметные стёкла,

наполовину погруженные в ацетон, подвергались об-

работке в ультразвуковой ванне в течение 30min при

Оптика и спектроскопия, 2025, том 133, вып. 11



Оптимизация условий функционализации стекла флуоресцентно-меченными олигонуклеотидами... 1221

30 ◦C. Далее они подвергались промывке дистиллирован-

ной водой и ультразвуковой обработке в 5М растворе

KOH в течение 45min при температуре 30 ◦C. Затем

стёкла очищались дистиллированной водой и подверга-

лись ультразвуковой обработке 10min при 30 ◦C. После

этого стёкла промывались еще раз дистиллированной

водой, ацетоном и сушились в атмосфере азота. Далее

они помещались в сухожаровой шкаф при температуре

110 ◦C на 30min. После сушки стёкла очищались в плаз-

ме кислорода в течение 10min при мощности 80% [37].
В Протоколе 3 предметные стёкла последовательно

активировались в течениe 30 s хлороформом, изопропи-

ловым спиртом, метанолом и дистиллированной водой и

затем сушились в атмосфере азота [28].
Для активации, согласно Протоколу 4, предметные

стёкла, наполовину погруженные в ацетон, инкубиро-

вались в ультразвуковой ванне в течение 10min, затем

ацетон заменяли на изопропиловый спирт и инкубиро-

вали в ультразвуковой ванне также в течение 10min.

Далее воспроизводили те же действия и после очистки

с помощью изопропилового спирта стёкла сушили при

комнатной температуре. После сушки стёкла обраба-

тывались в плазме кислорода в течение 5min при

мощности 80% [38].

2.2.2. Измерение краевого угла смачивания
После проведения протоколов активации на контроль-

ных стёклах был измерен краевой угол смачивания

для воды с помощью прибора OCA 15EC (Filderstadt,
Германия). С помощью системы прямой дозировки SD-

DM в комбинации с электронным дозирующим модулем

ES на стёкла были нанесены капли дистиллированной

воды объёмом 10 µl и зафиксированы с помощью USB-

камеры. Численные значения угла смачивания были по-

лучены при обработке данных с помощью программного

обеспечения
”
SCA 20“.

2.2.3. Модификация стёкол В течениe 5 min по-

сле активации стёкла были помещены в ванночки,

заполненные наполовину различными концентрациями

APTES (1%, 2% и 4%v/v) в этиловом спирте, на 2 h

при комнатной температуре. После инкубации стёкла

промывались 96% этанолом, 6% уксусной кислотой и

снова этанолом по 5min на орбитальном шейкере. Затем

полученные образцы стёкол помещались в сухожаровой

шкаф на 20min при температуре 150 ◦C [39].
После этого стёкла погружались в 2.5% раствор

глутаральдегида в PBS 1X на 1.5 h при комнатной темпе-

ратуре в темноте. После инкубации стекла промывались

дистиллированной водой, PBS 1X и снова водой в

течение 5min на орбитальном шейкере. Далее сушились

при комнатной температуре.

После высыхания раствор олигонуклеотидов концен-

трацией 10µM наносили на подготовленные стекла в

объеме 20 µl, в качестве контроля был использован

буфер без олигонуклеотидов, наносимый в том же

объёме. Стёкла с олигонуклеотидами инкубировались в

течение 2.5 h при комнатной температуре в емкостях с

повышенной влажностью и закрытыми от света. Затем

стекла промывались дистиллированной водой, PBS 10X

и опять водой в течение 5min каждый на орбитальном

шейкере. Потом стёкла выкладывались вертикально и

сушились при комнатной температуре. После высыхания

на области куда ранее наносили раствор олигонуклео-

тидов, раскапывали буфер (Tris 7.4 и MgCl2 50mM) и

инкубировали 20min при комнатной температуре.

2.2.4. Считывание флуоресцентного сигнала
Для реализации процесса считывания флуоресценции

была собрана флуориметрическая оптическая схема

(pис. S1, Приложение), основанная на принципе двойно-

го монохроматора для обеспечения высокой спектраль-

ной селективности и подавления фонового излучения. В

качестве источника возбуждающего света используется

галогеновая лампа Avantes. Излучение лампы проходит

через входную прямоугольную щель шириной 50 µm,

которая служит для формирования узкого и хорошо кол-

лимированного светового пучка. Далее свет попадает на

входную отражающую нарезную дифракционную решёт-

ку с плотностью штрихов 1200mm−1, предназначенную

для спектрального разложения входного излучения и

выделения нужной длины волны возбуждения (493 nm).
Дифрагировавший свет направляется при помощи сереб-

ряных зеркал к образцу с иммобилизованными олиго-

нуклеотидами. Испускаемое им излучение направляется

на выходную дифракционную решетку, аналогичную по

параметрам входной. Эта решётка позволяет отделить

рассеянный свет и фоновое излучение, а также выбрать

для детектирования излучение в узком участке спектра

около 517 nm, которое фокусируется на фотоумножите-

ле.

3. Результаты

В работе проведено сравнительное исследование двух

основных направлений активации стеклянной поверх-

ности: физико-химического и химического методов.

Физико-химический подход был представлен протокола-

ми 2 и 4, основанными на обработке кислородной плаз-

мой, но различающимися методикой предварительной

подготовки стекла (см. пункт 2.2.1). В Протоколе 2 при-

менялась очистка органическими и щелочными раство-

рителями, что вкупе с ультразвуковой обработкой и ин-

кубацией в сушильном шкафу активировало поверхность

стекла и удаляло с нее все загрязнения перед воздей-

ствием кислородной плазмы. Для сравнения в четвертом

протоколе в отличиe от второго использовались только

органические растворители и в теченииe более корот-

кого времени обработки перед плазменной очисткой.

Химические методы активации включали Протокол 1

с использованием щелочи и раствора серной кислоты

и перекиси водорода и более мягкий Протокол 3 на
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Рис. 1. Графические схемы протоколов активации стеклянной поверхности: химических — Протокол 1 (a), Протокол 3 (b) и

физико-химических — Протокол 2 (c) и Протокол 4 (d).

основе органических растворителей. Схемы протоколов

представлены на рис. 1.

3.1. Измерение краевого угла смачивания
активированной стеклянной поверхности

Для первичной валидации эффективности выбранных

протоколов активации поверхности проводились изме-

рения краевого угла смачивания, позволяющие коли-

чественно оценить гидрофильно-гидрофобные свойства

стеклянных поверхностей. Схематическое представле-

ние методики измерения приведено на (рис. 2, a). Анализ
полученных данных продемонстрировал существенные

различия в смачиваемости поверхностей в зависимости

от применяемого протокола активации. Наименьшее зна-

чение краевого угла, характеризующее максимальную

гидрофильность поверхности, было зарегистрировано

для Протокола 2 и составило 4.9± 0.8◦ . Близкие к

нему показатели гидрофильности показал Протокол 4

(5.5± 0.3◦). Протокол 1 обеспечил значения угла сма-

чивания, равные 10.3 ± 1.5◦, в то время как Протокол

3 привел к формированию наиболее гидрофобной по-

верхности с краевым углом 22.7 ± 2.4◦. В качестве кон-

троля использовалась не активированная поверхность

стекла с краевым углом смачивания 29.0 ± 5.5◦. Это

подтверждает эффективность всех протоколов активации

в повышении гидрофильности поверхности.

Проведенные исследования показали, что наиболь-

шей гидрофильностью характеризовались поверхности,

обработанные кислородной плазмой, что согласуется

с литературными данными [40]. Столь высокая гидро-

фильность объясняется образованием на поверхности

стекла гидроксильных групп (Si−OH) и силоксановых

связей (Si−O−Si), что придает поверхности сверхгидро-

фильные свойства и повышенную реакционную способ-

ность [41,42]. Однако данный метод имеет существен-

ное ограничение: исследования показывают, что высо-

кая реакционная способность плазменной поверхности

сохраняется лишь в течение нескольких минут после

обработки, после чего полярные группы подвергаются

рекомбинации или адсорбируют загрязнения из воздуха,

значительно теряя свою реакционную способность [43].
Кроме того, данный метод требует дорогостоящего обо-

рудования.

Химический метод, основанный на погружной обра-

ботке стекла, широко применяется в протоколах очистки

и последующей силанизации для получения однородно

функционализированной поверхности. Обеспечивается

условие для равномерного контакта реактива с поверх-
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Рис. 2. Измерение краевого угла смачивания: (a) Схематичное изображение принципа метода с цветовой кодировкой,

демонстрирующей зависимость между количеством гидроксильных групп (−OH) на поверхности и значением краевого угла

θ: синий цвет соответствует гидрофильным поверхностям с большим количеством −OH-групп и малым значением θ, красный —

гидрофобным поверхностям с меньшим количеством OH-групп и большим значением θ. (b) Значения краевого угла для

поверхностей, очищенных и активированных по различным протоколам (Протоколы 1−4), а также для неактивированного стекла

(Non-activated Glass).

ностью, что приводит к формированию однородного

распределения реакционных групп. Однако следует учи-

тывать, что такие факторы, как динамика жидкости,

температурные градиенты и микрошероховатости по-

верхности, могут приводить к локальным изменениям

концентрации реагента и кинетики реакции [44]. Для

минимизации этих эффектов следует использовать шей-

кер или ультразвуковую обработку, которые улучшают

массоперенос и обеспечивают равномерность очистки на

всей поверхности.

Чаще всего для химической очистки используется

раствор серной кислоты и перекиси водорода. Его осо-

бенность заключается в его способности гидролизовать

силоксановые связи (Si−O−Si) на поверхности, регене-

рируя силанольные группы (Si−OH), что значительно

повышает гидрофильность поверхности [45].

Вместе с тем для стекла с высоким исходным содер-

жанием силанольных групп может оказаться достаточ-

ным применения очистки органическими растворителя-

ми для эффективного удаления поверхностных загряз-

нений. Важно отметить, что в отличие от обработки

раствором пираньи погружение в органические раство-

рители не увеличивает плотность силанольных (Si−OH)
или других полярных групп на поверхности стекла, а

лишь открывает существующие гидроксильные центры,

удаляя органические загрязнения, которые блокируют их

реакционную способность. Это подтверждается получен-

ными нами результатами, показывающими, что гидро-

фильность стекла до очистки и после очистки органиче-

скими растворителями отличается незначительно (после
Протокола 4 22.7± 2.4◦, само стекло 28.95± 5.5◦),

что свидетельствует о сохранении исходной плотности

силанольных групп.

3.2. Флуоресцентный анализ поверхности с

использованием меченных
олигонуклеотидов

Для подтверждения успешной иммобилизации олиго-

нуклеотидов и оценки уровня неспецифической адсорб-

ции после анализа гидрофильности поверхности были

проведены флуоресцентные измерения с использова-

нием собранной оптической схемы (рис. S1). Интен-

сивность флуоресцентного сигнала сравнивалась между

целевыми зонами (стекло, модифицированное олигонук-

леотидом UMB c NH2 группой, меченными флуоресце-

ином (FAM) и контрольными зонами (стекло после мо-

дификации APTES+GA без олигонуклеотидов). Общая

схема эксперимента приведена на рисунке рис. 3, a.

Результаты показали, что для Протокола 1 уровень

флуоресценции на различных концентрациях APTES

оставался сравнительно стабильным, варьируясь для

целевых зон от 260.5 ± 49.9 (при 2% APTES) до

285.7± 24.7 arb. units (при 4% APTES). Сигналы от

контрольной зоны составили 53.0± 1.1, 54.6± 3.4,

57.0± 1.2 arb. units, для 1%, 2% и 4% соответствен-

но. Для Протокола 2 наблюдалась четкая зависи-

мость интенсивности флуоресценции от концентрации

APTES: в целевых зонах значения увеличивались с

155.8± 25.7 (1%) до 480.2± 24.7 arb. units (4%), тогда
как в контрольных зонах рост был менее выражен-

ным, с 98.2 ± 13.9 до 190.7 ± 61.8 arb. units. В слу-
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чае Протокола 3 максимальная флуоресценция целе-

вых зон зарегистрирована при концентрации APTES

1% (256.4 ± 53.7 arb. units), с последующим снижением

при 2% и 4% до 195.0 ± 10.1 и 217.7 ± 14.2 arb. units

соответственно. Контрольные зоны продемонстрировали

аналогичную зависимость: 77.8 ± 12.8 (1%), 63.5 ± 0.9

(2%) и 67.1 ± 1.4 arb. units (4%). Для Протокола 4 значе-

ния флуоресценции целевых зон составили 161.9± 12.8

(1%), 135.9 ± 19.8 (2%) и 177.8± 14.0 arb. units (4%),
при этом контрольные зоны показали 115.6± 13.2,

80.8± 1.6 и 121.0 ± 6.8 arb. units для соответствующих

концентраций APTES (рис. 3, b).
Последующий расчет отношения сигнал/фон (S/B)

выявил, что наивысшие значения были достигнуты при

использовании Протокола 1. Максимальное отноше-

ние S/B продемонстрировали образцы с концентрацией

APTES 2% (5.2± 0.9). Для других концентраций в

рамках данного протокола получены схожие значения:

4.9± 0.9 для 1% и 5.0± 0.3 для 4% APTES (рис. 3, c).
Для Протокола 2 наибольшее значение S/B составило

2.5± 1.1 при 4% APTES, для Протокола 3 — 3.3± 0.3

при 1% APTES, для Протокола 4 — 1.7± 0.2 при 2%

APTES.

Ключевым критерием при оценке эффективности ме-

тодов иммобилизации является отношение сигнал/фон

(S/B), которое имеет первостепенное значение для боль-

шинства практических применений. Данный параметр

информативнее абсолютных значений флуоресценции,

поскольку отражает не только уровень специфическо-

го сигнала от целевой зоны с иммобилизированными

олигонуклеотидами, меченными флуорофором, но и ин-

тенсивность фонового сигнала от контрольной зоны.

Этот аспект приобретает особую важность в контек-

сте использованной химии модификации поверхности,

где последовательное применение APTES, содержащего

аминогруппы, и GA с альдегидными группами при-

водит к образованию оснований Шиффа, обладающих

собственной флуоресценцией [46]. Следовательно, вы-

сокий фоновый сигнал свидетельствует об интенсивном

неконтролируемом образовании оснований Шиффа, что,

в свою очередь, может быть следствием формирования

протяженных полимерных структур на основе APTES и

указывать на недостаточную воспроизводимость резуль-

татов модификации поверхности.

Также в контексте задач исследования важно отме-

тить, что в качестве иммобилизованного олигонуклео-

тида использовался UMB — молекулярный маяк, вы-

полняющий роль молекулярного фундамента для сборки

ДНК-конструкций на поверхности. Данная последова-

тельность формирует стабильную шпилечную структуру

без последовательностей, способных ее развернуть в

линейную конфигурацию [47]. Такая архитектура пред-

ставляет собой удобный инструмент для иммобилизации

ДНК-конструкций, что ранее подтверждалось при созда-

нии сверхспецифичных ДНК-сенсоров [31,35,48]. Однако
в основном в литературных источниках использовался

электрохимический метод детекции с иммобилизацией

UMB на золотой подложке, тогда как иммобилизация

UMB на поверхности стекла остается перспективной и

малоизученной научной задачей.

4. Выводы

В рамках данного исследования была проведена ком-

плексная работа по сравнительному анализу методов

активации стеклянной поверхности для последующей

иммобилизации ДНК-структур. Исследование было на-

целено на систематическую оценку эффективности раз-

личных протоколов активации и последующей модифи-
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кации поверхности с целью определения оптимального

метода для создания функциональных поверхностей в

ДНК-фотонике.

Проведено сравнение двух основных направлений ак-

тивации: физико-химического метода (Протоколы 2 и 3

на основе кислородной плазмы) и химического метода

(Протокол 1 с раствором серной кислоты и перекиси

водорода и Протокол 4 с органическими растворителя-

ми). Анализ гидрофильности поверхности показал, что

наибольшей гидрофильностью характеризуются поверх-

ности, обработанные кислородной плазмой (Протокол 2:

4.9± 0.8◦; Протокол 4: 5.5± 0.3◦), однако эти методы

имеют ограничения, связанные с временной нестабиль-

ностью активированной поверхности и необходимостью

использования дорогостоящего оборудования.

Флуоресцентный анализ с использованием меченных

FAM олигонуклеотидов UMB продемонстрировал, что

наилучшие результаты достигаются при использовании

Протокола 1 с концентрацией APTES 2%, который по-

казал максимальное отношение сигнал/фон (5.2 ± 0.9).
Данный протокол обеспечивает стабильные значения

флуоресценции целевых зон (260.5 ± 49.9 arb. units при

2% APTES до 285.7 ± 24.7 arb. units при 4% APTES) при
минимальном фоновом сигнале (53.0−57.0 arb. units),
что свидетельствует о контролируемом процессе иммо-

билизации и отсутствии неспецифической адсорбции.

Таким образом, Протокол 1 с концентрацией APTES

2% идентифицирован как оптимальный метод подготов-

ки стеклянной поверхности для иммобилизации ДНК-

структур, обеспечивающий высокое отношение сиг-

нал/фон и воспроизводимые результаты, что делает

его перспективным для применения в ДНК-фотонике и

сенсорных системах.
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Рис. S1. Оптическая схема монохроматора для измерения флуоресценции.
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Microsyst. 1, 033501 (2021).
DOI: 10.1117/1.JOM.1.3.033501

[28] H.A. Ki, M.J. Kim, S. Pal, J.M. Song. J. Pharm. Biomed. Anal.,

49, 562 (2009). DOI: 10.1016/j.jpba.2008.11.031

[29] J. Li, H. Wang, Y. Zhao, L. Cheng, N. He, Z. Lu. Sensors, 1,

53 (2001). DOI: 10.3390/s10100053
[30] G.C. Righini, A. Chiappini. Opt. Eng., 53, 071819 (2014).

DOI: 10.1117/1.OE.53.7.071819

[31] A. Camposeo, P. Del Carro, L. Persano, K. Cyprych,

A. Szukalski, L. Sznitko, J. Mysliwiec, D. Pisignano. ACS

Nano, 8, 10893 (2014). DOI: 10.1021/nn504720b
[32] L. Ding, B. Liu, A. Peil, S. Fan, J. Chao, N. Liu. Adv. Mater.,

2500086 (Early view). DOI: 10.1002/adma.202500086

[33] C.R. Sabanayagam, J.R. Lakowicz. Nucleic Acids Res., 35,

e13 (2006). DOI: 10.1093/nar/gkl1054
[34] J. Sobek, C. Aquino, R. Schlapbach. Microarrays. Vol. 2 Appl.

Data Anal., ed. by J.B. Rampal (Humana Press, Totowa, NJ,

2007), p. 53−66. DOI: 10.1007/978-1-59745-304-2_4

[35] D.M. Mills, M.V. Foguel, C.P. Martin, T.T. Trieu, O. Kamar,

P. Calvo-Marzal, D.M. Kolpashchikov, K.Y. Chumbimuni-

Torres. Sens. Actuators B Chem., 293, 11 (2019).
DOI: 10.1016/j.snb.2019.04.149

[36] A.R. Yadav, R. Sriram, J.A. Carter, B.L. Miller. Mater. Sci.

Eng. C, 35, 283 (2014). DOI: 10.1016/j.msec.2013.11.017

[37] Ł. Syga, D. Spakman, C.M. Punter, B. Poolman. Sci. Rep., 8,

13789 (2018). DOI: 10.1038/s41598-018-32166-y
[38] M. Castano-Alvarez, D.F.P. Ayuso, M.G. Granda,

M.T. Fernández-Abedul, J.R. Garcı́a, A. Costa-Garcı́a.

Sens. Actuators B: Chem., 130 (1), 436−448 (2008).
DOI: 10.1016/j.snb.2007.09.043

[39] M. Sypabekova, A. Hagemann, D. Rho, S. Kim. Biosensors

13, (2023). DOI: 10.3390/bios13010036
[40] W.F. Paxton, P.T. McAninch, S.H.R. Shin, M.T. Brumbach. Soft

Matter, 14, 8112 (2018). DOI: 10.1039/C8SM00343B

[41] A.U. Alam, M.M.R. Howlader, M.J. Deen. ECS J. Solid State

Sci. Technol., 2, P515 (2013). DOI: 10.1149/2.007312jss
[42] A.U. Alam, M. Howlader, M.J. Deen. J. Micromechanics

Microengineering, 24, 035010 (2014). DOI: 10.1088/0960-
1317/24/3/035010

[43] K. Shoda, M. Tanaka, K. Mino, Y. Kazoe. Micromachines, 11,

804 (2020) DOI: 10.3390/mi11090804

[44] F. Lamberti, C. Luni, A. Zambon, P. Andrea Serra, M. Giomo,

N. Elvassore. Biomicrofluidics, 6 (2), (2012).
DOI: 10.1063/1.4705368

[45] Y. Liao, X. Chen, Y. Jiang, C. Qu, X. Liu, A. Zhao, P. Yang,

N. Huang. J. Chen. Front. Bioeng. Biotechnol., 11, 1166334

(2023). DOI: 10.3389/fbioe.2023.1166334
[46] A. Afrin, A. Jayaraj, M.S. Gayathri, Chinna Ayya Swamy P.

Sensors and Diagnostics, 2, 988 (2023).
DOI: 10.1039/D3SD00110E

[47] A. Lake, S. Shang, D.M. Kolpashchikov. Angew. Chem. Int.

Ed., 49, 4459 (2010). DOI: 10.1002/anie.200907135
[48] S.-C. Sun, H.-Y. Dou, M.-C. Chuang, D.M. Kolpashchikov.

Sens. Actuators B Chem., 287, 569 (2019).
DOI: 10.1016/j.snb.2019.02.073

Оптика и спектроскопия, 2025, том 133, вып. 11


