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Усиление хемилюминесценции при окислении люминола

в присутствии ионов металлов и плазмонных наночастиц
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Приведены результаты исследования хемилюминесценции в присутствии плазмонных серебряных нано-

частиц и химических катализаторов — ионов меди, железа, кобальта и марганца. Продемонстрировано

усиление хемилюминесценции под действием как наночастиц серебра, так и ионов — отдельно и совместно

с наночастицами. Определены концентрации катализаторов и наночастиц, обеспечивающие максимальное

увеличение хемилюминесцентного сигнала. При совместном действии наночастиц серебра и ионов металлов

рост интенсивности хемилюминесценции превосходит её рост в присутствии только наночастиц или только

ионов. Путём сопоставления спектров хемилюминесценции, усиленной наночастицами и ионами металлов,

показано различие присущих им физического и химического механизмов усиления.
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Введение

Изучению хемилюминесценции посвящено большое

количество работ, начиная с первой половины прошлого

века. Эта тема не утрачивает актуальности и по сей

день. Согласно статистике Всемирной организации здра-

воохранения (ВОЗ), постоянно растет заболеваемость

аутоиммунными и онкологическими заболеваниями [1].
Основной причиной патогенеза ряда болезней и патоло-

гических процессов в организме человека является окси-

дативный стресс. Чаще всего возникновение оксидатив-

ного стресса в организме связано с высокой концентра-

цией свободных радикалов, в том числе активных форм

кислорода (АФК) [2]. Для своевременной диагностики

необходимы чувствительные методы их детектирования.

Низкий предел обнаружения, характерный для хеми-

люминесцентных методов, привел к широкому исполь-

зованию их в медицине, в частности для диагностики

аутоиммунных заболеваний [3]. Хемилюминесцентные

сенсоры находят применение и в криминалистике, а

также в газоанализаторах [4] и средствах обнаружения

пестицидов в сельском хозяйстве [5].
Еще более широкое использование хемилюминесцен-

ции сдерживается ее низкой интенсивностью, обуслов-

ленной конкуренцией между излучательными и безызлу-

чательными каналами релаксации энергии электронного

возбуждения.

Перспективным методом усиления хемилюминесцент-

ного сигнала без прямого вмешательства в хемилюми-

несцентную реакцию является ускорение излучатель-

ного перехода, которое может быть реализовано при

нахождении молекулы хемилюминофора вблизи метал-

лической наночастицы, спектральная полоса плазмон-

ного резонанса которой перекрывается с полосой хе-

милюминесценции [6–11]. Такое увеличение скорости

радиационных переходов неоднородной среде известно

как эффект Парселла.

Усиление хемилюминесцентного сигнала может быть

получено и с помощью химических катализаторов —

ионов металлов, ускоряющих саму реакцию [12]. При

взаимодействии аналита с ионами металлов образуется

продукт с более высокой окислительной активностью по

отношению к молекулам хемилюминофора, и хемилю-

минесцентная реакция происходит быстрее и с большей

интенсивностью свечения.

Исходя из этого цель данной работы состояла в

определении оптимальных катализаторов из ионов же-

леза, меди, кобальта, марганца и выборе необходимых

концентраций и степени усиления хемилюминесценции

при окислении люминола гипохлоритом натрия в при-

сутствии плазмонных наночастиц. В природе гипохлорит

натрия образуется в реакции, катализируемой фермен-

том миелопероксидазой. Этот процесс происходит при

контакте гранулоцитов крови с чужеродными клетка-

ми, например бактериями. Активация рецепторов на

поверхности клеток запускает процессы, приводящие к

образованию супероксидных радикалов [13].
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Таким образом, настоящее исследование формиру-

ет основу для использования хемилюминесценции для

выявления заболеваний, обусловленных оксидативным

стрессом и для создания сенсорных систем.

Материалы и методы

В работе использованы водные растворы люмино-

ла в концентрации 3.5 · 10−4 M, гипохлорита натрия

(400 µM), растворы NaOH при pH=7.

Серебряные наночастицы сферической формы с цит-

ратной оболочкой (AgNP) были получены методом

коллоидного синтеза по следующей схеме [14]:
1) водные растворы тринатрий цитрата и AgNO3 с

концентрацией 0.01М смешивались в объёмном соотно-

шении 1:1;

2) в заранее охлаждённую до 5−6◦C деионизованную

воду добавлялся тетрагидроборат натрия NaBH4 для по-

лучения раствора концентрации 0.01М, который после

приготовления интенсивно перемешивался;

3) затем в интенсивно перемешиваемый раствор

(AgNO3 + тринатрий цитрат) добавлялся раствор тетра-

гидробората натрия NaBH4 по 200µl до достижения объ-

ёмного соотношения 2 : 1 между растворами (AgNO3 +
тринатрий цитрат) и тетрагидробората натрия NaBH4.

Полученный раствор наносфер выдерживался примерно

10min для того, чтобы произошла реакция компонентов

раствора. Цвет итогового раствора серебряных нано-

сфер — тёмно-жёлтый.

Для синтеза использовали нитрат серебра AgNO3

(ООО
”
Бертуз“, Россия, степень чистоты ≥ 99%), три-

натрий цитрат компании AppliChem Panreac (≥ 98%),
тетрагидроборат натрия NaBH4 компании Chemical Line

(≥ 98%). Средний гидродинамический размер синтези-

рованных серебряных наносфер, измеренный методом

динамического рассеяния света коллоидного раствора

наночастиц и подтвержденный сопоставлением измерен-

ного спектра экстинкции с рассчитанным по теории

рассеяния Ми [15], составил 12 nm.

Выбор серебряных наночастиц для плазмонного уси-

ления хемилюминесценции люминола обусловлен хо-

рошим перекрытием плазмонной полосы серебряных

наночастиц со спектром хемилюминесценции люмино-

ла (рис. 1), позволяющим ожидать увеличения ско-

рости радиационного перехода в системе
”
молекула

люминола−серебряная наночастица“ по сравнению со

скоростью радиационного перехода в изолированной

молекуле люминола.

Растворы ионов меди Cu2+, железа Fe2+, марганца

Mn2+, кобальта Co2+ были получены путём растворе-

ния в деионизованной воде соответственно сульфата

меди CuSO4 (степень чистоты ≥ 98%), сульфата железа

FeSO4 (≤ 99%), сульфата марганца MnSO4 (≤ 98%),
нитрата кобальта CoNO3 (≤ 98%). Реактивы приобре-

тены у компании
”
Ленреактив“ (Россия).

Спектры поглощения коллоидных растворов серебря-

ных наночастиц измерены при помощи спектрофотомет-
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Рис. 1. Спектры хемилюминесценции при окислении люмино-

ла гипохлоритом натрия (синяя кривая) и экстинкции серебря-

ных наночастиц с цитратной оболочкой (красная кривая).

ра СФ-56 (ЛОМО, Россия). Спектр хемилюминесцен-

ции измерен с помощью спектрофлуориметра RF9301

(Shimadzu, Япония) при выключенном источнике воз-

буждающего излучения. Для измерения гидродинамиче-

ских размеров серебряных наночастиц использован ана-

лизатор Zetasizer Nano (Malvern Panalytical, Великобри-

тания). Интенсивность хемилюминесценции измерялась

при помощи счётчика фотонов H11890 (Hamamatsu,

Япония).
Регистрация хемилюминесценции проводилась

следующим образом: в смесь водных растворов

люминола (100µl, 3.5 · 10−4 M), ионов металла (25µl,
10−8−10−4 M) и серебряных наночастиц (25µl,
0−10µM) вводился 400µM раствор гипохлорита

натрия, выступающего в качестве аналита, при этом

нейтральная кислотность (pH= 7) раствора поддержива-
лась добавлением гидроксида натрия. При смешивании

аналита с хемилюминофором наблюдалось свечение

синего цвета (хемилюминесценция), интенсивность

которого измерялась с помощью счётчика фотонов как

функция времени; после окончания реакции и соответ-

ственно прекращения свечения заново вводился аналит

и производилось измерение. Для оценки степени усиле-

ния, под которой понимается отношение интенсивности

хемилюминесценции в присутствии катализаторов или

плазмонных наночастиц к её интенсивности в отсутствие

добавок, использовалось значение сигнала в максимуме,

усреднённое по четырём последовательным измерениям.

Результаты и обсуждение

В присутствии ионов металлов наблюдалась повы-

шенная интенсивность хемилюминесценции люминола

при окислении гипохлоритом натрия. Она зависела и

от конкретного металла, и от концентрации ионов в

растворе. На рис. 2 представлены измеренные зави-
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Рис. 2. Зависимость коэффициента усиления хемилюминес-

ценции люминола при окислении гипохлоритом (400 µM) от

концентрации ионов железа Fe2+, кобальта Co2+, меди Cu2+,

марганца Mn2+ в растворах c pH= 7.
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Рис. 3. Зависимость коэффициента усиления хемилюминес-

ценции люминола при окислении гипохлоритом (400 µM) от

концентрации серебряных наночастиц (AgNP) в растворе c

pH= 7.

симости коэффициента усиления хемилюминесценции

ионами металлов от их концентрации.

С ростом концентрации ионов железа до 10−7 М

хемилюминесценция люминола достигает 3.5-кратного

усиления. При превышении концентрации катализатора

10−6 M интенсивность хемилюминесценции снижается.

Это объясняется тем, что продукт реакции ионов железа

и гипохлорита начинает взаимодействовать не только

с молекулами люминола, но и с самими ионами же-

леза [16]. Подобная закономерность наблюдается и в

отношении хемилюминесценции в присутствии ионов

других металлов.

Наиболее высокое усиление хемилюминесценции

обеспечивают ионы кобальта (в 4 раза при концентра-

ции 10−6 М), следом идут ионы железа (в 3.5 раза

no enhancement
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Рис. 4. Спектры хемилюминесценции при окислении лю-

минола гипохлоритом натрия без добавок, в присутствии

серебряных наночастиц Ag NP, ионов железа Fe2+ и при

совместном действии Ag NP и Fe2+ . Вертикальные штриховые

линии показывают положение максимумов люминесценции без

наночастиц (435 nm) и с наночастицами (425 nm).

при 10−7−10−6 М), меди (в 2.7 раз при 10−5 М) и

марганца (в 2 раза при 10−5 М), что соответствует

опубликованным данным о роли катализа в усилении

хемилюминесценции [12].

Интенсивность хемилюминесценции также зависит и

от концентрации серебряных наночастиц; при разбавле-

нии полученного при их синтезе раствора она снижается

(рис. 3).

Поэтому оптимальной сочтена концентрация 10−5 М

исходно полученного раствора серебряных наночастиц с

цитратной оболочкой, который дал 2−2.5-кратное усиле-

ние хемилюминесценции люминола. При более высокой

концентрации возможно тушение хемилюминесценции

из-за безызлучательного переноса энергии по механизму

FRET [17].

Коэффициенты усиления хемилюминесценции в при-

сутствии ионов металлов в оптимальных концентрациях

и наночастиц серебра или ионов без наночастиц приве-

дены в таблице ниже.

Во всех случаях в присутствии и катализатора (ионов
металла), и серебряных наночастиц наблюдается более

значительное усиление хемилюминесценции люминола,

чем если использовать катализатор или плазмонные на-

ночастицы по отдельности. Среди ионов-катализаторов

ионы кобальта обеспечивают наиболее высокое усиле-

ние хемилюминесценции: четырёхкратное без помощи

наночастиц серебра и семикратное с наночастицами.

Следом за ними по достигнутому коэффициенту усиле-

ния идут ионы железа, меди и марганца.

Если ионы металлов только ускоряют реакцию окис-

ления и тем самым усиливают сопутствующую ей хеми-

люминесценцию, не меняя её спектра, то в присутствии

наночастиц серебра не только увеличивается интенсив-

Оптика и спектроскопия, 2025, том 133, вып. 11
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Усиление хемилюминесценции при окислении люминола гипохлоритом (400 µM) в присутствии в растворе c pH=7 ионов

металлов в оптимальных концентрациях с 10−5 М наночастиц серебра и без наночастиц

Ион Концентрация, M Без наночастиц Ag NP С наночастицами Ag NP

железа Fe2+ 10−6 3.5± 0.4 4.7± 0.4

меди Cu2+ 10−5 2.7± 0.2 3.5± 0.3

кобальта Co2+ 10−6 4.0± 0.2 7.3± 0.4

марганца Mn2+ 10−7 2.1± 0.1 3.2± 0.3

ность, но и смещается спектр, как показано на рис. 4 на

примере катализа ионами железа.

Эффект Парселла при использовании плазмонных

наночастиц усиливает хемилюминесценцию только в об-

ласти пересечения спектров поглощения наночастиц се-

ребра и хемилюминесценции люминола. Так как спектр

поглощения наночастиц серебра находится в более ко-

ротковолновой области относительно спектра хемилю-

минесценции люминола, то при воздействии ближнего

поля наночастиц происходит гипсохромный сдвиг спек-

тра хемилюминесценции [18].

Спектральные различия хемилюминесценции в при-

сутствии и при отсутствии наночастиц серебра иллю-

стрируют различие механизмов усиления хемилюминес-

ценции ионами металлов и плазмонными наночасти-

цами — химический катализ и эффект
”
наноантенн“

(Парселла).

Заключение

В работе показано усиление ионами металлов и

плазмонными серебряными наночастицами хемилюми-

несценции при окислении люминола гипохлоритом в

биологически нейтральных средах, которое происходит

по различным механизмам; определены концентрации

наночастиц и ионов, обеспечивающие максимальное по-

вышение коэффициента усиления.

Сопоставление спектров хемилюминесценции при

окислении люминола гипохлоритом натрия в присут-

ствии серебряных наночастиц и ионов железа по отдель-

ности и совместно иллюстрирует различие физического

и химического механизмов усиления хемилюминесцен-

ции, что было показано впервые.

Определены оптимальные концентрации плазмонных

наночастиц и ионов металла для усиления хемилю-

минесценции люминола в биологически нейтральных

средах (pH=7) при окислении гипохлоритом натрия.

Наилучшее — семикратное — усиление даёт комби-

нация ионов кобальта и серебряных наночастиц. Такое

усиление достаточно существенно для применения в

реальных хемилюминесцентных сенсорных системах,

выявляющих повышенное содержание окислителей.
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