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и фотодиодов из твердых растворов InAsSb(P)
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Сообщается о результатах разработки и исследования свето- и фотодиодов на основе гетероструктуры

n-InAs/N-InAsSbP/InAsSb/P-InAsSbP с рабочей длиной волны около 4.2 µm (T = 296K). Приведены дан-

ные исследования электролюминесценции и фотоэлектрических характеристик в интервале температур

200−500K. Сообщается о результатах разработки на основе вышеуказанных компонентов недисперсионного

малогабаритного датчика углекислого газа, характеризующегося порогом обнаружения не более 25 ppm при

частоте выборок 128ms, оптическом пути 2 cm и энергопотреблении менее 50mW.
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Введение

Углекислый газ (СО2) является ежедневным спут-

ником жизнедеятельности человека, проявления нега-

тивного влияния которого на организм человека на-

чинаются при концентрациях около 0.1−0.15%vol

(1000−1500 ppm), поэтому допустимые уровни содер-

жания углекислого газа в производственных, офисных

и жилых помещениях строго регламентируются, а важ-

ность его контроля является общепризнанной.

Одним из наиболее перспективных подходов к созда-

нию датчиков диоксида углерода является инфракрас-

ный (ИК) недисперсионный (Non-dispersive Infrared —

NDIR), основанный на избирательном поглощении ИК

излучения молекулами газа и характеризующийся вы-

сокой селективностью к газу, большим сроком службы

и чувствительностью вплоть до единиц ppm [1]. Оче-
видно, что параметры используемых оптоэлектронных

компонентов во многом определяют достижимые уровни

пороговой чувствительности и точности сенсора. На се-

годняшний день наибольшее распространение получили

датчики на основе тепловых источников и приемников

ИК излучения [2], характеризующиеся высоким энерго-

потреблением, низким быстродействием и относитель-

но невысокой чувствительностью. Также используются

ИК (средневолновые) сенсоры, в которых используются

фотодиоды и оптически возбуждаемые светодиоды на

основе солей свинца [3], недостатком которых считается

отсутствие долговременной стабильности.

Перспективной альтернативой является разработка

ИК датчиков, использующих свето- и фотодиоды на

основе материалов А3В5, в частности гетероструктур из

твердых растворов InAsSb(P), характеризующихся вы-

сокой металлургической стабильностью и относительно

невысокой стоимостью. В ФТИ им. А.Ф. Иоффе РАН

на протяжении многих лет проводятся разработка и

исследование оптоэлектронных компонентов на основе

твердого раствора InAsSb, в том числе работающих в

диапазоне длин волн около 4.2µm [4–6], и оптических

датчиков на их основе [7]. Задачами настоящей работы

являлись улучшение характеристик оптоэлектронных

компонентов (свето- и фотодиодов (СД и ФД далее)), по-
вышение эффективности их работы как оптопары в ши-

роком интервале температур, разработка на их основе

малогабаритного недисперсионного датчика углекислого

газа с высоким уровнем интегрированности оптических,

оптоэлектронных и электронных компонентов.

Экспериментальные результаты

Исследуемые образцы свето- и фотодиодов

были изготовлены из гетероструктуры

N-InAsSbP/InAsSbx /P-InAsSbP c активной/фоточувст-

вительной областью InAsSbx (x = 0.08) толщиной

3−4µm, выращенной методом ЖФЭ на подложках n+-

InAs (100). Характерными чертами конструкции свето- и

фотодиодов являлись флипчип-конструкция с диаметром

активной/фоточувствительной области около 140 µm и

вводом/выводом излучения через подложку толщиной

20−40µm, иммерсионное сопряжение чипа с линзой из

Si диаметром 3.5mm с просветляющим покрытием.

На рис. 1 приведены спектральные характеристики

электролюминесценции при токе накачки 200mA в

непрерывном режиме и фоточувствительности в интер-

вале температур 200−500K.
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Рис. 1. Спектры электролюминесценции (a) и токовой чувствительности (b) в интервале температур 200−500K.

По сравнению с ранее опубликованным результа-

тами впервые продемонстрирована возможность рабо-

ты средневолновых оптоэлектронных компонентов при

столь высоких температурах (до 500K), увеличены

токовая чувствительность и
”
темновое“ сопротивление

ФД, а также выходная мощность СД [8]. Улучшение

параметров стало возможным благодаря оптимизации

дизайна эпитаксиальной структуры, в частности благода-

ря уменьшению толщины активной/фоточувствительной

области, что привело к уменьшению самопоглощения

излучения и уменьшению темнового тока.

На основе вышеописанных компонентов, а также ра-

нее разработанного иммерсионного фотодиода с рабочей

длиной волны 3.8 µm, отмеченного на рисунках как

PD38, был разработан малогабаритный недисперсион-

ный оптический датчик со следующими характерными

особенностями: оптическая схема с измерительным и

опорным каналом, в которой излучение от светодиода

(LED42) делится и фильтруется с помощью интерфе-

ренционных оптических фильтров (IF42 и IF38) и фоку-

сируется на измерительный (PD42) и опорный (PD38)
каналы. Нормированные спектральные характеристики

указанных компонентов для комнатной температуры, а

также спектр пропускания углекислого газа в исполь-

зуемом диапазоне длин волн приведены на рис. 2, a.

На рис. 2, b представлены температурные зависимо-

сти интегральных сигналов оптопар измерительного

(LED42-IF42-PD42) и опорного (LED42-IF38-PD38) ка-

налов, рассчитанные по формуле

I ph =

∫ λ2

λ1

PLED(λ)TIFx (λ)SIPDx(λ)dλ, (1)

где PLED(λ) — спектральная зависимость мощности

LED42, TIFx (λ) — спектр пропускания интерференцион-

ного фильтра, SIPDx (λ) — спектр токовой чувствитель-

ности фотодиода для соответствующей оптопары.

Основываясь на полученных зависимостях
”
темново-

го“ сопротивления от температуры (рис. 3, а), были рас-

считаны шумы фотоприемника отдельно и совместно с

операционным усилителем первого каскада ADA4895-1.

Расчет производился для полосы частот 1 f = 1Hz за

пределами влияния шумов 1/ f по формуле [9]

In_6(1 f ) =1 f

√

i2n_PD + i2OP + i2f b

=1 f

√

4kT

Ro

+ i2n_OP +
(en_OP

Ro

)2

+
4kT

R f b

[A],

(2)
где первое слагаемое относится к шумам фотодиода,

второе и третье — шумы операционного усилителя

(ОУ) первого каскада, последнее слагаемое — тепловой

шум сопротивления обратной связи первого каскада. Как

видно из рис. 3, a, ОУ вносит значительный вклад в

шумы, особенно на границах температурного диапазона.

При этом в области повышенных температур основ-

ной вклад вносят шумы ОУ по напряжению (en_OP),
при пониженных вероятнее всего происходит выход на

асимптотику теплового шума сопротивления обратной

связи R f b .

На рис. 3, b приведены температурные зависимости

соотношения сигнал/шум, полученные на основе зави-

симостей, приведенных на рис. 2, b и 3, а, и данные для

комнатной температуры, полученные на разработанном

прототипе датчика углекислого газа. Меньшее экспери-

ментальное значение отношения сигнал/шум, вероятнее

всего, связано с большей шириной полосы частот реаль-

ных цифровых фильтров и потерями из-за неидеальности

оптической системы.
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Рис. 2. Нормированные спектральные характеристики используемых оптоэлектронных компонентов и поглощение CO2 (a);
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Рис. 3. Температурные зависимости темнового сопротивления и величин шумов фотодиодов отдельно и в цепи ОУ (a), отношений
сигнал/шум оптопар (b).

Для оценки порога обнаружения углекислого газа

был проведен расчет передаточной функции датчика при

комнатной температуре. Для этого по формуле

I ph =

∫ λ2

λ1

(1− exp(−k(λ)Cd))PLED42(λ)TIF42(λ)SIPD42(λ)dλ

(3)
(k(λ) — спектральная зависимость коэффициента по-

глощения углекислого газа, C — концентрация газа в

%vol, d — длина оптического пути) проводился расчет

интегральных сигналов оптопар с учетом спектра про-

пускания ИК излучения на длине оптического пути 2 cm.

Данные для спектральной зависимости коэффициента

поглощения углекислого газа были взяты из открытой

библиотеки HITRAN.

Полученная зависимость представлена на рис. 4, а

в отсчетах АЦП. Из полученных зависимостей SNR

и передаточной функции датчика в приближении её

малого изменения от температуры был произведен рас-

чет порога обнаружения углекислого газа в диапазоне

температур 200−500K для полосы частот 1 f = 1Hz,

а также нанесены экспериментальные точки, получен-

ные в ходе тестирования прототипа газового датчика

при комнатной температуре. Среднеквадратичный шум

(СКО) был оценен на уровне 15 отсчетов АЦП при
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Рис. 4. Передаточная функция датчика при комнатной температуре и фотография прототипа (а), температурные зависимости

порога обнаружения (b).

оценке размаха полезного сигнала от 85940 до 37127

отсчетов АЦП, при этом порог обнаружения по уровню

2СКО (95% измерений при нормальном распределении

ошибок) составил ≈ 0.0025%vol (25 ppm) Относитель-

ная погрешность измерения не превышает 0.1% полу-

ченного значения в диапазоне концентраций до 10%vol.

Фотография разработанного прототипа датчика угле-

кислого газа приведена на вставке к рис. 4, а. Датчик

представляет собой полноценное устройство индустри-

ального уровня под управлением микроконтроллера с

цифровым выводом сигнала и высокой степенью ин-

теграции используемых компонентов; выполнен в ком-

пактном корпусе размером ∅20−16mm и имеет среднее

энергопотребление менее 50mW.

Было проведено сравнение характеристик экспери-

ментального образца датчика с коммерчески доступны-

ми аналогами, которые показали преимущества разрабо-

танного датчика по параметрам быстродействия (6−30

раз), порогу обнаружения (до 2-х раз) и динамическому

диапазону (более 2-х раз) [2,3].

Заключение

Были получены и исследованы свето-

и фотодиоды на основе гетероструктуры

n-InAs/N-InAsSbP/InAsSb/P-InAsSbP с рабочей длиной

волны около 4.2µm (T = 296K) в интервале температур
200−500K, на основе которых был разработан

недисперсионный малогабаритный датчик углекислого

газа, характеризующийся порогом обнаружения не

более 25 ppm при частоте выборок 128ms, оптическом

пути 2 cm и энергопотреблении менее 50mW.
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