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Выращивание кристаллов K2O× 8Ga2O3 из раствора в расплаве KF

и исследование их свойств
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Представлены результаты исследований кристаллографических, электрических и оптических свойств

кристаллов K2O× 8Ga2O3, впервые полученных при взаимодействии раствора Ga2O3 с расплавом KF.

Кристаллическая структура образцов соответствовала гексагональному P63/mmc β-галлату с параметрами

решетки a = 5.80�A и c = 23.5�A. Кристаллы являлись изоляторами с сопротивлением порядка 2−3G�

на 450 µm длины. Впервые для K2O× 8Ga2O3 определены оптическая ширина запрещенной зоны в 3.77 eV

и собственная полоса люминесценции в диапазоне 2.0−2.5 eV.
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Одним из наиболее перспективных широкозонных

полупроводников для нового поколения силовой и опто-

электроники в настоящее время рассматривается оксид

галлия (III), Ga2O3, все полиморфные модификации ко-

торого имеют только электронный n-тип проводимости.

Поэтому в поисках путей создания p−n-переходов в

электронных устройствах на основе Ga2O3 во всем мире

ведутся исследования родственных ему широкозонных

полупроводниковых оксидов p-типа проводимости, при-

годных для получения гетероструктур. Так, в недавних

работах [1,2] было продемонстрировано, что тонкие

слои некоторых безводных галлатов различных метал-

лов (ZnGa2O4, LiGa5O8 и др.), полученные эпитаксией,

имеют p-тип проводимости. Другими представителями

этой группы соединений являются высокосимметричные

β- и β′′-галлаты щелочных и щелочноземельных эле-

ментов, которые могут быть получены в виде объем-

ных кристаллов различными растворными и раствор-

расплавными методами и которые ранее интенсивно

исследовались как эффективные ионные проводники [3],
но не рассматривались как материалы с полупровод-

никовыми свойствами. В данной работе были впервые

выращены относительно крупные кристаллы одного из

представителей указанной группы — β-галлата калия

состава K2O× 8Ga2O3 и проведены исследования их

структуры, оптических и электрических свойств.

Образцы β-галлата калия (общая формула

K2O× nGa2O3) были получены из раствора β-

Ga2O3 (4N) в расплаве KF квалификации ЧДА путем

медленного испарения растворителя в течение 12 h.

Плавление производилось в платиновом тигле на

воздухе при температуре 1200 ◦С, которая значительно

выше температуры плавления KF в 858 ◦С. Исходной

загрузкой являлась тщательно перетертая смесь

порошков KF и Ga2O3 в массовом соотношении 9 : 1.

Вес загрузки 30 g. Оставшийся после опыта KF

удалялся кипячением в воде. В результате образовались

пластинчатые кристаллы гексагональной формы с

линейными размерами порядка 1−3mm при толщине

∼ 0.2mm (рис. 1, а). Полученные образцы были

исследованы методами рентгеновской дифракции

(XRD), оптической спектроскопии пропускания (TS),
аналитической сканирующей электронной микроскопии

(SEM), включая энергодисперсионную рентгеновскую

спектроскопию (EDS) и катодолюминесценцию (CL).

График рентгеновской дифракции, записанный в ре-

жиме θ−2θ, приведен на рис. 1, b. Расшифровка и

уточнение пиков методом Ритвельда были сделаны в

программе Profex [4]. Для K2O× nGa2O3 нет карточек в

открытых кристаллографических базах данных, поэтому

за основу был взят известный структурный мотив гекса-

гонального P63/mmc β-галлата бария BaO× 6Ga2O3 [5].
С его помощью для полученной дифрактограммы была

проиндексирована серия отражений от базисной (000n)
и наклонных к ней (10-1n) плоскостей. Определен-

ные параметры a = 5.80�A и c = 23.5�A соответствуют

значениям, полученным ранее для β-галлата состава

K2O× 8Ga2O3 [3]. Средний состав, вычисленный по

данным EDS, близок к результату XRD по соотношению

K2O и Ga2O3: K2O× 7.75Ga2O3. Большое значение

параметра c (> 2 nm) связано с тем, что (при выборке)
ионы K случайно включены в одну из 6 элементарных
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Рис. 1. (а) Отдельный кристалл K2O× 8Ga2O3 гексагональной формы, полученный из раствор-расплава KF; (b) θ−2θ дифракто-

грамма (XRD) K2O× 8Ga2O3 с указанными отражениями базисной серии.

ячеек в дополнительной структурной позиции в решетке

Ga2O3. Чередование ячеек с атомами и без атомов калия

может происходить в любом направлении структуры,

что обеспечивает равномерность распределения состава.

Для проведения электрофизических измерений на

отдельный гексагональный кристалл K2O× 8Ga2O3 из-

вестной толщины (450µm) были нанесены контакты

из InxGay эвтектики на базисную поверхность с перед-

ней и обратной стороны, или два латерально (рис. 2, a).
Вольт-амперные характеристики (VAC) были симмет-

ричными и квазилинейными при малых напряжениях

смещения (±1V) с омическим сопротивлением 2−3G�,

а при больших становились нелинейными, вид кото-

рых приведен на рис. 2, b и совпадал при измерениях

вдоль и поперек исследованного кристалла. Асимметрия

VAC, очевидно, связана с латеральной неоднородностью

поверхностного слоя, а участок отрицательной диф-

ференциальной проводимости наиболее вероятно обу-

словлен наличием тонкой полуизолирующей туннельно-

прозрачной прослойки вблизи одного из контактов.

Спектры оптического пропускания (TS, рис. 3, а),
измеренные в диапазоне длин волн от 260 до 750 nm

обнаружили небольшую ступеньку поглощения около

700 nm (связанная, по-видимому, с примесью железа,

что согласуется с результатами CL, рис. 4, b). Основной
край поглощения TS располагался при ∼ 310 nm, форма

которого хорошо аппроксимировалась с помощью по-

строения Тауца (рис. 3, b) для непрямых переходов [6],
что позволило впервые для K2O× 8Ga2O3 определить

величину оптической ширины запрещенной зоны (Eg)
в ∼ 3.77 eV.

Изображения гексагональных кристаллов, полученные

в режиме регистрации вторичных электронов в SEM,

продемонстрировали пластинчатый рельеф поверхности,

который был сформирован выступающими частями про-

растающих гексагональных микропризм. Параллельно

записанные карты CL (рис. 4, a) выявили более отчет-

ливо поверхностные ступени роста, соответствующие

фронтам кристаллизации при послойном латеральном

разрастании гексагональной структуры кристалла, а так-

же линейчатые дефекты, которыми, например, могут

являться антифазные границы.

Записанные спектры CL в разных точках на поверх-

ности кристаллов K2O× 8Ga2O3 показали вариабель-

ность интенсивности и спектрального состава (рис. 4, b).
Они содержали три характерные полосы в диапазоне

1.5−4 eV с различной интенсивностью относительно

друг друга. Первая была близка по положению (2−4 eV)
и форме спектрам CL, полученным в эпитаксиальных

пленках Ga2O3 [7]. Второй спектральной особенностью

CL являлся интенсивный узкий пик при ∼ 1.74 eV

(∼ 715 nm), соответствующий по спектральному по-

ложению небольшой ступеньке в TS, который связы-

вают с внутрицентровыми переходами в примесных

ионах Fe3+ [8]. Автолегирование железом, источником

которого, вероятно, выступает исходный порошок KF

квалификации ЧДА, и является причиной измерен-

ной низкой электропроводности кристаллов [9]. Третья
наиболее интенсивная широкая полоса 2.0−2.5 eV с

положением максимума около 2.25 eV не может быть

отнесена к оксиду галлия и является, по-видимому,

характерной люминесценцией для K2O× 8Ga2O3.

Неоднородность свойств люминесценции (и возмож-

но, пластинчатость рельефа) может быть связана с

тем, что полученные кристаллы β-галлата калия име-

ют сверхструктуру в масштабе метода SEM CL. Она

выражается в преимущественном группировании поли-

эдров K в связанные слои, что приводит к сепарации

фаз оксида галлия и β-галлата калия в наномасштабе.

Тогда спектры с наличием эмиссии до 4.0 eV приходятся

на участки сверхструктуры с преобладающими слоями

Ga2O3 (синий график на рис. 4, b), а с преимущественной

собственной полосой соответствуют β-галлату калия

(красный график на рис. 4, b).
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Таким образом, были получены в результате реакции

Ga2O3 с расплавом KF высокоомные кристаллы милли-

метровых размеров, близкие по составу к K2O× 8Ga2O3.

Определенная оптическая ширина запрещенной зоны

составила 3.77 eV, что позволяет отнести K2O× 8Ga2O3

к широкозонным соединениям. Они демонстрируют

неоднородные люминесцентные свойства и пластинча-

тую структуру, которые могут быть связаны с их слои-

стой свеpхструктурой.
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