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Исследовано влияние одноосной ориентационной вытяжки на структурные и электроактивные свойства

пленок сополимера винилиденфторида с тетрафторэтиленом методом спектроскопии комбинационного

рассеяния (КР). По результатам анализа спектров КР сделано предположение о значительном увеличении

доли сегнетоактивной β-фазы при механической вытяжке, что косвенно подтверждается ростом величины

пьезокоэффициента. Установлена корреляция между структурными изменениями и ростом электрической

прочности материала. Предложенные режимы вытяжки и методы анализа структурного состава сегнетоэлек-

трических полимерных пленок могут быть использованы для создания биомедицинских пьезоэлектрических

устройств.
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Одной из важных задач современных медицинских

биотехнологий является создание и внедрение малога-

баритных носимых и имплантируемых устройств (дат-
чиков, источников питания). Устройства, работающие

на пьезокерамических материалах, имеют ограничения

в специфических условиях биологической среды из-

за малой пластичности и плохой биосовместимости.

Альтернативой им могут стать электроактивные по-

лимерные материалы, в частности сегнетоэлектриче-

ские пленки на основе материала поливинилиденфторид

(ПВДФ, широко известный как поливинилиденфторид)
и его сополимеров [1,2]. Они не только обладают меха-

нической гибкостью и биосовместимостью, но также их

акустический импеданс близок к уровню импеданса воды

и биотканей, что важно при создании имплантируемых

устройств [3].

Для расширения областей применения и улучшения

характеристик пленок сополимера винилиденфторида с

тетрафторэтиленом (ВДФ-ТФЭ) необходимо изучение

как материала, так и возможности его модификаций с

целью улучшения свойств (пьезоэлектрических, пиро-

электрических, механических).

Практическая применимость полукристаллических

полимеров определяется их структурно-конформацион-

ным составом, отвечающим за электроактивные свой-

ства. Кристаллическая фаза сополимеров ВДФ описыва-

ется тремя конформациями макромолекул: (TGTG−)n —

α-фаза, (TTTTT)n — β-фаза, (T3GT3G−)n — γ-фаза [4].
β-фаза придает материалу электроактивные, в том числе

пьезоэлектрические свойства, γ-фаза меньше влияет на

эти свойства, а α-фаза электронеактивна. Преобразова-

ние между ними возможно путем механических, терми-

ческих или электрических воздействий, что использует-

ся для модификации материала [1]. В работе рассмотрен

метод ориентационной вытяжки для изменения фазового

состава и установлена взаимосвязь между условиями
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Рис. 1. Карты распределения сигналов поверхностного потенциала для (a) исходной и (с) ориентированной пленок и топографии

поверхности для (b) исходной и (d) ориентированной пленок, стрелочками на рисунке показано направление вытяжки.

обработки, структурными изменениями и электроактив-

ными свойствами [5].

Для анализа структурного состава сополимеров вини-

лиденфторида наиболее распространены методы инфра-

красной (ИК) спектроскопии и рентгеновской дифрак-

ции (XRD) [6]. Спектроскопия комбинационного рассея-

ния (КР) также используется для количественной оценки

конформаций в материале из-за значительной величины

дипольного момента C−F-связей и его изменчивостью

под влиянием окружения молекулы [7]. Этот метод

дополняет ИК спектроскопию, так как чувствителен для

неактивных в ИК спектроскопии переходов [8]. В частно-

сти, более полно охарактеризовать β- и γ-фазы с близко

расположенными пиками в ИК спектре возможно при

анализе спектра КР, в котором пики этих конформаций

разнесены, что и было проведено в настоящей работе.

В рамках исследования подготовлены два типа об-

разцов: исходная изотропная и ориентированная пленки

сополимера ВДФ-ТФЭ в соотношении 94 : 6. Пленки

получены методом полива в чашках Петри из раствора

полимера порошка фторопласта Ф2М марки Б (ГалоПо-

лимер, Кирово-Чепецк) в этилацетате с последующим

вакуумированием для удаления остатков растворите-

ля. Одноосная ориентационная вытяжка производилась

вручную с использованием лабораторного стенда при

температуре 75◦С с кратностью вытяжки λ = 4. Раз-

меры образца исходной пленки составили 20 × 20mm,

толщина 45−50µm, размеры образца после вытяжки

составили 60× 15mm, толщина снизилась до 30µm.

Образцы пленок были подвергнуты контактной по-

ляризации на лабораторном стенде [9] при комнатной

температуре в течение 5min, напряженность поляризу-

ющего поля составила 200MV/m. С учетом числа точек

и разбросов измеренных значений электрической проч-

ности для определения усредненного значения исполь-

зовалась двухпараметрическая модель Вейбулла [10,11],
согласно которой статистический набор большого числа

(> 15) значений поля Eb можно описать функцией

F(x) = 1− exp
[

−(x/α)βb

]

,

где x — текущее значение Eb, α — некоторое характе-

ристическое поле, при котором оказываются пробитыми

как минимум 63.2% испытуемых образцов; параметр βb

характеризует дисперсию величины Eb относительного
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Рис. 2. Кривые первых нагревов ДСК для исходной и ориен-

тированной пленок.

среднего значения. В результате исследований показано

увеличение электрической прочности после ориентации

с уровня E0 = 417± 7MV/m для исходной пленки до

Es = 468± 3MV/m для вытянутой. Это может быть

связано с перекристаллизацией пленки при вытяжке и

изменением фазового состава.

Значения продольных пьезокоэффициентов d33 бы-

ли измерены квазистатическим методом Берлинкура

с помощью d33-метра YE2730A (Sinocera Piezotronics,

INC, Китай). Для ориентированной пленки значение

d33 составило 11 pC/N, тогда как для исходной пленки

значения пьезокоэффициента равны 0.

Морфология и сегнетоэлектрические свойства по-

верхности пленок исследованы методами сканирующей

зондовой микроскопии (СЗМ, NTEGRA Prima, НТ-МДТ,

Зеленоград, РФ). Показано изменение морфологии плен-

ки после вытяжки (рис. 1, b, d) и увеличение средне-

квадратичной шероховатости поверхности образцов с

16 nm для исходной до 19 nm для ориентированной

пленки, что объясняется появлением продольных дефек-

тов, вероятно, связанных с образованием полос сброса.

В режиме микроскопии зонда Кельвина получены кар-

ты распределения сигналов поверхностного потенциала,

соответствующие распределения сегнетоэлектрических

доменов на поверхности пленки (рис. 1, a, c). Величина
поверхностного потенциала заметно снижается после

ориентационной вытяжки, что может быть связано с

образованием дефектов на поверхности. При этом по-

лученные значения отличны от нуля, что говорит о

наличии спонтанной поляризации в пленках.

Степень кристалличности материала определялась

методом дифференциально-сканирующей калориметрии

(ДСК) с помощью прибора NETZSCH DSC 204F1

Phoenix (NETZSCH-Gerätebau GmbH) и рассчитывалась

по упрощенной формуле

χc =
1Hm

1H
⊘
m

,

где 1Hm — энтальпия плавления пленки, 1H
⊘
m

—

энтальпия плавления полностью кристаллического ма-

териала, которая составляет 104.5 J/K [12]. Для ис-

ходной изотропной пленки она составила 58%, для

ориентированной — 54% (рис. 2). Это свидетельствует

о незначительном снижении степени кристалличности.

Стоит отметить наличие длинного низкотемпературного

”
хвоста“ для изотропного образца, что может говорить

о дефектности кристаллитов в пленке, следовательно,

можно предположить, что в процессе вытяжки снизилась

общая дефектность кристаллической фазы.

Спектры КР (получены на КР-спектрометре Thermo

Nicolet Almega XR Raman, источник λ = 532 nm,

Pnom = 15mW, микрофокусный объектив MPlan 50X,

NA = 0.75) формировались путём усреднения дан-

ных 20 измерений длительностью 10 s в диапазоне

200−3200 cm−1 (рис. 3). В связи с наличием флуорес-

ценции в образцах применялась процедура фотообесцве-

чивания (tphb = 10min).
Относительное содержание каждой фазы определя-

лось соотношением значений интенсивности спектраль-

ных линий в спектре КР, метод основан на интерпре-

тации спектров с идентификацией колебательных мод

химических групп, характерных для различных конфор-

маций ВДФ [8]. Наиболее интенсивные спектральные

линии для трех конформаций находятся в области

800−900 cm−1: 797 cm−1 для α-фазы, 811 cm−1 для γ-

фазы и 840 cm−1 для β-фазы и близкорасположенному

малоинтенсивному пику γ-фазы [3]. Для дополнительной

качественной оценки также анализировались малоин-

тенсивные пики в области до 700 cm−1 (рис. 4, a).
Приведенные значения характеристических спектраль-

ных линий приблизительны, так как могут отличаться в

зависимости от температуры, степени кристалличности

и методов аппроксимации [8,13]. На основании этих

значений анализировались изменения в конформацион-

ном составе. Отдельный анализ спектральных линий

КР ТФЭ не проводился из-за их слабой интенсивно-

сти и малосодержательности в рамках исследования.

Стоит отметить, что в области 380 cm−1 наблюдается

малоинтенсивный пик, относящийся к колебательным

модам этого соединения. Также заметно наложение на
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тированного (VDF(TFE) oriented) образцов.
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основные спектральные линии ВДФ малоинтенсивных

полос ТФЭ в области 826−829 cm−1, выраженное в виде

асимметричного контура линии 839 cm−1 и небольших

пиков на его склоне (рис. 4, b).

Спектры КР исходного и ориентированного образцов

демонстрируют различия в распределении фазового со-

става (рис. 4, a). Для исходной пленки ВДФ-ТФЭ соотно-

шения различных фаз составили: Iα : Iγ : Iβ = 24 : 39 : 37.

Малое содержание сегнетоактивной β-фазы (37%) сни-

жает возможность поляризации пленки [14]. После ори-

ентационной вытяжки спектральный профиль претер-

певает значительные изменения: Iα : Iγ : Iβ = 19 : 26 : 55.

Увеличение доли β-фазы до 55% свидетельствует о

перестройке кристаллической структуры под действием

механического напряжения. Это согласуется с приве-

денными данными о перекристаллизации в условиях

одноосной деформации.

Стоит отметить, что наблюдаемый эффект выражен-

ного изменения фазового соотношения с характерным

изменением спектральных характеристик при механи-

ческой вытяжке для сополимера ВДФ-ТФЭ получен

впервые в сравнении с ранними работами [5].

В результате проведения исследований установлено,

что одноосная вытяжка (ориентация) приводит к значи-

тельным структурным изменениям полимера с незначи-

тельным уменьшением общей кристалличности и значи-

тельной перестройке кристаллической структуры с уве-

личением доли электроактивной β-фазы с 37% до 55%

(по данным анализа КР-спектров). Данные по изменению

структуры хорошо согласуются с изменением свойств

пленок — увеличением электрической прочности, из-

менением морфологии поверхности и возможностью

контактной поляризации с обеспечением значения пье-

зокоэффициента d33 в поляризованной пленке 11 pC/N.

Финансирование работы

Работа выполнена при поддержке государственного

задания МГТУ им. Н.Э. Баумана (тема № FSFN-2024-

0014) в части разработки новых сегнетоактивных по-

лимерных материалов и сенсорных устройств на их

основе и государственного задания НИЦ
”
Курчатовский

институт“ в части анализа образцов методом спектро-

скопии КР с помощью оборудования ЦКП
”
Структурная

диагностика материалов“ КККиФ НИЦ
”
Курчатовский

институт“.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

[1] S.K. Ghosh, D. Mandal. J. Materials Chemistry A, 9 (4),
1887−1909 (2021). DOI: 10.1039/D0TA08547B

[2] P. Saxena, P. Shukla. Polymer Bulletin, 79 (8), 5635−5665

(2022). DOI: 10.1007/s00289-021-03790-y
[3] V.V. Kochervinskii, M.A. Gradova, O.V. Gradov, G.A. Kira-

kosyan, D.A. Kiselev, M.I. Buzin, B.V. Lokshin, A.A. Kor-

lyukov, A.A. Maltsev, I.A. Malyshkina. J. Appl. Polymer

Science, 139 (42), 1−12 (2022). DOI: 10.1002/app.53025
[4] W. Zhang, G. Wu, H. Zeng, Z. Li, W. Wu, H. Jiang, W. Zhang,

R. Wu, Y. Huang, Z. Lei. Polymers, 15 (13), 2766 (2023).
DOI: 10.3390/polym15132766

[5] Д.К. Деримедведь, В.С. Киркин, А.А. Мальцев, С.В. Кон-

драшов, Е.И. Мареев, П.А. Михалев, Н.В. Минаев. В сб.:

Труды XХIV Ежегодной молодежной конференции

с международным участием ИБХФ РАН-ВУЗы, под

ред. Л.В. Недоспасова, Е.Н. Тимохина, Т.Ю. Астахова,

Ю.В. Тертышной, Е.Д. Никольской (РУДН, М., 2024),
c. 305−308.

Оптика и спектроскопия, 2025, том 133, вып. 11



1136 Д.К. Деримедведь, Е.Л. Бурьянская, А.А. Мальцев, И.Б. Коновалова, Е.И. Мареев,...

[6] T.R. Venkatesan, A.A. Gulyakova, R. Gerhard. J. Advanced

Dielectrics, 10 (5), 2050023 (2020).
DOI: 10.1142/S2010135X2050023X

[7] P.M. Resende, J.-D. Isasa, G. Hadziioannou, G. Fleury.

Macromolecules, 56 (23), 9673−9684 (2023).
DOI: 10.1021/acs.macromol.3c01700

[8] S.M. Purushothaman, M.F. Tronco, M. Ponçot, C.S. Chitra-
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