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Спектры и кинетика люминесценции конгруэнтных кристаллов

LiNbO3:Er в интервале температур 80−420K
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В интервале температур 80−420K исследованы спектры и кинетика фотолюминесценции (ФЛ) конгру-

энтных кристаллов LiNbO3 : Er при возбуждении лазером с λ = 405 nm. Спектр ФЛ кристалла LiNbO3 : Er

в видимом диапазоне длин волн включает четыре мультиплета, максимумы которых расположены при 413,

526, 551, 660 nm. Обнаружено, что при T = 300K время затухания люминесценции (τPL на длинах волн

526 и 551 nm составляет ∼ 27 µs, а полоса с максимумом 413 nm затухает быстрее 1 µs, что коррелирует с

многочисленными литературными данными. В то же время τPL в области 660 nm оказалось равным 33 µs, что

почти в 30 раз больше значений, опубликованных ранее. Обсуждаются возможные причины наблюдаемого

различия.

Ключевые слова: спектроскопия, люминесценция, ниобат лития, эрбий.

DOI: 10.61011/OS.2025.11.62155.7960-25

1. Введение

Метаниобат лития (LiNbO3) сочетает в себе уникаль-

ные электрооптические, акустооптические и нелинейно-

оптические свойства кристаллической матрицы и воз-

можность ее легирования ионами редкоземельных и

переходных металлов. Введение этих примесей суще-

ственно изменяет физические свойства LiNbO3, такие

как показатель преломления, доменная структура, элек-

трооптические коэффициенты и оптическое поглоще-

ние [1]. Метаниобат лития может быть использован

как непосредственно в форме монокристаллов, так и

как основной элемент волноводов с малыми потерями

в составе твердотельных структур. Как чистые, так и

легированные кристаллы LiNbO3 рассматриваются как

перспективные материалы для современной нанофото-

ники [2,3], в том числе для создания наноразмерных

высокочувствительных люминесцентных термометров,

принцип действия которых основан на использовании

оптических параметров, зависящих от температуры,

таких как время жизни, интенсивность, спектральное

положение и т. п. [4,5]. Многочисленные практические

применения кристаллов ниобата лития обусловливают

необходимость всестороннего изучения их свойств. В на-

стоящей работе исследованы спектры и кинетика фо-

толюминесценции (ФЛ) конгруэнтных (дефицитных по

содержанию лития) кристаллов LiNbO3, легированных

Er, при непрерывном и импульсном лазерном возбужде-

нии. Отметим, что стехиометрический состав является,

естественно, более желательным для формирования оп-

тимальных оптических свойств. Однако технологические

трудности выращивания бездефектных монокристаллов

ниобата лития приводят к тому, что в большинстве

работ, посвященных исследованию этого материала, ис-

пользуются конгруэнтные кристаллы [6,7].

2. Детали эксперимента

2.1. Образцы

В настоящей работе исследованы спектры и кинети-

ка ФЛ конгруэнтных кристаллов LiNbO3 (отношение

Li/Nb ∼ 0.94), легированных Er при непрерывном и им-

пульсном возбуждении полупроводниковыми лазерами с

длинами волн излучения λexc = 405 или 457 nm. Образцы

были выращены из расплава методом Чохральского,

легирующие компоненты добавляли в расплав в виде

оксидов Er2O3. Монодоменизация проводилась в печи

после роста до охлаждения током 5mA. Концентрация

ионов Er3+ составляла около 0.25% по массе. Ориен-

тированные (∼ 1× 5× 10)mm пластинки вырезали из

объемных кристаллов таким образом, чтобы кристалло-

графическая ось c была перпендикулярна основной по-

верхности (z -ориентация). Следует отметить, что, хотя

конгруэнтные кристаллы имеют менее упорядоченную

структуру по сравнению со стехиометрическими, но

этот беспорядок не приводит к исчезновению структуры

эрбиевых спектров [8]. В то же время конгруэнтные

кристаллы ниобата лития, как уже отмечалось, являются

наиболее технологичными для выращивания [9].

2.2. Экспериментальные методы

Спектры поглощения были измерены в диапазоне

330−875 nm (с шагом 0.8 nm) с использованием спек-
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трофотометра Varian Cary 5000. Фотолюминесценция

кристаллов LiNbO3 : Er
3+ в непрерывном и импульсном

режимах возбуждалась полупроводниковыми лазерами

с длиной волны 405 и 457 nm. Кинетика нарастания и

затухания ФЛ детектировалась при возбуждении прямо-

угольными импульсами лазера с длительностью 250µs

и частотой повторения 500Hz с разрешением 0.5µs

и регистрировалась с помощью цифрового осцилло-

графа, сопряженного с компьютером. Полученные при

возбуждении ФЛ разными длинами волн результаты

были идентичными (там, где их можно сопоставлять),
поэтому в дальнейшем приведены экспериментальные

данные, полученные при возбуждении образцов светом с

λexc = 405 nm, если иное не отмечается специально. Для

исследования температурного поведения ФЛ образцы

ниобата лития помещались в оптический термостат,

поддерживающий заданную температуру в интервале

300−420K с погрешностью до 1K. Изменение тем-

пературы достигалось с помощью электронагревателя

с терморегулятором. Спектры ФЛ регистрировались с

помощью дифракционных спектрометров. В качестве

фотоприемника использовались фотоэлектронный умно-

житель ФЭУ 79, а также ПЗС-матрица.

3. Экспериментальные результаты и
обсуждение

Спектр оптического поглощения монокристалла

LiNbO3 :Er
3+ при комнатной температуре в диапазоне

длин волн (330−875 nm) представлен на рис. 1. Он

состоит из большого количества линий различной интен-

сивности, связанных с переходами из основного состоя-

ния 4I15/2 в отмеченные на этом рисунке возбужденные

состояния конфигурации 4 f 11 иона Er3+.

Как видно из рис. 1, длина волны 405 nm, используе-

мая для возбуждения ФЛ, соответствует коротковолно-

вому крылу полосы поглощения 4I15/2 →
2H9/2. В этой

же спектральной области (рис. 1) наблюдается подъем в

спектре поглощения, связанный с
”
хвостом“ плотности

состояний в спектре собственного поглощения кристал-

ла LiNbO3 . Это означает, что поглощение в области

405 nm охватывает не только резонансное возбуждение

состояний 4 f 11 ионов Er3+, но включает также процессы

переноса возбуждения от матрицы к ионам Er3+ [10].
На рис. 2, а приведен спектр ФЛ при возбуждении

405 nm при изменении температур от 300 до 420K. Об-

ращает на себя внимание, что в этом спектре в области

420−520 nm отсутствует излучение из состояний 4F3/2,
4F5/2 и 4F7/2, что прямо указывает на то, что распад

этих состояний носит в основном безызлучательный

характер. Важно также отметить, что интенсивность

излучения в областях 415−425 nm и 660−670 nm прак-

тически не зависит от температуры образца в отличие от

спектральной области 520−580 nm (рис. 2, b), в которой

устанавливается термодинамическое равновесие между

компонентами 2H11/2 и 4S3/2. Действительно, на рис. 2, c
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Рис. 1. Спектр поглощения образца LiNbO3 : Er в интервале

330−875 nm при T = 300K.

в полулогарифмическом масштабе приведена зависи-

мость отношения интегральной интенсивности компо-

нент ФЛ, соответствующих переходам 2H11/2 →
4 I15/2

(спектральный интервал 515−540 nm) и 4S3/2−
4I15/2

(спектральный интервал 540−575 nm), от обратной тем-

пературы, которая подтверждает этот вывод. Отметим,

что эта зависимость соответствует сделанному в ряде

работ заключению о термической связанности таких

уровней и возможности использовать такие переходы в

качестве температурных датчиков [11].

С целью дальнейшей, более глубокой, характеризации

переходов в спектре системы LiNbO3:Er
3+ была изучена

временная кинетика нарастания и затухания импульсов

ФЛ при импульсном возбуждении в область 405 nm

при нескольких температурах в интервале от 100 до

420K. Компоненты мультиплета 2H9/2 (410−420 nm)
затухают быстрее 1µs, в то время как время жизни ФЛ

в зеленой области 525−550 nm имеет порядок 20−30µs.

Оба результата совпадают с многочисленными лите-

ратурными данными [12–18]. Наиболее удивительный

результат заключается в том, что время затухания ФЛ

в красной области (660 nm) оказалось равным 33µs,

что, насколько нам известно, почти в 30 раз больше

значений, опубликованных ранее [12,14,15,17]. Эти ре-

зультаты для переходов в зеленой и красной областях

спектра систематизированы в таблице и обсуждаются

ниже. Данные, приведенные в таблице, позволяют выде-

лить следующие результаты, характеризующие переходы

в
”
зеленой“ (525−550 nm) и

”
красной“(660−675 nm)

областях спектра.

1) Времена нарастания импульсов ФЛ для T = 300K

могут быть удовлетворительно описаны моноэкспонен-

циальной зависимостью I(t) = I0[1− exp(−t/a)] с пара-

метром a , равным (49± 1) и (34 ± 1)µs соответственно.

2) Времена затухания импульсов ФЛ, как правило,

включают две компоненты — быструю (fast) и медлен-

ную (slow) с заметно отличающимися параметрами a .

При этом первая охватывает примерно один натураль-

ный порядок изменения интенсивности ФЛ, а вторая —

более двух десятичных порядков.

Оптика и спектроскопия, 2025, том 133, вып. 11
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Рис. 2. (a) Спектры ФЛ при возбуждении в область 405 nm, измеренные при трёх температурах: 300 (1), 353 (2), 420K (3).
(b) Участки спектров ФЛ в области перехода между компонентами 2H11/2 и 4S3/2 более подробно при T = 300K (1), 330K (2),
370K (3), 390K (4), 420K (5). (c) Полулогарифмическая зависимость отношения интегральной интенсивности полос

”
зеленой“

ФЛ I(2H11/2)/I(4S3/2) от обратной температуры.

3) Параметры a заметно уменьшаются с ростом

температуры, что отражает, очевидно, рост вероятности

безызлучательной рекомбинации с увеличением темпе-

ратуры.

Отметим, что все перечисленные в п.п. 1)−3) харак-

теристики кинетики ФЛ в
”
зеленой“ области спектра

с хорошей точностью совпадают при возбуждении в

областях как 405 nm, так и 457 nm и, как уже отме-

Оптика и спектроскопия, 2025, том 133, вып. 11
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Кинетика разгорания и затухания полос зеленой и красной ФЛ в кристалле LiNbO3 :Er
3+ при разных температурах

T , K 4S3/2 →
4 I1.5/2

4F9/2 →
4 I1.5/2

λ, nm Время Время λ, Время Время

nm разгорания, затухания nm разгорания, затухания

µs (fast/slow), µs (fast/slow),
µs µs

666 48 −/37

100 551 72 24/36 675 48.0 30/39

300 549 49 24/28 660 34 16/33

353 526 43 23/26 660 31 −/20

551 45 21/25 674 32 −/23

420 526 43 18/21

551 43 17/21 660 31 −/16

чалось выше, согласуются со всеми опубликованными

результатами. В то же время во всех известных нам

работах время жизни перехода 4F9/2 →
4I15/2 описыва-

ющего излучение в
”
красной“ (660 nm) области спектра,

характеризуется величиной порядка 1µs, что более чем

в 30 раз отличается от полученных нами значений,

приведенных в таблице. Причины обнаруженного в спек-

тре ФЛ исследованного образца аномально длинного

времени затухания τPL (таблица) в области 660 nm в

настоящее время неизвестны и их выяснение требует

дополнительного исследования. При этом в качестве воз-

можного объяснения наблюдаемого значения τPL можно

выдвинуть, например, следующие соображения.

(i) В ряде работ [19] было показано, что ион Er3+ в

решетке LiNbO3 занимает по крайней мере 11 неэквива-

лентных положений. Как пространственная реализация

этих положений и в стехиометрических, и в конгруэнт-

ных образцах LiNbO3, так и влияние кристаллического

окружения на время жизни переходов в электронном

спектре иона Er3+ могут быть различны.

(ii) Время жизни исследованного нами перехода
4F9/2 →

4 I15/2 определяется скоростью релаксации из

состояния 4F9/2 в ближайшее нижерасположенное со-

стояние (4I9/2 в рассматриваемом случае), а это, в

свою очередь, зависит от спектра фононов, участвующих

в релаксации энергии, и может заметно ускоряться,

если в зависящий от кристаллического окружения иона

эрбия интервал энергий 1E , разделяющий уровни 4F9/2

и 4I9/2, укладывается целое число актуальных фононов,

и существенно замедляться в противном случае (так
называемое

”
phonon bottleneck“).

Таким образом, время жизни возбуждений на уровнях

энергий иона Er3+ в матрице LiNbO3 может суще-

ственно меняться в зависимости как от условий роста,

так и от последующей термообработки, что означает

необходимость привязки свойств отдельных переходов в

спектре редкоземельных ионов к конкретным условиям

синтеза кристаллов. Этот вывод подтверждается много-

численными данными, приведенными в недавнем обзо-

ре [6], в котором убедительно показано, что дефектность

кристалла LiNbO3 любого состава и соответственно его

оптические свойства кардинальным образом зависят от

условий его выращивания и термической предыстории.
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