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The principle of mechanical amplification for piezoelectric force sensors
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In scanning probe microscopy (SPM), piezoelectric resonators (PR) are used to control the contact of the probe
with the surface, the signal of the probe pressure force on the surface being directly converted into an electrical
signal. The contact of the probe with the surface should occur through the contact of only single atoms. In order
to increase sensitivity, a new technique for mechanical amplification of the force signal has been developed. The
PR, combined with a primitive “dynamic amplifier” (DA) and a probe, form a new resonant system in which the
amplitude of the vibrations of the PR is many times different from the amplitude of the vibrations of the probe. In
this system, the DA serves as the first stage of amplification, and the PR as the second, so the output signal-to-noise
ratio is determined by the noise of the first stage, which can be significantly less than the noise of the PR. Such
system was carried out in practice with an experimental sensitivity of 1 pN scale in the 100 Hz frequency band,
which is an order of magnitude better than the fundamental theoretical limit for PR without the use of DA. A
detailed theoretical calculation of such a system is given.The described principle of mechanical amplification has
a universal character and will allow using the same type of commercially available PR for different SPM tasks as

well as for other types of diagnostics.
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Introduction

In 1995, the authors of [1,2] first reported that a
clock quartz tuning fork (QTF), one of the types of
piezoelectric resonators (PR), was successfully used in
near-field scanning optical microscopy as a contact force
sensor between the probe and surface. The same authors
in [3], when examining the question regarding the smallest
amplitudes that could be perceived by this type of sen-
sors, pointed out that there was a noise force threshold
Dy = 0.62pN/+/Hz inherent in QTF employed by sensors
operating in room atmosphere. However, an assumption
that the minimum detectable force amplitude (MDF) at any
QTF-based sensor design cannot be smaller than the noise
threshold Fy, = Dpv/B, where B is a force signal frequency
band [4], turns out to be wrong.

An equation for the noise threshold Dy is explicitly
written in [5]:

Dy = \/4KpTyer (N/VHz), (1)

where y.s (N-s/m) is the effective viscous friction coefficient
of oscillator; Kg is the Boltzmann constant; 7 is the
temperature. When it comes to viscous air friction of QTF,
then the smaller QTT the lower the viscosity and force noise.
It is interesting that there is another noise reducing method.
In [5], a sensor design is discussed (Figure 1,b) where not
QTF, but small tip 5 of some ,resonant console“ (RC),
to which microscopic probe 2 is attached, has microscopic
dimensions. It is also important that this tip oscillates with
a much larger amplitude (Figure 1,d) than QTF arms /.

This RC being combined with QTF by drive 7 in a
single oscillatory system turns out to serve as a dynamic
amplifier of the force signal acting on the probe and is
actually the first amplifying stage. Then the signal-to-
noise ratio of the whole sensor is eventually defined by
the first stage noise, i.e. according to (1) by the viscous
friction coefficient of RC’s microscopic tip 5. And this
coefficient is approximately 100times smaller than that of
QTF. Consequently, the whole sensor, according to (1),
turns out to be capable of perceiving 10 times smaller force
amplitude than a traditional sensor (Figure 1,a) based on
the same QTFE.

Two sensor versions are shown schematically in Figure 1.
Probe 2 has a microscopic pyramid shape with a height
scale of 10um and a point radius of 10nm. The QTF
size scale is shown in the photo in Figure 1,c. The
traditional sensor has QTF arm tips / oscillating at the
resonance frequency of this QTF with an amplitude equal
to the oscillation amplitude of probe 2. When probe 2
approaches the surface of sample 4, the probe is exposed
to a variable pressure force at the same frequency. The
purpose of the sensor and service electronics is to detect the
amplitude of this force (the Fourier component amplitude
is implied). The sensor attached to bearing console 1/
performs horizontal line-by-line scanning of the sample 4.
During scanning, vertical movement of the sensor is
included in the feedback loop to ensure a constant amplitude
of the pressure force.

In contrast to the traditional sensor, the sensor with
mechanical amplification in Figure 1,b—d had an experi-
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Figure 1. QTF-based contact sensors: a — a traditional sensor without an amplifier; » — with mechanical amplification; ¢ — a photo of
a real sensor; d — a photo of giant amplitude oscillations. 7 — QTF arms; 2 — a microscopic probe; 3 — adhesive bonding; 4 — a test
sample; 5 — a resonant console and its tip; 6 — origin of the resonant console; 7 — connecting rod or drive; 8§ — residual portion of the
QTF’s metal housing; 9 — QTF electrodes; 10 — QTF’s glass base; 1/ — sensor’s bearing console.

mentally measured [5] oscillation amplitude of QTF arm
tips 1 33 times smaller than that of probe 2. To demonstrate
this fact in the photo, Figure 1,d, 10V ac voltage was
applied to QTF to induce a giant oscillation amplitude of
probe 2. During scanning, this amplitude is selected from a
range from less than 1 nanometer to tens of nanometers.

Though seemingly simple as shown in photo, Figure 1, c,
the design embodies several ideas and implements a number
of practically important patterns. This variety of aspects
may be compared with a complicated electric motor con-
figuration, though it is actually an embodiment of Ampere’s
law. Finally, for the sensor used in [5] for magnetic force
microscopy (MFM), the sensitivity or MDF Fpin, = 1.4pN
at B = 100 Hz is reported. With such sensitivity, considering
that two electrons spaced 10 nm apart repel each other with
a force of 2.3 pN, an attempt may be made to ,,see” single
impurity atoms, donors or acceptors, on the semiconductor
surface.

One of the first ideas of the configuration as shown in
Figure 1,5, ¢ is that RC 5 is bonded to QTF housing & in
such a way that the natural resonance frequency of bending
oscillations of its protruding part from point 6 to probe
point 2 (drive 7 hasn’t been bonded yet) is equal to the
QTF resonance frequency. One of the key patterns is that
the RC dynamic amplification factor is equal to the ratio of
the oscillation amplitude of probe point 2 to the oscillation
amplitude of the QTF arm rigidly bound to RC by drive 7.
Thus, this amplification in sensor [5] was equal to 33. Earlier
in [6], this pattern has been verified experimentally. The
above-mentioned amplitude ratio was equal there to 8, and
in a subtle experiment with an electrostatic force, it was
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shown that the dynamic amplification produced by RC was
also equal to 8 within 10 %.

This work provides theoretical description and justifica-
tion of the set out aims and identified practical patterns
that are important for successful development of a sensor
with mechanical amplification (Figure 1,5, ¢). In particular,
a full coefficient of conversion of the amplitude of a force
acting on point 2 into the amplitude of electrical response on
QTF electrodes 9 will be calculated. Noise, against which
the effective signal was measured, will be also calculated.
Though this is a calculation of a particular design, it
may be simply modified for other projects. Another
three application examples of the mechanical amplification
principle for PR-based force sensors are given in the end of
this paper.

1. Choosing the resonant console shape

For the purpose of MFM, increased force sensitivity with
high force sensor response rate is required.

Figure 2,a shows the RC shape and dimensions chosen
for this purpose. Dimensioning was performed empirically
through numerical calculation of the RC bending resonance
oscillation parameters corresponding to the current dimen-
sions. The first aim of dimensioning is to ensure that the RC
bending resonance oscillation frequency is equal to the QTF
frequency. The second aim is large oscillation amplitude
ratio of the tip and central part of RC. Other aims are simple
shape, low ,,wind area or air caused viscosity “ of the tip,
and low effective mass of the tip. Therefore, a shape in the
form of a ,Jong thin“ cone was chosen.
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Figure 2. a — chosen RC shape and curve |A(z)| of resonance oscillation amplitude distribution over the RC length z; b — diagram for

a RC bending oscillation equation.

The initial diameter of RC dyp = 0.125 mm corresponds to
the standard diameter of the quartz optical fiber, from which
RC is etched in fluoric acid. Then, at point z4 = 2.69 mm,
significant diameter narrowing starts to d; = 0.064 mm at
point zg = 2.87 mm (the narrowing region is chosen in the
form of a ,short“ cone to satisfy the etching technique).
Then, there is a ,long“ cone to point z¢c =4.44mm,
within which the diameter decreases to d, = 0.01 mm. RC
ends with a cylindrical portion d; = 0.0l mm (end point
zyv =4.59mm). Narrowing from dy to d; is provided
to reduce the RC effective mass that affects the sensor
response rate. The ,long“ conical portion, referred to as a
»microrod” in [5], serves to provide the largest oscillation
amplitude of the RC tip with respect to the oscillation
amplitude of the RC’s ,thick“ central portion at point
zt = 1.78 mm of the drive attachment. Conical shape is also
important for reducing the RC effective mass and viscous air
friction that is a force noise source and eventually defines
the threshold force sensitivity of the sensor [5].

Figure 2,a also shows a calculated graph of the dis-
tribution of the amplitude modulus of resonant vibrations
of such a RC (without drive 7) along its length, starting
from the point z =0 of the RC attachment (point 6 in
Figure 1,b,¢). There is an oscillation ,node“ at point
z =3.1mm. The nodes don’t hinder operation, but RC
may be elongated by adding nodes, if required. Design
ratio of Ay at point zv to Ar at point zt appears to be
quite significant: Ky = |Ay/At| = 42.66. Then we show that
a mechanical reinforcement with approximately the same
Ko occurs in RC by stating preliminary the exact meaning
behind this concept.

2. RC oscillation equation and solution

To write the RC oscillation equation, a beam with length-
varying diameter is shown in Figure 2,b. The left side of
the beam is rigidly fixed. The straight axis z corresponds to

the beam at rest, and beam center line displacement during
small-amplitude bending oscillations is denoted by u(z,?),
where ¢ is the time and z is the z axis coordinate. A thin
beam is implied where the typical transverse dimension d
is much smaller than the beam length [ (for Figure 2, a, this
corresponds to dop < zv). The external force Fy(r) acts on
the free end, and the drive force Fr(t) acts in the center at
point z = zt as shown in Figure 2,a. A ,small“ element
is highlighted in grey and ,thick® lines show two transverse
forces acting on this element from the rest part of the beam.
Only one of them is denoted by F(z, t). Also two rotational
moments act on this component, one of which is denoted
by M(z,t). Bending oscillations in one plane are implied.
The sum of moments with respect to point O is equal to

So=F(z,1)Az +

oM (z,t
%Az — (F 4+ M.)Az,

Z
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where Az is the component length, and the ,z“ or .t
indices will hereinafter mean differentiation with respect to
z or t. This sum causes the angular acceleration of the
element according to the formula So = (IpAz)@,, where
IpAz is the moment of inertia of the component with
respect to O (at Az < d); p is the density of material; 7 is
the ,,moment of inertia of cross-section®, that for a round
cross-section is I = zrd*/64; @, is the angular acceleration,
and ¢ is the angle according to ¢ = arctan(u;) =~ u;.
M at small oscillation amplitudes u(z,t) is related to
Young’s modulus E of the material according to the known
equation [2]:

M = u.EI (2)

It could be shown that for low-frequency resonance oscil-
lation modes, Ip@;, has a square order of smallness (d/I)?
with respect to M, and may be neglected for thin beams,
ire. So =0, or

F=-M,. (3)

Newton’s Law F = ma written without external forces, for
example, viscous air friction, will give F, = psu,,, where
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s(z) is the current cross-section area. Now we add the
viscosity:

F, — gu; = psuy, (4)
where g(z) is the specific viscosity (N-s/m?). For further
calculations, we assume arbitrarily that for a round rod with
the diameter d(z) the specific viscosity is proportional to the
diameter g = vd, and let v = 100 (N-s/m3) (true viscosity
and dependence on diameter are not relevant for demon-
stration purpose), for quartz optical fiber p = 2659 kg/m?
and E = 7.87 - 101 N/m? [2].

By substituting expressions (2),(3) and s = nd?/4,
I = nd*/64, g = vd for the round cross-section into equa-
tion (4), we get the following oscillation equation

(ﬂd2/4)p CUy = _(‘ﬂE/64) : (d4”zz)zz — vdu,. (5)

This is a homogeneous differential equation that is linear in
u(z,t) with variable ( d depends on z) coefficients. But
these coefficients are real and independent on ¢, therefore
solutions may be sought for as

u(z,t) = real[A(z) exp(iwt)], (6)

where ,real“ means the ,real part®, A(z) is the complex
amplitude, @ is the angular frequency. If the complex
amplitude is written as A(z) = |A(z)|exp(i@(z)), then
u(z,t) = |A(z)| cos(wt + ¢(z)). For acting forces, the fol-
lowing is similarly meant

g(z,t)=real[F(z) exp(iwt)] or gv(t)=real[Fy exp(iwt)].

Then after substituting A(z)exp(iwt) instead of u(z,t)
into (5), an ordinary differential equation is derived for the
complex amplitude:

—0*(md*/4)p - A = —(TE/64)(d*A..).. — iovd - A. (7)

Boundary conditions for (7) at point z =0: A=0, A, =0,
at point z =zv: A, =0, (7E/64)(d*A;.), = (—Fy) ac-
cording to (3); with z = z1: A, A;, A;; are continuous, and
(mE/64)(d*A;;), has a jump (+Fr). Equation (7) was
solved numerically using the Runge—Kutta method for a set
of fixed frequencies f = w/(2m). It has two independent
variables — force amplitudes Fy and Fr, and two main
dependent variables — Ay = A(zv) at zv and Ay = A(zr)
at zT.

One of the solutions is shown in Figure 2,a. This
is the curve |A(z)| of resonance amplitude distribution
over the RC length at Fv = 1N, Fr =0, f =32768 Hz.
Simultaneously it may be considered that this is the RC
oscillation amplitude module curve under the action of
force with the amplitude Fr = Ko =~ 42.66 N with Fy =0,
f = 32768 Hz, because the difference between these curves
is not higher than 0.031m/N, which is smaller than the
curve line thickness.

RC dimensions were chosen in such a way that the RC
resonance frequency was equal to the QTF resonance fre-
quency fo = 32768, which is demonstrated on amplitude-
frequency curve A; in Figure 3.
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Figure 3. Calculated amplitude A =|A(zv)| and p=

= imag(In(A(zv))) phase response of the RC tip to variable
forces with the amplitude Fy or Fr acting on the tip or drive
point depending on the frequency deviation f — fo. A1, p1 —
amplitude and phase at Fv = 1N and Fr =0; A, p at Fv =0
and Fr = Ko =~ 42.66 N; Az, p; amplitude and phase of classical
oscillator with the effective mass my, viscosity coefficient v and
resonance frequency fo with Fyv = 1 N.

Curve A, looks almost the same — a 10% difference
occurs only with deviation£1000Hz, ie. RC behaves
alike when exposed to both Fy and Fr = KyFy, which
is Koptimes larger and is applied at z =z, where the
oscillation amplitude found from the curve in Figure 2,a
is Ko ~ 42.66 times smaller. Frequency dependences of the
corresponding phases p, and p; differ by #rad (with an
accuracy to two decimal places: p, — p; = 7 + 0.03 rad)
due to the presence of oscillation ,,node“ on the curve in
Figure 2, a.

Effective mass my of RC oscillations reduced to the RC
tip may be calculated by equating the corresponding kinetic
oscillation energies:

v

my = { / pS(Z)|A(Z)|232}/|A(Zv)|2- )

0

The effective viscosity coefficient py is calculated in the
same way:

v

w={ [viomeps facar. o)

Then, Figure 3 shows the accuracy with which the oscilla-
tion amplitude and phase of the classical oscillator according
to

Ay = Fy/ [mv(w(z) — (1)2) + ia))/v]

coincide with curves Ay, p; for RC. If the effect of Fr is also
considered, then the equation of this oscillator is written as

Fy — Fr/Ky = myAy + pvAy + kvAy, (10)
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where ky = w3my; sign ,,— before Fr/Ky considers that
the drive point and RC tip oscillate in phase opposition (p;
and p, in Figure 3).

It is interesting to note that an absolutely exact
equalityA; = Apis achieved with f — fo=0. This fact
results from the general symmetry A(x,y, f) = A(y, x, f)
first found during numerical calculation where A(z, z1, f)
denotes complex solution A(z) of equation (7), when an
external force with the amplitude F = 1 N and frequency f
acts at point z;(this is actually the delta function §(z — z1),
and A(z, z1, f) is Green’s function). Thus, for an equation
of type (7), general ,reciprocity principle” first stated in
the 19th century is satisfied. This is the principle where
a single amplitude force acting at point z =y at any
f excites at point z =x precisely the same (complex)
oscillation amplitude as would have been excited at point
z =y by a single amplitude force acting at point z = x.
In this terminology, Ko = |A(zv, zv, fo)/A(zT, zv, fo)| and
Ko = |A(zv, zv, fo)/A(zv, z1, fo0)| coincide. Conformity of
the performed calculations to the reciprocity principle is a
check for their correctness.

Calculated data in Figure 3 shows that RC be-
haves as a single oscillator mode in a broad frequency
band f, £500Hz, despite a quite long and thin tip
dy =0.0lmm. To be clear, the oscillation amplitude and
phase in this frequency band or any point z behave in
the same way as the amplitude and phase of the tip zv
in the curves in Figure 3, but for the amplitude at point
z, the multiplier |A(z)/A(zv)| defined from the curve in
Figure 2,a shall be considered. With a less favorable
selection of RC shape, another RC resonance frequency
could occur near f(, which would have affected negatively
the sensor response rate [4]. Calculation according to (8)
gives my = 1.62 - 10~ 1%kg; effective dynamic stiffness co-
efficient kv = mva)(z) = 6.85 N/m; viscosity according to (9)
yv = 3.88 - 1077 N-s/m.

But for further objectives, it is convenient to represent
the oscillator reflecting RC behavior within f, £+ 500 Hz in
terms of the drive point oscillations z = z, rather than in
terms of the tip oscillations z = zy. Then equation (10) will
be written as:

Fr — KoFy = mTA]‘ + VTAT + ktArT, (11)

where mr = KZmy; yr = K3yv; kt = wimr; Ay = —KoAr.
For explicit statement of the meaning behind the RC
Lamplification“ concept, a practice-related situation is con-
sidered [5,6], where some device ,,X“ supports a strictly
constant oscillation amplitude Ay = 1 at point z = zt, for
example, at fo. If at the tip z =zv, AFy starts acting
at some frequency f, then, without device ,,X* it would
induce an additional oscillation amplitude A(zr, zv, f)AFy
at point zt. But to keep the amplitude unchanged at point
zT, device ,,X“ will generate an additional force amplitude

AFr = _[A(ZT’ 2V, f)/A(ZT, 2T, f)]AFV

Then, considering the linearity of equation (5), the sum
of additional amplitudes induced by AFy and AFp is

exactly equal to 0 at point zt. Calculation with f = fo
gives AFr ~ K| exp(0.011/)AFy, where the ,,amplification
coefficient® K ~ 42.63 differs from K, only by 0.03,
phase shift is about 0.0llrad.  Within f( 4+ 500 Hz,
Ki(f)=|-A(z1,2v, f)/A(zT, 21, f)| varies by max. 1.5,
and the phase differs by max. 0.003rad. This is one of
the options to state and demonstrate RC’s mechanical am-
plification and mechanical amplification deviation from Kj.
For demonstration, mathematical analysis of equations could
have been performed instead of numerical calculations and
curves, but such approach currently seems superfluous. The
following model will be used to show how the mechanical
amplification works as part of a combined resonance system
(CRS) consisting of RC and QTF connected by drive 7
Figure 1.

3. Complete electromechanical model of
the sensor with mechanical
amplification

Figure 4,a shows a diagram of QTF that has two arms
with effective masses m; and m, and coordinates of motion
of their tips x; and x, interconnected via a common crystal
portion with effective mass m3 that may rotate about some
point O during bending of electrodes soldered to point O.
For clarity, these rotational shifts are replaced by some
generalized coordinate x3. This simplified QTF diagram
is shown in Figure 4,b, where each of three masses has

X2 a
X3 my
m
b
O xl FV
Iy

ky v,

Figure 4. a — three main QTF components and their coordinates
of motion; b — a CRS model where QTF is represented by three
point masses and three coordinates of motion: / — QTF arms
with masses m; and m;, and coordinates x; and x;; 2 — common
crystal portion of the QTF arms with mass m3 and coordinate x3;
3 — RC as in Figure 2,a; 4 — drive.
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its own viscous friction coefficient y;,y,, 3 and elastic
couplings with stiffness coefficients ki, k», k3 as shown in
the figure. Both arms are exposed to the same force Fp
with equal value, but in opposite directions. The same two
equal and opposite forces act on m3 from m; and my. They
are not shown because they sum to zero. Force from the
drive (—Fr) acts only on one arm mjp. The same force
Fr with equal value, but opposite in direction, acts on
RC via the drive as described above, and the force Fyis
applied.

Three Newton’s equations of motion for three QTF model
masses in Figure 4, b are:

myxXo + yaxo + k2(x2 — X3) = Fp(t) — FT(I‘),

mixy 4+ p1(x)1 +ki(x1 +x3) = Fp(t),
maxXs + y3xs + ki(x1 +x3) + ka(xz —x2) + ksx3 = 0.
(12)
Now equation (7) for RC is combined with system (12) for
QTF using two equalities: equality of oscillation amplitudes
Xy =Ap = A(zr) and equality of drive forces Fr. Some
calculation results for this CRS are shown in Figure 5.

For calculation of curves in Figure 5,a, my = my = my
was assumed, where mgy is the effective mass of
one QTF arm according to equation (8), which
for a constant-section beam is exactly equal to
my = 0.250V ~ 5.15- 1077 kg, where p = 2659kg/m> is
the density, V =0.34-0.6-3.8-10"m? is the arm vol-
ume; ki =k = wfmo; y1 =2 =po = womo/Q, where
the Q factor Q = 10000; and ms = 5my, k3 = (5/9)k2,
y3 = 30y, are chosen arbitrarily. For this CRS, effective
mass

ms = (2mo + KZmy)/4 (13)

and viscosity coefficient
vs = (270 + Kgpv) /4. (14)

are also calculated.

Calculation results in Figure 5,a show that CRS similar
to RC within f, £ 500Hz behaves as a single oscillator
mode. Oscillation amplitude ratio of any two components
of this oscillator with the specified frequency band is almost
independent on frequency and this ratio is expressed in
terms of Kp. Supplementary materials to [5] give an
experimental curve of the RC tip oscillation amplitude and
phase vs. the QTF electrode input voltage frequency. This
curve corresponds to the behavior of A4ps in Figure 5,a.
Note that a quite accurate coincidence of A7p; of the clas-
sical oscillator according to A = F/[ms(w — @?*) + iwys]
at F = K§/4N with other CRS oscillation amplitudes and
phases may be justified analytically. Substitution of the
expression for Fr from (11) and of x, = Ay into system (12)
provides above-mentioned expressions (13), (14) for mg
and ps. Notwithstanding that the RC effective mass my is
3200 times smaller than the arm mass my, Kgmv in (13)
is not negligibly small any longer: KZmy = 0.57mo. It
is interesting to note that Ky may be easily increased by

Technical Physics, 2025, Vol. 70, No. 10

several times without changing the RC shape. For this, the
drive attachment point zt shall be only moved closer to RC
bonding point 6 (Figure 1), i.e. zr shall be reduced. Then
the CRS effective mass mg will be several times greater
than the initial QTF effective mass mg/2, i.e. it will turn
out that a small microrod will determine the effective mass
of the whole CRS. Electrical inductance (15) of the sensor
also grows, which will also slow down the sensor response
rate [4]. In terms of the response rate and force sensitivity,
my and py shall be decreased and, therefore, the microrod
dimensions shall be reduced. Figure 5,a shows that the
amplitude in the deviation region Af = 2200 Hz almost
vanishes (A; =~ 0.006), and p; changes by mrad. With
further reduction of the microrod dimensions, this Af will
decrease, which will limit the sensor’s working frequency
band. But the decrease in the working band will decrease
the sensor response rate [4], i.e. selection of the optimum
microrod size depends on the final target.

4. Coupling between CRS electrical and
mechanical properties

Figure 6,a shows the equivalent circuit diagram of
QTF that quite accurately describes its electrical prop-
erties within f, =2500Hz. This circuit together with
equations expressing the coupling between the electrical
circuit parameters and QTF’s mechanical properties were
frequently addressed in the literature [7]. For example,
the inductance Ly is proportional to mg of one QTF arm:
Lo = my/(2a?), where a is the electromechanical coupling
constant. From the experimental Ly = 5100 H for QTF used
in [5, a=7.1-10"°N/V is calculated. Or the variable
voltage generator amplitude Ur = Fr/(2«) is proportional to
the variable force amplitude Fr acting on the QTF arm tip.
These and many other equations may be derived from the
illustrative diagram in Figure 6, b, where two L, R, C circuits
are drawn in the transformer secondary circuit with con-
ditional secondary-to-primary turn ratio ny/n; = a. These
circuits represent two QTF arms and their inductances,
resistances and capacities are directly expressed by mechan-
ical parameters my, y1, 1/k1 and my, y», 1/k,. Horizontal
L,R,C bridge with ms, y3, 1/k3 represents coupling of
two QTF arms through their common crystal portion,
Figure 4. xi,x2,x3 correspond to the displacements in
Figure 4, but being reduced to the transformer primary
winding, they will mean piezoelectric charges according to
q = ax. Then, current amplitudes will be I = iwg = iwax.
The transformer secondary circuit diagram was chosen
deliberately. It can be easily shown that the differential
equations describing its behavior exactly coincide with
equations (12) describing the behavior of three point masses
my, my, m3 in Figure 4. Just note that Fp will be expressed
in (12) in terms of the voltageU on the QTF electrodes
as follows Fp = aU. Paper [8] evaluates the magnitude of
a from the piezoelectric modulus dy; = 2.31- 10712 C/N
for a quartz crystal. « depends on the shape of the
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amplitudes Fy or Fp depending on f — fo. a — when RC and QTF resonance frequencies coincide, when m; = my = mo; b — when
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A,, p» — amplitude and phase x; of the free QTF tip at Fv = Ko N and Fp = 0; A3, p3 — amplitude and phase x, of the coupled QTF tip
at Fv = Ko N and Fp = 0; A4, ps — that of RC tip at Fy = 0 and Fp = Ko/2N; As, ps and Ag, ps — x1 and x, at Fyv = 0 and Fp = K§/2N;
A7, p7 — amplitude and phase of the classical oscillator with ms, ys and f, = fo at F = K3/4N.

U \l/[c a [C\l/ U
nylnp = a
!

Lo \l/ my ny
Co

Cp Cp

- |

U = Fr/2a) 1

Up=KyFy/2a)

Figure 6. Three equivalent circuit diagrams: a — QTF circuit; » — model of two QTF arms and action of single electromechanical
coupling constant a, where mechanical displacements x, x, are interpreted as electrical charges; ¢ — circuit for CRS with mechanical

amplification.

curve of oscillation amplitude distribution over the QTF arm
length. Such curve is illustrated in Figure 2,a for RC. If the
oscillation curve shape for each of two QTF arms changes
slightly within f, 4+ 500 Hz, then it may be suggested that
a is constant within these limits, which is implied in the
circuits in Figure 6,b. The model in Figure 6,5 probably
will not accurately reflect all QTF behavior aspects when
my = myp, ki = ky, a1 = ap are not satisfied, but it looks
like the simplest and most reasonable from those models
that would have been included all these parameters in.
This model may be unambiguously calculated using both
analytical and computerized tools.

One of the important results of these calculations is the
conclusion that the electrical behavior of a complex CRS
comes to the same simple equivalent diagram in Figure 6, c

as the diagram in Figure 6,a. In this case, quite accurate
expressions are derived for CRS inductance and resistance
similar to (13) and (14):

Ls = (2mo + Kgmy)/ (4a?), (15)

rs = (270 + Kapv)/ (4a?). (16)
Though curves A7, p7 in Figure 5 confirm only the efficiency
of equations (13) and (14), and a series of experiments
wasn’t carried out to validate (15) and (16), nevertheless an
increase in CRS inductance measured in a single experiment
was Lg/Ly = 1.76, and a calculation using (15) forecast an
increase by l.6times. Considering the experiment error,
correspondence of these two quantities is satisfactory.
The second important result is the demonstration of
stable CRS behavior in the case when the equality of QTF
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and RC resonance frequencies is not accurately kept. For
calculation of the curves in Figure 5, b, only one parameter
was modified by 10% compared with the calculation of
the curves in Figure 5,a — my = 1.1mowas chosen. This
reduces the QTF resonance frequency by 2.5%, causes
disbalance of two QTF arms and leads to a difference in the
QTF and RC resonance frequencies by 2.5 %. In Figure 5, b,
curves A; — Ag and p; — peg have the same meaning as in
Figure 5,a. It can be seen that CRS still behaves as a
single oscillator mode. The amplitude equality of two QTF
arms was maintained with a scale accuracy of 10%, and
the same high resonance oscillation amplitudes of the CRS
components were maintained as in Figure 5,a. However,
due to the small (10%) difference that occurred between
the QTF arm oscillation amplitudes, equations for Lg and
rs are now more complicated than (15) and (16). Note
that the result shown in Figure 5 was not obvious a priori
because CRS consists of many resonance components: two
QTF arms plus RC with its microrod. A complex picture
of closely spaced resonance frequencies could occur, or
asymmetry induced by the drive bonded only to one QTF
arm could lead to a great difference in the QTF arm
oscillation amplitudes and currents flowing through the QTF
arms.

It only remains to show that the mechanical amplification
acts not only on RC, but also occurs as an electrical effect
within CRS. In Figure 6, ¢, it concerns the voltage generator
amplitude equation.

UF = K()F\//(Za). (17)

This generator expresses the CRS’s electrical response to
Fy acting on the RC tip. System of equations (12) together
with equation (11) for RC are sufficient to show analytically
how the following expression is derived

U —Ur = I(iwLs + rs + 1/ (iwCs)).

And this equation being an analogue of Ohm’s law for the
right-hand equivalent circuit diagram in Figure 6, ¢ will serve
as justification of this circuit. Expressions for Lg, rs, Cs and
Ur = KoFy/(2a) were derived. Instead of this, we give a
computer-aided calculation of the CRS application proce-
dure as described in [5,6]. This procedure compensates the
parallel capacitance Cp (Figure 6) (Cp = 0), and the current
I is set to constant frequency and amplitude using a current
generator, which results in constant oscillation amplitudes of
the QTF arms and RC tip during scanning. AU on the QTF
electrodes in response to AFy acting on the RC tip serves
as a measured variable.

Displacements x; and x, (Figure 4) are denoted by
Xpy and Xp, in case of Fp =1 and Fy, =0, and by
Xyi and Xy, in case of Fp =0 and Fy=1. Con-
sidering I = iwa(x; +x3 +x2 — x3) = iwa(x; + x3) and
AF» = AUa, constancy of Al = 0 may be written as

AUa(Xpl +Xp2) + AFv(XVl +sz) =0.
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Figure 7. Amplification coefficient. I — Ko/2; 2 — |Gk /2|;
3 — |G|; 4 — the same |Ggis| for disbalance my = 1.1mg; 5—7 —
imaginary parts imag(Gk/2), imag(G), imag(G ).

Figure 7 shows the extent to which the design amplifica-
tion coefficient G = —(Xv1 + Xv2)/(Xp1 + Xpp) differs from
Ko/2 that corresponds to it in Figure 6,c. The figure also
shows how the ratio Gk = A(zv, zv, f)/A(zT, 2v, f) of
the amplitudes at points z = zyv and z =zt depends on
frequency for the free RC. The calculations were based on
the solution to equation (7) together with system (12).

5. Evaluation of response rate and noise
characteristics of a
practically-implemented CRS

Now the equivalent diagram in Figure 6, ¢ may be used to
evaluate the response rate and noise characteristics of CRS
as discussed in [5]. Figure 5 and 6 show that within f, + B,
where B = 500 Hz, the amplitude and phase characteristics
of CRS are qualitatively the same as those of QTF, therefore
the CRS response rate will not differ from that of QTF
according to the philosophy of [4], i.c. the response time is
limited to 7 > 1/(27B) = 0.3 ms.

Force noise characteristics are defined by the viscous
friction coefficients according to (1), but in [5] focus was
made on the fact that the Johnson.Nyquist noise of the rg
resistor in Figure 6,c was the electrical expression of the
force noise. Using (16), it may be immediately evaluated
that CRS in the circuit diagram in Figure 6, ¢ has the voltage
noise threshold Dy = /4KgpTrg (V/\/E) that according
to (17) finally defines the sensor force noise threshold Dpy:
K()DFv/(Za) = Du, ie.

DFV = \/4KBT}’S . 20!/K0. (18)

Substitution of experimental data from [5] rs = 900k
and Ko =33 at T =300K gives Dpy = 0.053 pN/v/Hz,
which is by an order of magnitude lower than
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Dr = 0.62pN/+/Hz from [3] (in [5], similar QTFs with
Dr = \/4KgTrg - 2a = 0.58 pN/\/E were used, where in
room atmosphere ro = 100k2).

Let’s get back to (16). If we break off the microrod
tip, then rg will drop to rg = 200k€2. This is an evidence
that the ,viscosity of bonding 3 in Figure 1 increases
ro = 100 k2 by maximum two times. Therefore, the main
contribution in equation (16) is made by K3py and after
substitution of this main part of (16) into (18) we get
Dry = /4KpTyy, which is equivalent to (1). Moreover,
according to equation (9), only a part of the microrod that
oscillates with the largest amplitude as shown on curve,
Figure 2, a, makes the main contribution to py. The length
of this part has a scale of 0.5mm and is comparable
with the cantilever length in the classical scanning probe
microscopy (SPM), therefore the obtained noise threshold
Dpy = 0.053 pN/\/E has the same scale as the cantilever
force noise in room atmosphere [3].

6. Mechanical amplification options

The above-mentioned philosophy and computational
method may be used for developing other force sensor
designs. Figure 8 shows several options.

Figure 8,a shows the way how the mechanical ampli-
fication could be used as part of the ,qPlus* sensor [9].
Advantages offered by the ,,qPlus“ sensor design, tiny
dimensions and frequency modulation technique show up
in solution of a wide range of SPM problems. Neverthe-
less, commercially-available cantilevers are by an order of
magnitude smaller, therefore have lower force noise.

When arm 1 of the ,,qPlus* sensor is connect by light
rigid push drive 2 to cantilever 3 in such a way that the
distance from the cantilever and push drive to cantilever

Ay

Figure 8. Mechanical amplification applications. a — as part
of the ,,qPlus“ sensor: I — the ,,qPlus sensor; 2 — the push
drive; 3 — the commercially available cantilever with a probe (not
to scale); 4 — cantilever chip. b — for operation with a rigid
capillary probe: I — the capillary probe; 2 — the QTF arms; 3 —
the drive; 4 — the sample, a Gd piece. ¢ — amplification for
longitudinal oscillations: / — PR; 2 — the amplifier body; 3 —
the amplifier tip with the probe.

chip 4 is =~ 6times shorter than the cantilever length, then a
~ 10 -fold mechanical amplification of the force signal takes
place. However, the other sensor properties, including the
output force noise, will not much change and the signal-to-
noise ratio will be up to 10times better. Equality of the
natural resonance frequencies of the cantilever and sensor is
not required.

Paper [10] describes application of a conical quartz
capillary with micron inlet as a probe. This capillary has
a significant cone angle (Figure 8,5), therefore it has high
mechanical rigidity and mass. The structure in Figure 8,5
has no mechanical amplifier in the form of RC. Here, drive 3
is bonded to the center of the QTF arm, rather than to the
QTF arm tip, and the QTF arm tip oscillation amplitude
turns out to be n ~ 3 times larger than the capillary bending
oscillation amplitude Ay in the capillary tip. Here, the
mechanical amplification idea works backwards. Though,
the force sensitivity formally decreases by n = 3times,
negative effect of the capillary rigidity on PR performance
is reduced quadratically by n? ~ 10 times.

To increase the scanning rate, longitudinal oscillations
may be used instead of bending oscillations when choosing
the resonance frequency in the megahertz range. Figure 8, ¢
shows a possible mechanical force amplification diagram in
this case. The shape of mechanical amplifier body 2 shall
be chosen such that the longitudinal resonance oscillation
amplitude Ay of amplifier tip 3 is ~ 10 times lager than the
oscillation amplitude At of PR 1. Amplifier 2 here plays a
role of matching the microscopic dimensions and properties
of the probe with those of PR.

Conclusion

When PR is used to measure the force acting on the
probe tip in SPM, provisions can be made to ensure that
At of PR differs from Ay of the probe tip by several times.
Then K = Ay/Ar becomes an additional design factor of
the force sensor. By ensuring K > 1, the force signal may
be increased by K times and the output signal-to-noise ratio
may be improved at the same time. In case when K <« 1,
then, by loosing the sensitivity by 1/K times, the negative
effect of the probe system rigidity or mass on PR may
be decreased quadratically by 1/K?times. When using a
mechanical force amplifier in the form of a resonant console,
then the amplification turns out to be low-noise and the
sensor’s signal-to-noise ratio may be improved by an order
of magnitude. Finally, the force sensitivity achieves the
level of the classical optical circuit in SPM, ie. a sensor
(Figure 1, ¢) with dimensions in the scale of 10 mm capable
of operating in vacuum and at cryogenic temperatures
replaces laser, two-element segmented photodiode and
alignment mechanism. The sensor releases heat power less
than 1nW.

Conflict of interest

The author declares no conflict of interest.

Technical Physics, 2025, Vol. 70, No. 10



The principle of mechanical amplification for piezoelectric force sensors

1935

References

(1
2l

B3]

[10]

K. Karrai, R.D. Grober. Appl. Phys. Lett., 66, 1842 (1995).
https://doi.org/10.1063/1.113340

K. Karrai, R.D. Grober. Ultramicroscopy, 61, 197 (1995).
https://doi.org/10.1016/0304-3991(95)00104

R.D. Grober, J. Acimovic, J. Schuck, D. Hessman, P.J. Kindle-
mann, J. Hespanha, A.S. Morse, K. Karrai, 1. Tie-
mann, S. Manus. Rev. Sci. Instrum., 71, 2776 (2000).
https://doi.org/10.1063/1.1150691

D.V. Serebryakov, A.P. Cherkun, B.A. Loginov, V.S. Letokhov.
Rev. Sci. Instrum., 73, 1795 (2002).
https://doi.org/10.1063/1.1462038

A.P. Cherkun, G.V. Mishakov, A.V. Sharkov, E.I. Demikhov.
Ultramicroscopy, 217, 113072 (2020).
https://doi.org/10.1016/j.ultramic.2020.113072

A.P. Cherkun, D.V. Serebryakov, SK. Sekatskii, I.V. Morozov,
VS. Letokhov. Rev. Sci. Instrum., 77, 033703 (2006).
https://doi.org/10.1063/1.2186386

J. Rychen, T. Thn, P. Studerus, A. Herrmann, K. Ensslin,
HJ. Hug, PJA. van Schendel, HJ. Guntherodt. Rev. Sci.
Instrum,, 71, 1695 (2000). https://doi.org/10.1063/1.1150521
FJ. Giessibl. Appl. Phys. Lett., 76, 1470 (2000).
https://doi.org/10.1063/1.126067

T. Seeholzer, D. Tarau, L. Hollendonner, A. Auer, R. Rachel,
D. Grohmann, FJ. Giessibl, AJ. Weymouth. J. Phys. Chem.
B, 127 (31), 6949 (2023).
https://doi.org/10.1021/acs.jpcb.3c02875

B.N. Mironov, S.A. Aseyev, S.V. Chekalin. Micron, 116, 61
(2019). https://doi.org/10.1016/j.micron.2018.09.013

Translated by E.llinskaya

Technical Physics, 2025, Vol. 70, No. 10



