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The principle of mechanical amplification for piezoelectric force sensors
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In scanning probe microscopy (SPM), piezoelectric resonators (PR) are used to control the contact of the probe

with the surface, the signal of the probe pressure force on the surface being directly converted into an electrical

signal. The contact of the probe with the surface should occur through the contact of only single atoms. In order

to increase sensitivity, a new technique for mechanical amplification of the force signal has been developed. The

PR, combined with a primitive ”dynamic amplifier” (DA) and a probe, form a new resonant system in which the

amplitude of the vibrations of the PR is many times different from the amplitude of the vibrations of the probe. In

this system, the DA serves as the first stage of amplification, and the PR as the second, so the output signal-to-noise

ratio is determined by the noise of the first stage, which can be significantly less than the noise of the PR. Such

system was carried out in practice with an experimental sensitivity of 1 pN scale in the 100Hz frequency band,

which is an order of magnitude better than the fundamental theoretical limit for PR without the use of DA. A

detailed theoretical calculation of such a system is given.The described principle of mechanical amplification has

a universal character and will allow using the same type of commercially available PR for different SPM tasks as

well as for other types of diagnostics.
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Introduction

In 1995, the authors of [1,2] first reported that a

clock quartz tuning fork (QTF), one of the types of

piezoelectric resonators (PR), was successfully used in

near-field scanning optical microscopy as a contact force

sensor between the probe and surface. The same authors

in [3], when examining the question regarding the smallest

amplitudes that could be perceived by this type of sen-

sors, pointed out that there was a noise force threshold

DF = 0.62 pN/
√
Hz inherent in QTF employed by sensors

operating in room atmosphere. However, an assumption

that the minimum detectable force amplitude (MDF) at any
QTF-based sensor design cannot be smaller than the noise

threshold Fmin = DF

√
B , where B is a force signal frequency

band [4], turns out to be wrong.

An equation for the noise threshold DF is explicitly

written in [5]:

DF =
√

4KBTγeff (N/
√
Hz), (1)

where γeff (N·s/m) is the effective viscous friction coefficient

of oscillator; KB is the Boltzmann constant; T is the

temperature. When it comes to viscous air friction of QTF,

then the smaller QTF the lower the viscosity and force noise.

It is interesting that there is another noise reducing method.

In [5], a sensor design is discussed (Figure 1, b) where not

QTF, but small tip 5 of some
”
resonant console“ (RC),

to which microscopic probe 2 is attached, has microscopic

dimensions. It is also important that this tip oscillates with

a much larger amplitude (Figure 1, d) than QTF arms 1.

This RC being combined with QTF by drive 7 in a

single oscillatory system turns out to serve as a dynamic

amplifier of the force signal acting on the probe and is

actually the first amplifying stage. Then the signal-to-

noise ratio of the whole sensor is eventually defined by

the first stage noise, i.e. according to (1) by the viscous

friction coefficient of RC’s microscopic tip 5. And this

coefficient is approximately 100 times smaller than that of

QTF. Consequently, the whole sensor, according to (1),
turns out to be capable of perceiving 10 times smaller force

amplitude than a traditional sensor (Figure 1, a) based on

the same QTF.

Two sensor versions are shown schematically in Figure 1.

Probe 2 has a microscopic pyramid shape with a height

scale of 10µm and a point radius of 10 nm. The QTF

size scale is shown in the photo in Figure 1, c. The

traditional sensor has QTF arm tips 1 oscillating at the

resonance frequency of this QTF with an amplitude equal

to the oscillation amplitude of probe 2. When probe 2

approaches the surface of sample 4, the probe is exposed

to a variable pressure force at the same frequency. The

purpose of the sensor and service electronics is to detect the

amplitude of this force (the Fourier component amplitude

is implied). The sensor attached to bearing console 11

performs horizontal line-by-line scanning of the sample 4.

During scanning, vertical movement of the sensor is

included in the feedback loop to ensure a constant amplitude

of the pressure force.

In contrast to the traditional sensor, the sensor with

mechanical amplification in Figure 1, b−d had an experi-
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Figure 1. QTF-based contact sensors: a — a traditional sensor without an amplifier; b — with mechanical amplification; c — a photo of

a real sensor; d — a photo of giant amplitude oscillations. 1 — QTF arms; 2 — a microscopic probe; 3 — adhesive bonding; 4 — a test

sample; 5 — a resonant console and its tip; 6 — origin of the resonant console; 7 — connecting rod or drive; 8 — residual portion of the

QTF’s metal housing; 9 — QTF electrodes; 10 — QTF’s glass base; 11 — sensor’s bearing console.

mentally measured [5] oscillation amplitude of QTF arm

tips 1 33 times smaller than that of probe 2. To demonstrate

this fact in the photo, Figure 1, d, 10V ac voltage was

applied to QTF to induce a giant oscillation amplitude of

probe 2. During scanning, this amplitude is selected from a

range from less than 1 nanometer to tens of nanometers.

Though seemingly simple as shown in photo, Figure 1, c,

the design embodies several ideas and implements a number

of practically important patterns. This variety of aspects

may be compared with a complicated electric motor con-

figuration, though it is actually an embodiment of Ampere’s

law. Finally, for the sensor used in [5] for magnetic force

microscopy (MFM), the sensitivity or MDF Fmin = 1.4 pN

at B = 100Hz is reported. With such sensitivity, considering

that two electrons spaced 10 nm apart repel each other with

a force of 2.3 pN, an attempt may be made to
”
see“ single

impurity atoms, donors or acceptors, on the semiconductor

surface.

One of the first ideas of the configuration as shown in

Figure 1, b, c is that RC 5 is bonded to QTF housing 8 in

such a way that the natural resonance frequency of bending

oscillations of its protruding part from point 6 to probe

point 2 (drive 7 hasn’t been bonded yet) is equal to the

QTF resonance frequency. One of the key patterns is that

the RC dynamic amplification factor is equal to the ratio of

the oscillation amplitude of probe point 2 to the oscillation

amplitude of the QTF arm rigidly bound to RC by drive 7.

Thus, this amplification in sensor [5] was equal to 33. Earlier

in [6], this pattern has been verified experimentally. The

above-mentioned amplitude ratio was equal there to 8, and

in a subtle experiment with an electrostatic force, it was

shown that the dynamic amplification produced by RC was

also equal to 8 within 10%.

This work provides theoretical description and justifica-

tion of the set out aims and identified practical patterns

that are important for successful development of a sensor

with mechanical amplification (Figure 1, b, c). In particular,

a full coefficient of conversion of the amplitude of a force

acting on point 2 into the amplitude of electrical response on

QTF electrodes 9 will be calculated. Noise, against which

the effective signal was measured, will be also calculated.

Though this is a calculation of a particular design, it

may be simply modified for other projects. Another

three application examples of the mechanical amplification

principle for PR-based force sensors are given in the end of

this paper.

1. Choosing the resonant console shape

For the purpose of MFM, increased force sensitivity with

high force sensor response rate is required.

Figure 2, a shows the RC shape and dimensions chosen

for this purpose. Dimensioning was performed empirically

through numerical calculation of the RC bending resonance

oscillation parameters corresponding to the current dimen-

sions. The first aim of dimensioning is to ensure that the RC

bending resonance oscillation frequency is equal to the QTF

frequency. The second aim is large oscillation amplitude

ratio of the tip and central part of RC. Other aims are simple

shape, low
”
wind area or air caused viscosity “ of the tip,

and low effective mass of the tip. Therefore, a shape in the

form of a
”
long thin“ cone was chosen.
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Figure 2. a — chosen RC shape and curve |A(z )| of resonance oscillation amplitude distribution over the RC length z ; b — diagram for

a RC bending oscillation equation.

The initial diameter of RC d0 = 0.125mm corresponds to

the standard diameter of the quartz optical fiber, from which

RC is etched in fluoric acid. Then, at point zA = 2.69mm,

significant diameter narrowing starts to d1 = 0.064mm at

point zB = 2.87mm (the narrowing region is chosen in the

form of a
”
short“ cone to satisfy the etching technique).

Then, there is a
”
long“ cone to point zC = 4.44mm,

within which the diameter decreases to d2 = 0.01mm. RC

ends with a cylindrical portion d2 = 0.01mm (end point

zV = 4.59mm). Narrowing from d0 to d1 is provided

to reduce the RC effective mass that affects the sensor

response rate. The
”
long“ conical portion, referred to as a

”
microrod“ in [5], serves to provide the largest oscillation

amplitude of the RC tip with respect to the oscillation

amplitude of the RC’s
”
thick“ central portion at point

z T = 1.78mm of the drive attachment. Conical shape is also

important for reducing the RC effective mass and viscous air

friction that is a force noise source and eventually defines

the threshold force sensitivity of the sensor [5].

Figure 2, a also shows a calculated graph of the dis-

tribution of the amplitude modulus of resonant vibrations

of such a RC (without drive 7) along its length, starting

from the point z = 0 of the RC attachment (point 6 in

Figure 1, b, c). There is an oscillation
”
node“ at point

z = 3.1mm. The nodes don’t hinder operation, but RC

may be elongated by adding nodes, if required. Design

ratio of AV at point zV to AT at point z T appears to be

quite significant: K0 = |AV/AT| = 42.66. Then we show that

a mechanical reinforcement with approximately the same

K0 occurs in RC by stating preliminary the exact meaning

behind this concept.

2. RC oscillation equation and solution

To write the RC oscillation equation, a beam with length-

varying diameter is shown in Figure 2, b. The left side of

the beam is rigidly fixed. The straight axis z corresponds to

the beam at rest, and beam center line displacement during

small-amplitude bending oscillations is denoted by u(z , t),
where t is the time and z is the z axis coordinate. A thin

beam is implied where the typical transverse dimension d

is much smaller than the beam length l (for Figure 2, a, this

corresponds to d0 ≪ zV). The external force FV(t) acts on

the free end, and the drive force FT(t) acts in the center at

point z = z T as shown in Figure 2, a. A
”
small“ element

is highlighted in grey and
”
thick“ lines show two transverse

forces acting on this element from the rest part of the beam.

Only one of them is denoted by F(z , t). Also two rotational

moments act on this component, one of which is denoted

by M(z , t). Bending oscillations in one plane are implied.

The sum of moments with respect to point O is equal to

SO = F(z , t)1z +
∂M(z , t)

∂z
1z = (F + Mz )1z ,

where 1z is the component length, and the
”
z“ or

”
t“

indices will hereinafter mean differentiation with respect to

z or t . This sum causes the angular acceleration of the

element according to the formula SO = (Iρ1z )ϕtt , where

Iρ1z is the moment of inertia of the component with

respect to O (at 1z ≪ d); ρ is the density of material; I is

the
”
moment of inertia of cross-section“, that for a round

cross-section is I = πd4/64; ϕtt is the angular acceleration,

and ϕ is the angle according to ϕ = arctan(uz ) ≈ uz .

M at small oscillation amplitudes u(z , t) is related to

Young’s modulus E of the material according to the known

equation [2]:
M = uz z EI. (2)

It could be shown that for low-frequency resonance oscil-

lation modes, Iρϕtt has a square order of smallness (d/l)2

with respect to Mz , and may be neglected for thin beams,

i.e. SO = 0, or

F = −Mz . (3)

Newton’s Law F = ma written without external forces, for

example, viscous air friction, will give Fz = ρsutt , where
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s(z ) is the current cross-section area. Now we add the

viscosity:

Fz − gut = ρsutt, (4)

where g(z ) is the specific viscosity (N·s/m2). For further

calculations, we assume arbitrarily that for a round rod with

the diameter d(z ) the specific viscosity is proportional to the

diameter g = υd, and let υ = 100 (N·s/m3) (true viscosity

and dependence on diameter are not relevant for demon-

stration purpose), for quartz optical fiber ρ = 2659 kg/m3

and E = 7.87 · 1010 N/m2 [2].
By substituting expressions (2), (3) and s = πd2/4,

I = πd4/64, g = υd for the round cross-section into equa-

tion (4), we get the following oscillation equation

(πd2/4)ρ · utt = −(πE/64) · (d4uz z )z z − υdut . (5)

This is a homogeneous differential equation that is linear in

u(z , t) with variable ( d depends on z ) coefficients. But

these coefficients are real and independent on t, therefore

solutions may be sought for as

u(z , t) = real[A(z ) exp(iωt)], (6)

where
”
real“ means the

”
real part“, A(z ) is the complex

amplitude, ω is the angular frequency. If the complex

amplitude is written as A(z ) = |A(z )| exp(iϕ(z )), then

u(z , t) = |A(z )| cos(ωt + ϕ(z )). For acting forces, the fol-

lowing is similarly meant

g(z , t)= real[F(z ) exp(iωt)] or gV(t)= real[FV exp(iωt)].

Then after substituting A(z ) exp(iωt) instead of u(z , t)
into (5), an ordinary differential equation is derived for the

complex amplitude:

−ω2(πd2/4)ρ · A = −(πE/64)(d4Az z )z z − iωυd · A. (7)

Boundary conditions for (7) at point z = 0: A = 0, Az = 0;

at point z = zV: Az z = 0, (πE/64)(d4Az z )z = (−FV) ac-

cording to (3); with z = z T: A, Az , Az z are continuous, and

(πE/64)(d4Az z)z has a jump (+FT). Equation (7) was

solved numerically using the Runge–Kutta method for a set

of fixed frequencies f = ω/(2π). It has two independent

variables — force amplitudes FV and FT, and two main

dependent variables — AV = A(zV) at zV and AT = A(z T)
at z T.

One of the solutions is shown in Figure 2, a. This

is the curve |A(z )| of resonance amplitude distribution

over the RC length at FV = 1N, FT = 0, f = 32768Hz.

Simultaneously it may be considered that this is the RC

oscillation amplitude module curve under the action of

force with the amplitude FT = K0 ≈ 42.66N with FV = 0,

f = 32768Hz, because the difference between these curves

is not higher than 0.031m/N, which is smaller than the

curve line thickness.

RC dimensions were chosen in such a way that the RC

resonance frequency was equal to the QTF resonance fre-

quency f 0 = 32768, which is demonstrated on amplitude-

frequency curve A1 in Figure 3.
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Figure 3. Calculated amplitude A = |A(zV)| and p =
= imag(ln(A(zV))) phase response of the RC tip to variable

forces with the amplitude FV or FT acting on the tip or drive

point depending on the frequency deviation f − f 0 . A1, p1 —
amplitude and phase at FV = 1N and FT = 0; A2, p2 at FV = 0

and FT = K0 ≈ 42.66N; A3, p3 amplitude and phase of classical

oscillator with the effective mass mV, viscosity coefficient γV and

resonance frequency f 0 with FV = 1N.

Curve A2 looks almost the same — a 10% difference

occurs only with deviation±1000Hz, i.e. RC behaves

alike when exposed to both FV and FT = K0FV, which

is K0 times larger and is applied at z = z T, where the

oscillation amplitude found from the curve in Figure 2, a

is K0 ≈ 42.66 times smaller. Frequency dependences of the

corresponding phases p2 and p1 differ by π rad (with an

accuracy to two decimal places: p2 − p1 = π ± 0.03 rad)
due to the presence of oscillation

”
node“ on the curve in

Figure 2, a.

Effective mass mV of RC oscillations reduced to the RC

tip may be calculated by equating the corresponding kinetic

oscillation energies:

mV =

{

zV
∫

0

ρs(z )|A(z )|2∂z

}

/|A(zV)|2. (8)

The effective viscosity coefficient γV is calculated in the

same way:

γV =

{

zV
∫

0

υd(z )|A(z )|2∂z

}

/|A(zV)|2. (9)

Then, Figure 3 shows the accuracy with which the oscilla-

tion amplitude and phase of the classical oscillator according

to

AV = FV/[mV(ω2
0 − ω2) + iωγV]

coincide with curves A1, p1 for RC. If the effect of FT is also

considered, then the equation of this oscillator is written as

FV − FT/K0 = mVÄV + γVȦV + kVAV, (10)
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where kV = ω2
0mV; sign

”
−“ before FT/K0 considers that

the drive point and RC tip oscillate in phase opposition (p1

and p2 in Figure 3).
It is interesting to note that an absolutely exact

equalityA1 = A2is achieved with f − f 0 = 0. This fact

results from the general symmetry A(x , y, f ) = A(y, x , f )
first found during numerical calculation where A(z , z 1, f )
denotes complex solution A(z ) of equation (7), when an

external force with the amplitude F = 1N and frequency f

acts at point z 1(this is actually the delta function δ(z − z 1),
and A(z , z 1, f ) is Green’s function). Thus, for an equation

of type (7), general
”
reciprocity principle“ first stated in

the 19th century is satisfied. This is the principle where

a single amplitude force acting at point z = y at any

f excites at point z = x precisely the same (complex)
oscillation amplitude as would have been excited at point

z = y by a single amplitude force acting at point z = x .

In this terminology, K0 = |A(zV, zV, f 0)/A(z T, zV, f 0)| and
K0 = |A(zV, zV, f 0)/A(zV, z T, f 0)| coincide. Conformity of

the performed calculations to the reciprocity principle is a

check for their correctness.

Calculated data in Figure 3 shows that RC be-

haves as a single oscillator mode in a broad frequency

band f r ± 500Hz, despite a quite long and thin tip

d2 = 0.01mm. To be clear, the oscillation amplitude and

phase in this frequency band or any point z behave in

the same way as the amplitude and phase of the tip zV

in the curves in Figure 3, but for the amplitude at point

z , the multiplier |A(z )/A(zV)| defined from the curve in

Figure 2, a shall be considered. With a less favorable

selection of RC shape, another RC resonance frequency

could occur near f 0, which would have affected negatively

the sensor response rate [4]. Calculation according to (8)
gives mV = 1.62 · 10−10 kg; effective dynamic stiffness co-

efficient kV = mVω
2
0 = 6.85N/m; viscosity according to (9)

γV = 3.88 · 10−7 N·s/m.

But for further objectives, it is convenient to represent

the oscillator reflecting RC behavior within f r ± 500Hz in

terms of the drive point oscillations z = z T, rather than in

terms of the tip oscillations z = zV . Then equation (10) will

be written as:

FT − K0FV = mTÄT + γTȦT + kTAT, (11)

where mT = K2
0mV; γT = K2

0γV; kT = ω2
0mT; AV = −K0AT.

For explicit statement of the meaning behind the RC

”
amplification“ concept, a practice-related situation is con-

sidered [5,6], where some device
”
X“ supports a strictly

constant oscillation amplitude AT = 1 at point z = z T, for

example, at f 0. If at the tip z = zV, 1FV starts acting

at some frequency f , then, without device
”
X“ it would

induce an additional oscillation amplitude A(z T, zV, f )1FV

at point z T . But to keep the amplitude unchanged at point

z T, device ”
X“ will generate an additional force amplitude

1FT = −[A(z T, zV, f )/A(z T, z T, f )]1FV.

Then, considering the linearity of equation (5), the sum

of additional amplitudes induced by 1FV and 1FT is

exactly equal to 0 at point z T. Calculation with f = f 0

gives 1FT ≈ K1 exp(0.011i)1FV, where the
”
amplification

coefficient“ K1 ≈ 42.63 differs from K0 only by 0.03,

phase shift is about 0.011 rad. Within f 0 ± 500Hz,

K1( f ) = | − A(z T, zV, f )/A(z T, z T, f )| varies by max. 1.5,

and the phase differs by max. 0.003 rad. This is one of

the options to state and demonstrate RC’s mechanical am-

plification and mechanical amplification deviation from K0.

For demonstration, mathematical analysis of equations could

have been performed instead of numerical calculations and

curves, but such approach currently seems superfluous. The

following model will be used to show how the mechanical

amplification works as part of a combined resonance system

(CRS) consisting of RC and QTF connected by drive 7

Figure 1.

3. Complete electromechanical model of
the sensor with mechanical
amplification

Figure 4, a shows a diagram of QTF that has two arms

with effective masses m1 and m2 and coordinates of motion

of their tips x1 and x2 interconnected via a common crystal

portion with effective mass m3 that may rotate about some

point O during bending of electrodes soldered to point O.

For clarity, these rotational shifts are replaced by some

generalized coordinate x3. This simplified QTF diagram

is shown in Figure 4, b, where each of three masses has
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Figure 4. a — three main QTF components and their coordinates

of motion; b — a CRS model where QTF is represented by three

point masses and three coordinates of motion: 1 — QTF arms

with masses m1 and m2 and coordinates x1 and x2; 2 — common

crystal portion of the QTF arms with mass m3 and coordinate x3;

3 — RC as in Figure 2, a; 4 — drive.
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its own viscous friction coefficient γ1, γ2, γ3 and elastic

couplings with stiffness coefficients k1, k2, k3 as shown in

the figure. Both arms are exposed to the same force FP

with equal value, but in opposite directions. The same two

equal and opposite forces act on m3 from m1 and m2. They

are not shown because they sum to zero. Force from the

drive (−FT) acts only on one arm m2. The same force

FT with equal value, but opposite in direction, acts on

RC via the drive as described above, and the force FVis

applied.

Three Newton’s equations of motion for three QTF model

masses in Figure 4, b are:

m2ẍ2 + γ2ẋ2 + k2(x2 − x3) = FP(t) − FT(t),

m1ẍ1 + γ1(̇x)1 + k1(x1 + x3) = FP(t),

m3ẍ3 + γ3ẋ3 + k1(x1 + x3) + k2(x3 − x2) + k3x3 = 0.

(12)
Now equation (7) for RC is combined with system (12) for

QTF using two equalities: equality of oscillation amplitudes

x2 = AT = A(z T) and equality of drive forces FT. Some

calculation results for this CRS are shown in Figure 5.

For calculation of curves in Figure 5, a, m1 = m2 = m0

was assumed, where m0 is the effective mass of

one QTF arm according to equation (8), which

for a constant-section beam is exactly equal to

m0 = 0.25ρV ≈ 5.15 · 10−7 kg, where ρ = 2659 kg/m3 is

the density, V = 0.34 · 0.6 · 3.8 · 10−9 m3 is the arm vol-

ume; k1 = k2 = ω2
0m0; γ1 = γ2 = γ0 = ω0m0/Q, where

the Q factor Q = 10 000; and m3 = 5m0, k3 = (5/9)k2,

γ3 = 30γ1 are chosen arbitrarily. For this CRS, effective

mass

mS = (2m0 + K2
0mV)/4 (13)

and viscosity coefficient

γS = (2γ0 + K2
0γV)/4. (14)

are also calculated.

Calculation results in Figure 5, a show that CRS similar

to RC within f r ± 500Hz behaves as a single oscillator

mode. Oscillation amplitude ratio of any two components

of this oscillator with the specified frequency band is almost

independent on frequency and this ratio is expressed in

terms of K0. Supplementary materials to [5] give an

experimental curve of the RC tip oscillation amplitude and

phase vs. the QTF electrode input voltage frequency. This

curve corresponds to the behavior of A4p4 in Figure 5, a.

Note that a quite accurate coincidence of A7p7 of the clas-

sical oscillator according to A = F/[mS(ω
2
0 − ω2) + iωγS]

at F = K2
0/4N with other CRS oscillation amplitudes and

phases may be justified analytically. Substitution of the

expression for FT from (11) and of x2 = AT into system (12)
provides above-mentioned expressions (13), (14) for mS

and γS. Notwithstanding that the RC effective mass mV is

3200 times smaller than the arm mass m0, K2
0mV in (13)

is not negligibly small any longer: K2
0mV = 0.57m0 . It

is interesting to note that K0 may be easily increased by

several times without changing the RC shape. For this, the

drive attachment point z T shall be only moved closer to RC

bonding point 6 (Figure 1), i.e. z T shall be reduced. Then

the CRS effective mass mS will be several times greater

than the initial QTF effective mass m0/2, i.e. it will turn

out that a small microrod will determine the effective mass

of the whole CRS. Electrical inductance (15) of the sensor

also grows, which will also slow down the sensor response

rate [4]. In terms of the response rate and force sensitivity,

mV and γV shall be decreased and, therefore, the microrod

dimensions shall be reduced. Figure 5, a shows that the

amplitude in the deviation region 1 f = 2200Hz almost

vanishes (A1 ≈ 0.006), and p1 changes by π rad. With

further reduction of the microrod dimensions, this 1 f will

decrease, which will limit the sensor’s working frequency

band. But the decrease in the working band will decrease

the sensor response rate [4], i.e. selection of the optimum

microrod size depends on the final target.

4. Coupling between CRS electrical and
mechanical properties

Figure 6, a shows the equivalent circuit diagram of

QTF that quite accurately describes its electrical prop-

erties within f r ± 500Hz. This circuit together with

equations expressing the coupling between the electrical

circuit parameters and QTF’s mechanical properties were

frequently addressed in the literature [7]. For example,

the inductance L0 is proportional to m0 of one QTF arm:

L0 = m0/(2α
2), where α is the electromechanical coupling

constant. From the experimental L0 = 5100H for QTF used

in [5], α = 7.1 · 10−6 N/V is calculated. Or the variable

voltage generator amplitude UF = FT/(2α) is proportional to
the variable force amplitude FT acting on the QTF arm tip.

These and many other equations may be derived from the

illustrative diagram in Figure 6, b, where two L, R,C circuits

are drawn in the transformer secondary circuit with con-

ditional secondary-to-primary turn ratio n2/n1 = α. These

circuits represent two QTF arms and their inductances,

resistances and capacities are directly expressed by mechan-

ical parameters m1, γ1, 1/k1 and m2, γ2, 1/k2. Horizontal

L, R,C bridge with m3, γ3, 1/k3 represents coupling of

two QTF arms through their common crystal portion,

Figure 4. x1, x2, x3 correspond to the displacements in

Figure 4, but being reduced to the transformer primary

winding, they will mean piezoelectric charges according to

q = αx . Then, current amplitudes will be I = iωq = iωαx .

The transformer secondary circuit diagram was chosen

deliberately. It can be easily shown that the differential

equations describing its behavior exactly coincide with

equations (12) describing the behavior of three point masses

m1, m2, m3 in Figure 4. Just note that FP will be expressed

in (12) in terms of the voltageU on the QTF electrodes

as follows FP = αU . Paper [8] evaluates the magnitude of

α from the piezoelectric modulus d21 = 2.31 · 10−12 C/N

for a quartz crystal. α depends on the shape of the
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curve of oscillation amplitude distribution over the QTF arm

length. Such curve is illustrated in Figure 2, a for RC. If the

oscillation curve shape for each of two QTF arms changes

slightly within f r ± 500Hz, then it may be suggested that

α is constant within these limits, which is implied in the

circuits in Figure 6, b. The model in Figure 6, b probably

will not accurately reflect all QTF behavior aspects when

m1 = m2, k1 = k2, α1 = α2 are not satisfied, but it looks

like the simplest and most reasonable from those models

that would have been included all these parameters in.

This model may be unambiguously calculated using both

analytical and computerized tools.

One of the important results of these calculations is the

conclusion that the electrical behavior of a complex CRS

comes to the same simple equivalent diagram in Figure 6, c

as the diagram in Figure 6, a. In this case, quite accurate

expressions are derived for CRS inductance and resistance

similar to (13) and (14):

LS = (2m0 + K2
0mV)/(4α2), (15)

rS = (2γ0 + K2
0γV)/(4α2). (16)

Though curves A7, p7 in Figure 5 confirm only the efficiency

of equations (13) and (14), and a series of experiments

wasn’t carried out to validate (15) and (16), nevertheless an
increase in CRS inductance measured in a single experiment

was LS/L0 = 1.76, and a calculation using (15) forecast an

increase by 1.6 times. Considering the experiment error,

correspondence of these two quantities is satisfactory.

The second important result is the demonstration of

stable CRS behavior in the case when the equality of QTF
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and RC resonance frequencies is not accurately kept. For

calculation of the curves in Figure 5, b, only one parameter

was modified by 10% compared with the calculation of

the curves in Figure 5, a — m2 = 1.1m0was chosen. This

reduces the QTF resonance frequency by 2.5%, causes

disbalance of two QTF arms and leads to a difference in the

QTF and RC resonance frequencies by 2.5%. In Figure 5, b,

curves A1 − A6 and p1 − p6 have the same meaning as in

Figure 5, a. It can be seen that CRS still behaves as a

single oscillator mode. The amplitude equality of two QTF

arms was maintained with a scale accuracy of 10%, and

the same high resonance oscillation amplitudes of the CRS

components were maintained as in Figure 5, a. However,

due to the small (10%) difference that occurred between

the QTF arm oscillation amplitudes, equations for LS and

rS are now more complicated than (15) and (16). Note

that the result shown in Figure 5 was not obvious a priori

because CRS consists of many resonance components: two

QTF arms plus RC with its microrod. A complex picture

of closely spaced resonance frequencies could occur, or

asymmetry induced by the drive bonded only to one QTF

arm could lead to a great difference in the QTF arm

oscillation amplitudes and currents flowing through the QTF

arms.

It only remains to show that the mechanical amplification

acts not only on RC, but also occurs as an electrical effect

within CRS. In Figure 6, c, it concerns the voltage generator

amplitude equation.

UF = K0FV/(2α). (17)

This generator expresses the CRS’s electrical response to

FV acting on the RC tip. System of equations (12) together

with equation (11) for RC are sufficient to show analytically

how the following expression is derived

U −UF = I
(

iwLS + rS + 1/(iwCS)
)

.

And this equation being an analogue of Ohm’s law for the

right-hand equivalent circuit diagram in Figure 6, c will serve

as justification of this circuit. Expressions for LS, rS,CS and

UF = K0FV/(2α) were derived. Instead of this, we give a

computer-aided calculation of the CRS application proce-

dure as described in [5,6]. This procedure compensates the

parallel capacitance CP (Figure 6) (CP = 0), and the current

I is set to constant frequency and amplitude using a current

generator, which results in constant oscillation amplitudes of

the QTF arms and RC tip during scanning. 1U on the QTF

electrodes in response to 1FV acting on the RC tip serves

as a measured variable.

Displacements x1 and x2 (Figure 4) are denoted by

XP1 and XP2 in case of FP = 1 and FV = 0, and by

XV1 and XV2 in case of FP = 0 and FV = 1. Con-

sidering I = iωα(x1 + x3 + x2 − x3) = iωα(x1 + x2) and

1FP = 1Uα, constancy of 1I = 0 may be written as

1Uα(XP1 + XP2) + 1FV(XV1 + XV2) = 0.
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Figure 7 shows the extent to which the design amplifica-

tion coefficient G = −(XV1 + XV2)/(XP1 + XP2) differs from
K0/2 that corresponds to it in Figure 6, c. The figure also

shows how the ratio GK = A(zV, zV, f )/A(z T, zV, f ) of

the amplitudes at points z = zV and z = z T depends on

frequency for the free RC. The calculations were based on

the solution to equation (7) together with system (12).

5. Evaluation of response rate and noise
characteristics of a
practically-implemented CRS

Now the equivalent diagram in Figure 6, c may be used to

evaluate the response rate and noise characteristics of CRS

as discussed in [5]. Figure 5 and 6 show that within f r ± B ,

where B = 500Hz, the amplitude and phase characteristics

of CRS are qualitatively the same as those of QTF, therefore

the CRS response rate will not differ from that of QTF

according to the philosophy of [4], i.e. the response time is

limited to τ > 1/(2πB) = 0.3ms.

Force noise characteristics are defined by the viscous

friction coefficients according to (1), but in [5] focus was

made on the fact that the Johnson.Nyquist noise of the rS
resistor in Figure 6, c was the electrical expression of the

force noise. Using (16), it may be immediately evaluated

that CRS in the circuit diagram in Figure 6, c has the voltage

noise threshold DU =
√
4KBTrS (V/

√
Hz) that according

to (17) finally defines the sensor force noise threshold DFV:

K0DFV/(2α) = DU, i.e.

DFV =
√

4KBTrS · 2α/K0. (18)

Substitution of experimental data from [5] rS = 900 k�

and K0 = 33 at T = 300K gives DFV = 0.053 pN/
√
Hz,

which is by an order of magnitude lower than
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DF = 0.62 pN/
√
Hz from [3] (in [5], similar QTFs with

DF =
√
4KBTr0 · 2α = 0.58 pN/

√
Hz were used, where in

room atmosphere r0 = 100 k�).
Let’s get back to (16). If we break off the microrod

tip, then rS will drop to rS = 200 k�. This is an evidence

that the
”
viscosity“ of bonding 3 in Figure 1 increases

r0 = 100 k� by maximum two times. Therefore, the main

contribution in equation (16) is made by K2
0γV and after

substitution of this main part of (16) into (18) we get

DFV =
√
4KB TγV, which is equivalent to (1). Moreover,

according to equation (9), only a part of the microrod that

oscillates with the largest amplitude as shown on curve,

Figure 2, a, makes the main contribution to γV . The length

of this part has a scale of 0.5mm and is comparable

with the cantilever length in the classical scanning probe

microscopy (SPM), therefore the obtained noise threshold

DFV = 0.053 pN/
√
Hz has the same scale as the cantilever

force noise in room atmosphere [5].

6. Mechanical amplification options

The above-mentioned philosophy and computational

method may be used for developing other force sensor

designs. Figure 8 shows several options.

Figure 8, a shows the way how the mechanical ampli-

fication could be used as part of the
”
qPlus“ sensor [9].

Advantages offered by the
”
qPlus“ sensor design, tiny

dimensions and frequency modulation technique show up

in solution of a wide range of SPM problems. Neverthe-

less, commercially-available cantilevers are by an order of

magnitude smaller, therefore have lower force noise.

When arm 1 of the
”
qPlus“ sensor is connect by light

rigid push drive 2 to cantilever 3 in such a way that the

distance from the cantilever and push drive to cantilever

1 mm
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2
34
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Figure 8. Mechanical amplification applications. a — as part

of the
”
qPlus“ sensor: 1 — the

”
qPlus sensor; 2 — the push

drive; 3 — the commercially available cantilever with a probe (not
to scale); 4 — cantilever chip. b — for operation with a rigid

capillary probe: 1 — the capillary probe; 2 — the QTF arms; 3 —
the drive; 4 — the sample, a Gd piece. c — amplification for

longitudinal oscillations: 1 — PR; 2 — the amplifier body; 3 —
the amplifier tip with the probe.

chip 4 is ≈ 6 times shorter than the cantilever length, then a

≈ 10 -fold mechanical amplification of the force signal takes

place. However, the other sensor properties, including the

output force noise, will not much change and the signal-to-

noise ratio will be up to 10 times better. Equality of the

natural resonance frequencies of the cantilever and sensor is

not required.

Paper [10] describes application of a conical quartz

capillary with micron inlet as a probe. This capillary has

a significant cone angle (Figure 8, b), therefore it has high

mechanical rigidity and mass. The structure in Figure 8, b

has no mechanical amplifier in the form of RC. Here, drive 3

is bonded to the center of the QTF arm, rather than to the

QTF arm tip, and the QTF arm tip oscillation amplitude

turns out to be n ≈ 3 times larger than the capillary bending

oscillation amplitude AV in the capillary tip. Here, the

mechanical amplification idea works backwards. Though,

the force sensitivity formally decreases by n ≈ 3 times,

negative effect of the capillary rigidity on PR performance

is reduced quadratically by n2 ≈ 10 times.

To increase the scanning rate, longitudinal oscillations

may be used instead of bending oscillations when choosing

the resonance frequency in the megahertz range. Figure 8, c

shows a possible mechanical force amplification diagram in

this case. The shape of mechanical amplifier body 2 shall

be chosen such that the longitudinal resonance oscillation

amplitude AV of amplifier tip 3 is ≈ 10 times lager than the

oscillation amplitude AT of PR 1. Amplifier 2 here plays a

role of matching the microscopic dimensions and properties

of the probe with those of PR.

Conclusion

When PR is used to measure the force acting on the

probe tip in SPM, provisions can be made to ensure that

AT of PR differs from AV of the probe tip by several times.

Then K = AV/AT becomes an additional design factor of

the force sensor. By ensuring K ≫ 1, the force signal may

be increased by K times and the output signal-to-noise ratio

may be improved at the same time. In case when K ≪ 1,

then, by loosing the sensitivity by 1/K times, the negative

effect of the probe system rigidity or mass on PR may

be decreased quadratically by 1/K2 times. When using a

mechanical force amplifier in the form of a resonant console,

then the amplification turns out to be low-noise and the

sensor’s signal-to-noise ratio may be improved by an order

of magnitude. Finally, the force sensitivity achieves the

level of the classical optical circuit in SPM, i.e. a sensor

(Figure 1, c) with dimensions in the scale of 10mm capable

of operating in vacuum and at cryogenic temperatures

replaces laser, two-element segmented photodiode and

alignment mechanism. The sensor releases heat power less

than 1 nW.
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