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A computer algebra application for the solution of the ray tracing problem
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and a configuration where the first mirror is a spheroid. The obtained exact solutions were analyzed using symbolic

algebra systems, which, in some cases, enables us to calculate higher order aberrations, such as all fifth-order
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Introduction

Due to a significant progress in multilayer mirror coating

technology (see, for example, the tables with record-

breaking reflection coefficients in [1,2]), reflective X-ray

optics are gaining ground, ranging from applications in X-

ray microscopy and lithography to X-ray astronomy. X-

ray optical configurations have their own particularities.

Even for record-breaking reflection coefficients of multilayer

mirrors in the X-ray wavelength range such as 72%

at λ = 11.2 nm, effective radiation intensity drops rapidly

(exponentially) as the number of mirrors increases. Thus,

the number of employed mirrors is strictly limited. Another

feature of X-ray optics is a high level of requirements for

permissible mirror surface deviations from the specified

profile due to short operating wavelength, for example,

shorter than λ/14 by the Marechal criterion. Fabrication and

metrology of mirrors with large deviations from a spherical

shape at this level require huge expenditures and present

severe difficulties [3]. Finally, note that multilayer mirrors

for normal incidence optics do not permit large incidence

angle variations because of the need to satisfy the Bragg-

Wulff condition.

Thus, unlike optical configurations for wavelengths up

to deep ultraviolet, mirror X-ray configurations in most

cases have a relatively simple configuration. This may be

illustrated by a double-mirror Schwarzschild configuration

that uses two spherical mirrors in its simplest version. In

such situation from a theoretical standpoint, it is abso-

lutely appropriate to ask the question which properties of

simple mirror systems can be explicitly described without

using numerical simulations. Analytical calculations of

the Schwarzschild configuration properties were performed

in [4–7] for concentric and nonconcentric configurations.

These studies determined third order and fifth order spher-

ical aberrations, also, third order Seidel aberrations were

obtained at aplanatic points. Study [7] proposes using the

smallest diameter of the focal spot on the optical axis as

design merit function.

The purpose of this work is to develop a systematic

approach to the analysis of simple mirror configurations

within raytracing optics based on the following observations:

• during raytracing, the point of intersection between a

ray and a given quadric surface may be found explicitly;

• tracing uses recursive definition of image maps describ-

ing the transfer of beam configurations between surfaces;

• computer algebra allows us to work with bulky expres-

sions which otherwise we would not be able to processed

manually.

Thus, for a low number of mirrors, for example, one

or two, explicit expressions for an optical configuration of

rays reflected from the object plane to the image plane can

be derived. Expressions of this kind may be further used

to evaluate the accuracy of numerical tracing methods, to

analyze the dependence of Seidel aberrations on optical

configuration parameters, for preliminary improvement of

optical configurations, et cetera.

Section 1 will describe in detail the method that we

used for analytical raytracing. Section 2 will address the

well-known Schwarzschild double-mirror configuration with

spherical mirrors, high order aberrations will be calculated,

including the fifth order ones, and convergence of paraxial

expansion to the exact solution will be discussed. Section 3

will deal with the Schwarzschild configuration where the

first mirror is a spheroid, and an attempt will be made

to evaluate whether the ensuing increase in the number

of degrees of freedom for optical configuration assignment

makes it possible to improve the optical imaging quality.
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1. An analytical ray tracing method

It is known that the problem of raytracing through an

optical system within raytracing optics reduces to sequential

calculation of the condition for a ray to intersect an optical

surface, and to determining the reflected or refracted ray

direction. For convenience, an optical ray configuration

will be considered using the Hamiltonian formalism (see
§18 of [8]). It is always implied that the refractive

index of a medium is equal to 1. Suppose the object

plane is parallel to the xy plane and intersects the z

axis at point z Ob j . Assume that the analyzed ray goes

from point r(0) = (x , y, z Ob j) in a direction set by a unit

vector (directing vector) d̂(0) = (p, q,
√

1− p2 − q2) (ray
direction in spherical coordinates can be also written as

d̂(0) = (sinα cos β, sinα sin β, cosα)). Note that the ray

configuration is fully defined by the vectorω = (x , y, p, q).
The ray itself up to the point of intersection with the

following optical surface is described as r(0) + td̂(0).

For tracing from the optical surface i to the optical

surface i + 1 , it is necessary to: a) calculate the point

of intersection r(i+1) of the ray r(i) + td̂(i) with the next

optical surface, b) for a ray reflected from a mirror calculate

the reflected ray direction d̂(i+1). Suppose that the optical

surface equation is given implicitly as F(r) = 0, where

r = (x , y, z ). Then the point of intersection between the

ray and surface is found using solution t∗ (not necessarily
the only one) to

F(r(i) + t∗d̂(i)) = 0, (1)

as r(i+1) = r(i) + t∗d̂(i). To find the reflected ray direction

using

d̂(i+1) = d̂(i) − 2〈d̂(i), n̂(i+1)〉 n̂(i+1) (2)

, normal direction n̂(i+1) to the mirror at point r(i+1) shall be

known and is calculated as the gradient of F(x , y, z ). Note
that both d̂(i) and n̂(i) are unit vectors.

In some cases equation (1) defining the point of intersec-

tion can be solved explicitly. Specifically, explicit solutions

are possible at least theoretically provided that F(x , y, z )
is a polynomial not higher than the fourth degree. Since

the explicit expressions for solutions to the fourth degree

equations are extremely cumbersome, we currently limit

ourselves to addressing the following surface of rotation

about the z axis not higher than the second order:

• spherical surface

F(x , y, z ) = x2 + y2 + z 2 − R2,

• spheroid

F(x , y, z ) =
x2

a2
+

y2

a2
+

z 2

b2
− 1,

• two-sheeted hyperboloid of revolution

F(x , y, z ) =
x2

a2
+

y2

a2
− z 2

b2
+ 1,

• spherical paraboloid

F(x , y, z ) =
x2

a2
+

y2

a2
− 2z .

Note that the above mentioned forms of optical surfaces

may be reduced to a more convenient form, if desired, by

shifting the coordinate system. Another consideration in

favor of limiting the order of optical surface is reduction of

uncertainty induced, in the case of a high order surface, by

the need to choose one of several solutions to equation (1).

Raytracing is generally performed from an object plane

to an image plane that is also assumed parallel to the xy

plane and intersecting the z axis at point z Img . Points of

intersection with mirrors and reflected ray directions are

calculated recursively. Assuming that the optical surface

with index i is the last, from which the ray is reflected

before intersecting the image plane, the following expression

is derived for point r(Img) where the ray intersects the image

plane:

r(Img) = r(i) +
z Img − r

(i)
z

d̂
(i)
z

d̂(i).

Here, r
(i)
z and d̂

(i)
z denote the r(i) and d̂(i) projections

to the z axis. Note that d̂(Img) of the ray intersecting

the image plane coincides with d̂(i) of the beam reflected

from the last optical surface. Since the optical ray

configuration is described by coordinates of the point of

intersection between the ray and the(P, Q) plane on the x

and y axes, we get a description of the optical image

�(x , y, p, q) : R4 −→ R
4 as consisting of four functions

X(x , y, p, q), Y (x , y, p, q), P(x , y, p, q), Q(x , y, p, q). For
axisymmetric systems, image �(x , y, p, q) is invariant with

respect to rotations about the z axis. Moreover, since the

given system is Hamiltonian, the phase volume is preserved.

Both requirements impose significant limitations on possible

optical images. Note that, when calculating lens systems, all

remarks concerning the calculation of points of intersection

between the ray and optical surfaces using equation (1)
remain valid and reflection law (2) shall be replaced with

Snell’s law. Expressions derived for lens systems in this case

are more cumbersome due to a higher algebraic complexity

of the Snell equation and the presence of two optical

surfaces in a single lens.

Despite an apparent simplicity of the above-mentioned

approach, the explicit expressions for the optical configu-

ration of the traced ray become so cumbersome after one

to two steps that manual processing is virtually impossible

any longer. For such expressions, computer algebra systems

such as Mathematica [9] (used for this work), Maple, and

recently developed Symbolica may be used. Some examples

of using such systems are discussed below. The final section

will contain conclusions and generalization of the method

used in this work for general mirrors.
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Figure 1. Schwarzschild configuration with two spherical mirrors. Radius of the first concave mirror R1 = 137.5mm, radius of the

second convex mirror R2 = 24mm. Center-to-center distance between the first and second mirrors m = 11.5mm. The object plane

z Ob j = −37.5mm is cyan, the image plane z Ob j ≈ 211.8077mm is purple.

2. Schwarzschild configuration with
spherical mirrors

Schwarzschild configuration (Figure 1) with two spherical

mirrors is one of the best understood optical mirror systems

in the X-ray optics.

To simplify our configuration, the first concave mirror is

assumed to be centered at the origin of coordinates. For

simplicity, we follow [7] and assume that the radius of the

second convex mirror is equal to 1, while the radius of the

first concave mirror is set as a free parameter R. Since

the analyzed configuration is not necessarily concentric,

the center of the second mirror is on the z axis at point

z = m. Note that computer algebra can be used to give

explicit expression for an optical image. Due to their

bulkiness, expressions for r
(Img)
x , r

(Img)
y , r

(Img)
z and d̂

(Img)
x ,

d̂
(Img)
y , d̂

(Img)
z were stored as 50KB and 83KB .m ASCII

text files (Mathematica batch file). At this point, it seems

that such explicit expressions may be used only to check

the calculation accuracy of numerically simulated optical

configurations. Nevertheless, for design of optical config-

urations of X-ray lithography projection lenses, approaches

were proposed [10,11] where configurations with spherical

mirrors were used for rough estimate of the optical and

design parameter space. Utilized as initial conditions for

further improvement using aspherical corrections, they may

make it possible, due to the smallness of corrections, to

determine such parameters as mirror sizes and positions.

One may hope that exact solutions will provide better

evaluation of the optical image quality for such initial

configurations.

To get more detailed information, we resort to Tay-

lor’s series expansion of the optical image ω(x , y, p, q)
in(x , y, p, q):

�(x , y, p, q)=
∞
∑

nx =0

∞
∑

ny =0

∞
∑

np=0

∞
∑

nq=0

�(nx , ny , np, nq)x
nx yny pnp qnq ,

(4)
where

�(nx , ny , np, nq) =
1

nx !ny !np!nq!

∂nx

∂xnx

∂ny

∂yny

∂np

∂ pnp

∂nq

∂qnq

×�(x , y, p, q)|(x ,y,p,q)=0.

Since, due to the axial symmetry, all even-degree terms

are equal to zero, the first order terms will be calculated

first. Paraxial focus position with respect to z can be found

by setting, for example, the derivative of X(x , y, p, q) with

respect to p to zero and getting the following expression:

z parax=
2mR+2m2R−4mz Ob j−4m2z Ob j+Rz Ob j+2mRz Ob j

R+2mR−2z Ob j−4mz Ob j +2Rz Ob j

.

(5)
Then the first order derivative matrix at point

(x , y, p, q) = 0 will be given by









∂x X ∂y X ∂pX ∂qX

∂xY ∂yY ∂pY ∂qY

∂x P ∂y P ∂pP ∂qP

∂x Q ∂y Q ∂pQ ∂qQ









=









1
a

0 0 0

0 1
a

0 0

b 0 a 0

0 b 0 a









+1z









b 0 a 0

0 b 0 a

0 0 0 0

0 0 0 0









, (6)

where a and b are defined as

a =
R + 2mR − 2z Ob j − 4mz Ob j + 2Rz Ob j

R
,

b =
2 + 4m − 2R

R
.

1z denotes the distance from the paraxial focus to the

image plane 1z = z − z parax . Note that the foregoing

equations can be easily derived using matrix optics [12],
while to calculate higher order aberrations, it becomes

necessary to use computer algebra.

For the Schwarzschild configuration with spherical mir-

rors, calculation of derivatives using Mathematica on Intel

Core i5-1235U 16GB computer takes several minutes,

while its takes several hours to calculate all fifth order

derivatives. Therefore, higher order derivatives up to the

eleventh order have been calculated only for spherical

aberration and distortion, because calculation complexity

grows very rapidly as the order of derivatives increases. For

some eleventh order aberrations, calculation takes several

hours.
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Since the Schwarzschild configuration is axisymmetric

and invariant with respect to reflections, all allowable third

order derivatives are described by twelve real parameters. In

addition, �(x , y, p, q) preserves the phase volume, which

reduces the number of free parameters to six. Five of

them define components X(x , y, p, q) and Y (x , y, p, q) and
correspond to the Seidel aberrations. Since general ex-

pressions for the nonconcentric Schwarzschild configuration

turn out to be too bulky, we limit ourselves to giving here

expressions for spherical aberration

A = −
(R − 1)z 2

Ob j

R2 f (R, z Ob j)

×
(

R2(z Ob j + 1)2 − R(2 + 3z Ob j)z Ob j + z 2
Ob j

)

,

coma

B =
3(R − 1)z Ob j

R2 f (R, z Ob j)

×
(

R2(z Ob j + 1)2 − R(2 + 3z Ob j)z Ob j + z 2
Ob j

)

,

field curvature C

C = − R − 1

R2 f (R, z Ob j)
(R2(1 + 4z Ob j + 2z 2

Ob j)

−2R(2 + 3z Ob j)z Ob j + 2z 2
Ob j),

astigmatism D

D = − R − 1

R2 f (R, z Ob j)

×
(

R2(z Ob j + 1)2 − R(2 + 3z Ob j)z Ob j + z 2
Ob j

)

,

and distortion E

E = − R − 1

R2 f (R, z Ob j)

×
(

R(2 + 3z Ob j) − R2(z Ob j + 2) − z Ob j

)

,

in the paraxial focus plane for the concentric con-

figuration m = 0. In the foregoing expression

f (R, z Ob j) = (R − 2z Ob j + 2Rz Ob j). From the expression

for spherical aberration, well known conditions for aplanatic

points are obtained. These conditions also generally turn out

to be very bulky and therefore are not given here. Note

that it follows from the foregoing relations that, for the

concentric Schwarzschild configuration at aplanatic points,

z
(+)
Ob = − R

R +
√

R − 1
,

z
(−)
Ob = − R

R −
√

R − 1
,

spherical aberration, coma and astigmatism are simultane-

ously equal to zero, and for field curvature and distortion,

we get

C(+) = − (R − 1)(R +
√

R − 1)

R(R −
√

R − 1)
,

C(−) = − (R − 1)(R −
√

R − 1)

R(R +
√

R − 1)
,

and

D(+) = − (R − 1)(R +
√

R − 1)2

R2(R −
√

R − 1)
,

D(−) = − (R − 1)(R −
√

R − 1)2

R2(R +
√

R − 1)
.

Expressions for the fifth order spherical aberration are also

given for reference

A(+) =
3(R − 1)3R2

4(R −
√

R − 1)(R +
√

R − 1)5
,

A(−) =
3(R − 1)3R2

4(R −
√

R − 1)5(R +
√

R − 1)
.

To evaluate the degree of applicability of power series ex-

pansions when addressing optical configurations, numerical

results obtained from ray tracing which use explicit expres-

sions for an optical image are compared with approximate

calculations, including aberrations higher than the third

order. Results of ray tracing using explicit expressions in

turn were checked in Zemax. Figure 2 shows the results of

spherical aberration and distortion comparison.

It can be seen from the comparison with the exact

solution that, as the approximation order increases, the

difference between the exact and approximate solutions

decreases. For example, for the spherical aberration shown

on the left in Figure 2, agreement between the exact and

approximate solutions seems to be quite good up to the

aperture approximately equal to 0.4− 0.5 for the fifth and

seventh orders. It is expected that, with systematic increase

in the order, approximations will converge to the exact

solution because Figure 3 shows that the difference between

exact and approximate solutions apparently decreases as the

approximation order increases from the third to eleventh.

Though the order of calculated aberrations is too low to

draw conclusions about the convergence rate and behavior

of the corresponding Taylor’s power series (according to

the experience of power series analysis in statistical physics,

approximately one hundred coefficients are required for

this), nevertheless, it seems that, at least in the studied

configuration, this series behaves quite well.

Summing up the study of the Schwarzschild configuration

with spherical mirrors, it can be said that computer algebra

methods provide an exhaustive analysis of this configuration

due to its simplicity. At the same time, the space of possible

parameters is too limited to allow for comprehensive design.

The nonconcentric configuration with spherical mirrors and

fixed magnification allows for only one free parameter —
center-to-center distance between mirrors. Another degree

of freedom for the configuration design may be introduced

using a spheroid instead of a sphere for the first concave

mirror, which will be done in Section 3.
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Figure 2. Comparison of exact ray tracing with third, fifth and seventh order approximations for the Schwarzschild configuration with

the same parameters as in Figure 1. For clarity, coordinates are normalized with respect to the radius of the second mirror. Comparison

for rays coming from a point on the z axis with directions on the xz plane, i.e. with the initial configuration (0, 0, p, 0), is shown on the

left. Comparison for rays parallel to the z axis from a point on the x axis, i.e. with the initial configuration (x, 0, 0, 0), is shown on the

right. To facilitate the comparison, a part corresponding to linear increase was subtracted from the exact solution so that only nonlinear

distortion can be seen
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Figure 3. Numerical difference between exact ray tracing and approximations up to the third, fifth, seventh, ninth and eleventh orders for

the Schwarzschild configuration with the same parameters as in Figure 1. Unlike Figure 2, discrepancy between the exact and approximate

solutions is shown. For clarity, coordinates are normalized with respect to the radius of the second mirror. Results for rays going from a

point on the z axis with directions on the xz plane, i.e. with the initial configuration (0, 0, p, 0), are shown on the left. Results for rays

parallel to the z axis from a point on the x axis, i.e. with the initial configuration (x, 0, 0, 0), are shown on the right.

3. Schwarzschild configuration with one
spherical mirror and one spheroid
mirror

Since explicit ray tracing is also possible, for example,

for spheroids, a double-mirror Schwarzschild configuration

was examined where the first concave mirror is a spheroid

with a and b. Despite a seemingly minor change in the

optical configuration, the problem complexity (in terms of

the amount of calculation) grows more than by an order of

magnitude. Thus, the size of ASCII text files with exact

expressions for r
(Img)
x , r

(Img)
y , r

(Img)
z and d̂

(Img)
x , d̂

(Img)
y , d̂

(Img)
z

is now 1091KB and 657 KB.

Due to the growing complexity of expressions, at this

point we limit ourselves to the calculation of first order

quantities such as paraxial focus,

z parax =
h(a, b, m, z Ob j)

g(a, b, m, z Ob j)

first derivative matrix, third order aberrations, calculation of

which took several hours. The first derivative matrix has the

same form as in equation (6), the only difference being that

a and b are given this time as

a =
a2

g(a, b, m, z Ob j)
,
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b = 2 +
2b(2m − 2b + 1)

a2
.

In the foregoing equations, g(a, b, m, z Ob j) and

h(a, b, m, z Ob j) are polynomials in the variablesa , b, m,

z Ob j given by

g(a, b, m, z Ob j) =2b(−1 + 2b − 2m)(b − z Ob j)

+a2(1− 4b + 2m + 2z Ob j),

and

h(a, b, m, z Ob j) =2b(b + 2bm − 2m(1 + m))(b − z Ob j)

+a2(2m2 − 2b(1 + 2m) + z Ob j

+2m(1 + z Ob j)).

explicit expressions for the third order aberrations are

so bulky that it was considered unsuitable to give them

here. Nevertheless, calculation results for the Schwarzschild

configuration with spherical mirrors and configurations

with one elliptical mirror were grouped in the form of

a Mathematica batch and are publicly available at gitflic

website.

When dealing with optical configurations with a fixed

magnification M, additionally applying the aplanatic condi-

tion, then the space of solutions will be two-dimensional in

contrast to the Schwarzschild configuration with concentric

spherical mirrors. As an example, a configuration with

tenfold magnification was evaluated by varying a and m. m

was varied from −1 to 1, while a was varied from R∗ − 1

to R∗ + 1, where

R∗ =
3 + 2M + 3M2 − (M − 1)

√
5 + 6M + 5M2

2(1 + 2M + M2)

is the radius corresponding to the tenfold magnification

in the concentric Schwarzschild configuration with spherical

mirrors. Figure 4 shows the variation of positions of the

object plane and paraxial focus plane on a and m. b is

calculated in this case from the aplanatic condition and fixed

magnification.

To evaluate the optical configuration quality, correspond-

ing variations of the third order aberrations as shown in

Figure 5 were also calculated. The figure shows that

the aplanatic point of the concentric configuration is the

only one where coefficients of simultaneously three third

order aberrations disappear — spherical aberration, coma

and astigmatism. In addition, it can be seen that the

field curvature and distortion coefficients vary differently in

different directions when a and m are varied, so there is

no obvious configuration other than concentric where both

coefficients are optimal. Thus, for further optimization of

the Schwarzschild configuration, surfaces with order higher

than the second one have to be considered.

Conclusions

The study has shown that simple optical configurations

using mirrors described by second order surfaces can be

analyzed in detail using software packages for symbolic

computation. For the Schwarzschild configuration with

spherical mirrors, all aberrations up to the fifth order,

including, and partially some aberrations up to the eleventh

order have been determined. Numerical simulation has been

used to show that the approximate solutions adequately

converged to the exact solutions, holding out a hope of

extending the scope of application of paraxial expansions

provided that we would be in position to calculate higher

orders. Note that the approach used in this work is also

applicable to the review of optical lens configurations. For

chromatic aberration calculation, the aberration calculation

procedure based on Taylor’s series expansions also needs to

include a wavelength dependence.

The concentric Schwarzschild configuration is known to

permit two aplanatic configurations or fixed magnification,

which considerably limits the number of allowable optical

configurations. The number of degrees of freedom may

be increased by using nonconcentric configurations and

replacing the first spherical mirror by a spheroid. For

such systems, third order aberrations were calculated and

the effects of mirror center-to-center distance variation and

deviation from spherical shape were investigated.

In this case, it turned out that an increase in the number

of degrees of freedom didn’t give any significant results be-

cause coma and astigmatism also disappear at the aplanatic

points of the concentric Schwarzschild configuration. It

is commonly known that high order aspherical corrections

are used in practice to improve the image quality in the

Schwarzschild configuration. Therefore, it is reasonable

to ask whether the approach used in the work may be

extended to mirrors with an order higher than the second

one.

As noted in Section 1, explicit ray tracing, from theo-

retical standpoint, may be performed only for surface not

higher than the fourth order. Thus, the approach addressed

in the work will not be generally applicable. In addition, the

approach based on applicability of explicit solutions turns

out to be quite wasteful in terms of computation, because,

in the analysis based on the consideration of aberrations,

albeit of very high order, we use only a small part of

all available information about solutions, i.e. some limited

number of derivatives. Nevertheless, an alternative approach

is possible, which will be described here only in broad terms

and considered in greater detail in next publications. It is

based on two observations: first, matrix optics that describes

first order effects may be generalized so that it includes

arbitrary order aberrations, second, for individual mirrors,

high order aberrations may be determined by calculating

derivatives of implicit functions.

Note that extensions of the matrix approach in the

electron and ion optics for calculation of second order aber-

rations were proposed as early as in the 1960s (see [13,14]),
however, as far as we know, this approach was not

generalized and systematized. The developed generalization

proposes to describe an optical image map from one plane

to another using the so-called matrix representation of the
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group of formal diffeomorphisms where a composition of

images is represented by means of matrix multiplication

(for 1D case, such a representation was given in [15]). The
computation of an optical scheme can be performed in this

case by determining aberrations of the optical image map

from one plane to another, where the planes are properly

arranged between the mirrors, and constructing the resulting

image map from the object plane to the image plane as a

recursively determined composition of image maps.

Finally, note that the representation of the optical image

map in the form of a series expansion, such as (4) can

be also used to evaluate the point spread function, given

the numerical aperture, as it was done in [7]. However, in

contrast to the mentioned work, the point spread function
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in our case can be also calculated in off-center position in

dependence on the field coordinate. This aspect is partic-

ularly important in view of the fact that the Schwarzschild

type configurations have nonzero obscuration.
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