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A computer algebra application for the solution of the ray tracing problem
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For X-ray optics with mirrors described by second-order surfaces, raytracing can be performed explicitly. Two
types of the Schwarzschild configuration are considered — a configuration with nonconcentric spherical mirrors
and a configuration where the first mirror is a spheroid. The obtained exact solutions were analyzed using symbolic
algebra systems, which, in some cases, enables us to calculate higher order aberrations, such as all fifth-order
aberrations. For the Schwarzschild scheme with spherical mirrors, it was shown that the approximating solutions
converge well to the exact ones. For the scheme with one elliptical mirror, we caclulated the third-order aberrations
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Introduction

Due to a significant progress in multilayer mirror coating
technology (see, for example, the tables with record-
breaking reflection coefficients in [1,2]), reflective X-ray
optics are gaining ground, ranging from applications in X-
ray microscopy and lithography to X-ray astronomy. X-
ray optical configurations have their own particularities.
Even for record-breaking reflection coefficients of multilayer
mirrors in the X-ray wavelength range such as 72%
at 1 = 11.2nm, effective radiation intensity drops rapidly
(exponentially) as the number of mirrors increases. Thus,
the number of employed mirrors is strictly limited. Another
feature of X-ray optics is a high level of requirements for
permissible mirror surface deviations from the specified
profile due to short operating wavelength, for example,
shorter than 1/14 by the Marechal criterion. Fabrication and
metrology of mirrors with large deviations from a spherical
shape at this level require huge expenditures and present
severe difficulties [3]. Finally, note that multilayer mirrors
for normal incidence optics do not permit large incidence
angle variations because of the need to satisfy the Bragg-
Waulff condition.

Thus, unlike optical configurations for wavelengths up
to deep ultraviolet, mirror X-ray configurations in most
cases have a relatively simple configuration. This may be
illustrated by a double-mirror Schwarzschild configuration
that uses two spherical mirrors in its simplest version. In
such situation from a theoretical standpoint, it is abso-
lutely appropriate to ask the question which properties of
simple mirror systems can be explicitly described without
using numerical simulations. Analytical calculations of
the Schwarzschild configuration properties were performed
in [4-7] for concentric and nonconcentric configurations.
These studies determined third order and fifth order spher-

ical aberrations, also, third order Seidel aberrations were
obtained at aplanatic points. Study [7] proposes using the
smallest diameter of the focal spot on the optical axis as
design merit function.

The purpose of this work is to develop a systematic
approach to the analysis of simple mirror configurations
within raytracing optics based on the following observations:

e during raytracing, the point of intersection between a
ray and a given quadric surface may be found explicitly;

e tracing uses recursive definition of image maps describ-
ing the transfer of beam configurations between surfaces;

e computer algebra allows us to work with bulky expres-
sions which otherwise we would not be able to processed
manually.

Thus, for a low number of mirrors, for example, one
or two, explicit expressions for an optical configuration of
rays reflected from the object plane to the image plane can
be derived. Expressions of this kind may be further used
to evaluate the accuracy of numerical tracing methods, to
analyze the dependence of Seidel aberrations on optical
configuration parameters, for preliminary improvement of
optical configurations, et cetera.

Section 1 will describe in detail the method that we
used for analytical raytracing. Section 2 will address the
well-known Schwarzschild double-mirror configuration with
spherical mirrors, high order aberrations will be calculated,
including the fifth order ones, and convergence of paraxial
expansion to the exact solution will be discussed. Section 3
will deal with the Schwarzschild configuration where the
first mirror is a spheroid, and an attempt will be made
to evaluate whether the ensuing increase in the number
of degrees of freedom for optical configuration assignment
makes it possible to improve the optical imaging quality.
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1. An analytical ray tracing method

It is known that the problem of raytracing through an
optical system within raytracing optics reduces to sequential
calculation of the condition for a ray to intersect an optical
surface, and to determining the reflected or refracted ray
direction. For convenience, an optical ray configuration
will be considered using the Hamiltonian formalism (see
§18 of [8]). It is always implied that the refractive
index of a medium is equal to 1. Suppose the object
plane is parallel to the xy plane and intersects the z
axis at point zpp;. Assume that the analyzed ray goes
from point r®) = (x,y, zpp;) in a direction set by a unit
vector (directing vector) d© = (p, g, /1 — p? — ¢?) (ray
direction in spherical coordinates can be also written as
d® = (sinacosp, sinasinf, cosa)). Note that the ray
configuration is fully defined by the vectorw = (x,y, p, q).
The ray itself up to the point of intersection with the
following optical surface is described as r® + rd(©).

For tracing from the optical surface i to the optical
surface i +1 , it is necessary to: a) calculate the point
of intersection r*!) of the ray r() +rd) with the next
optical surface, b) for a ray reflected from a mirror calculate
the reflected ray direction d“+!). Suppose that the optical
surface equation is given implicitly as F(r) =0, where
r = (x,y,z). Then the point of intersection between the
ray and surface is found using solution #* (not necessarily
the only one) to

F(r) 4+ +d") =0, (1)

as ri 1) = rl) 4 1*d®). To find the reflected ray direction
using
4+ — g _ 2<&(i), ﬁ<i+1)> al+y (2)

, normal direction n(*!) to the mirror at point r'*) shall be
known and is calculated as the gradient of F(x, y, z). Note
that both d) and n(") are unit vectors.

In some cases equation (1) defining the point of intersec-
tion can be solved explicitly. Specifically, explicit solutions
are possible at least theoretically provided that F(x,y, z)
is a polynomial not higher than the fourth degree. Since
the explicit expressions for solutions to the fourth degree
equations are extremely cumbersome, we currently limit
ourselves to addressing the following surface of rotation
about the z axis not higher than the second order:

e spherical surface

F(X,y,Z) :x2+y2+22 _RZ’

e spheroid
X2 2 2
F(.x,y,z):F—FF‘i-ﬁ—l,
e two-sheeted hyperboloid of revolution
2 2 2
X y Z
F(X,y,Z):?‘F;—ﬁ‘f'l,
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e spherical paraboloid

2 y2
F(x,y,z)=;+;—2z.

Note that the above mentioned forms of optical surfaces
may be reduced to a more convenient form, if desired, by
shifting the coordinate system. Another consideration in
favor of limiting the order of optical surface is reduction of
uncertainty induced, in the case of a high order surface, by
the need to choose one of several solutions to equation (1).

Raytracing is generally performed from an object plane
to an image plane that is also assumed parallel to the xy
plane and intersecting the z axis at point z;,,. Points of
intersection with mirrors and reflected ray directions are
calculated recursively. Assuming that the optical surface
with index i is the last, from which the ray is reflected
before intersecting the image plane, the following expression
is derived for point r””¢) where the ray intersects the image
plane:

(M)
pUme) — i) 4 ZIms — Tz 40

0

Here, ') and d denote the r® and d¥) projections
to the z axis. Note that d/”¢) of the ray intersecting
the image plane coincides with d(¥) of the beam reflected
from the last optical surface.  Since the optical ray
configuration is described by coordinates of the point of
intersection between the ray and the(P, Q) plane on the x
and y axes, we get a description of the optical image
Q(x,y, p,q) : R* — R* as consisting of four functions
X(x,y,p,9), Y(x,y,p.q), P(x,y,p,q), Qx,y, p, q). For
axisymmetric systems, image Q(x, y, p, ¢) is invariant with
respect to rotations about the z axis. Moreover, since the
given system is Hamiltonian, the phase volume is preserved.
Both requirements impose significant limitations on possible
optical images. Note that, when calculating lens systems, all
remarks concerning the calculation of points of intersection
between the ray and optical surfaces using equation (1)
remain valid and reflection law (2) shall be replaced with
Snell’s law. Expressions derived for lens systems in this case
are more cumbersome due to a higher algebraic complexity
of the Snell equation and the presence of two optical
surfaces in a single lens.

Despite an apparent simplicity of the above-mentioned
approach, the explicit expressions for the optical configu-
ration of the traced ray become so cumbersome after one
to two steps that manual processing is virtually impossible
any longer. For such expressions, computer algebra systems
such as Mathematica [9] (used for this work), Maple, and
recently developed Symbolica may be used. Some examples
of using such systems are discussed below. The final section
will contain conclusions and generalization of the method
used in this work for general mirrors.



1768 XXIX Symposium ,Nanophysics & Nanoelectronics®, Nizhny Novgorod, March 10-14, 2025

x coordinate, mm
o

|
)
()

1 1 1
100 150 200

z coordinate, mm

Figure 1. Schwarzschild configuration with two spherical mirrors. Radius of the first concave mirror R; = 137.5mm, radius of the
second convex mirror R, = 24mm. Center-to-center distance between the first and second mirrors m = 11.5mm. The object plane
Zopj = —37.5mm is cyan, the image plane zop; ~ 211.8077 mm is purple.

2. Schwarzschild configuration with
spherical mirrors

Schwarzschild configuration (Figure 1) with two spherical
mirrors is one of the best understood optical mirror systems
in the X-ray optics.

To simplify our configuration, the first concave mirror is
assumed to be centered at the origin of coordinates. For
simplicity, we follow [7] and assume that the radius of the
second convex mirror is equal to 1, while the radius of the
first concave mirror is set as a free parameter R. Since
the analyzed configuration is not necessarily concentric,
the center of the second mirror is on the z axis at point
z =m. Note that computer algebra can be used to give
explicit expression for an optical image. Due to their

bulkiness, expressions for rme), rﬁlmg), r"¢) and d\™,

d\"®) ") were stored as SOKB and 83KB .m ASCII
text files (Mathematica batch file). At this point, it seems
that such explicit expressions may be used only to check
the calculation accuracy of numerically simulated optical
configurations. Nevertheless, for design of optical config-
urations of X-ray lithography projection lenses, approaches
were proposed [10,11] where configurations with spherical
mirrors were used for rough estimate of the optical and
design parameter space. Utilized as initial conditions for
further improvement using aspherical corrections, they may
make it possible, due to the smallness of corrections, to
determine such parameters as mirror sizes and positions.
One may hope that exact solutions will provide better
evaluation of the optical image quality for such initial
configurations.

To get more detailed information, we resort to Tay-
lor’s series expansion of the optical image w(x,y, p,q)
in(x, y, p, q):

oo o0 oo o0

QY P @)= D D> Qne, nys npyng)x"y" p g,

n,=0n,=0n,=0n,=0
(4)

where
1 a™ 9™ 9" 9™
nylnylnplng! dx™ 9y™ dp"r dq"

Q(ny, ny, ny, ng) =

XQ(x, ¥, P @) (x.y.p.q)—0-

Since, due to the axial symmetry, all even-degree terms
are equal to zero, the first order terms will be calculated
first. Paraxial focus position with respect to z can be found
by setting, for example, the derivative of X (x, y, p, ¢) with
respect to p to zero and getting the following expression:

2mR+2m>R—4mz opj —4m>z obj+Rz 06 +2mRZ 0

Lparax= R—|—2mR—ZZOhj—4mzo;,j+2Rzo;,j
(5)
Then the first order derivative matrix at point
(%, y, p, g) = 0 will be given by
aX (X X X 1000
Y aY 9y Y| _ |0 1 0 0
P P 3P 9P| |b O a O
0 9,0 9,0 9,0 0 b 0 «a
b 0 a O
0 b 0 «a
Azl 0 0 o] ©
00 00O

where a and b are defined as

0= R +2mR — 210;,/ — 4mzo;,j +2RZOhj
pr— R 9’

_ 2+4+4m—2R

= = .

Az denotes the distance from the paraxial focus to the
image plane Az =27 — Zparax. Note that the foregoing
equations can be easily derived using matrix optics [12],
while to calculate higher order aberrations, it becomes
necessary to use computer algebra.

For the Schwarzschild configuration with spherical mir-
rors, calculation of derivatives using Mathematica on Intel
Core 15-1235U 16 GB computer takes several minutes,
while its takes several hours to calculate all fifth order
derivatives. Therefore, higher order derivatives up to the
eleventh order have been calculated only for spherical
aberration and distortion, because calculation complexity
grows very rapidly as the order of derivatives increases. For
some cleventh order aberrations, calculation takes several
hours.

b
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Since the Schwarzschild configuration is axisymmetric
and invariant with respect to reflections, all allowable third
order derivatives are described by twelve real parameters. In
addition, Q(x,y, p, q) preserves the phase volume, which
reduces the number of free parameters to six. Five of
them define components X (x, y, p, ¢) and Y (x, y, p, ¢) and
correspond to the Seidel aberrations. Since general ex-
pressions for the nonconcentric Schwarzschild configuration
turn out to be too bulky, we limit ourselves to giving here
expressions for spherical aberration

(R — 1)2201;;

A=— %L
R2f (R, zow))
x (R*(zobj +1)* = R(2+ 3z0b7)Z0bj + 20w -
coma
g 3R~ 1)zop

"R (R, zony)
X (R*(zobj +1)* = R(2+ 3z0bj)z 08 + 20;) -

field curvature C
R—-1
Ce— BT (R214drp +222.
RZf(R’ZOhj)( ( + ZOb‘]"' Zob/)
—2R(2+3zonj)zopj + 22%)/:/)’

astigmatism D

R—-1

R2f(R, zow))

x (R*(zov; +1)* = R(2+ 3z0b;)z00; + 200;) -

D =

and distortion E
B R-1
R2f (R, zob))

X (R(Z +3z0pj) — RZ(ZObj +2) - Zobj) )

in the paraxial focus plane for the concentric con-
figuration m = 0. In the foregoing expression
f(R,zobj) = (R —2z0p; + 2Rz 0pj). From the expression
for spherical aberration, well known conditions for aplanatic
points are obtained. These conditions also generally turn out
to be very bulky and therefore are not given here. Note
that it follows from the foregoing relations that, for the
concentric Schwarzschild configuration at aplanatic points,

- R
ob R+VR-1
(-) _ R

Zop = R—VR—1
spherical aberration, coma and astigmatism are simultane-
ously equal to zero, and for field curvature and distortion,
we get
(R—1)(R+VR—-1)

R(R—+VR—1)

cH) — _

i
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(R—1)(R—-VR-1)

=) — _
©= RR+VR-1)
and
D<+)__(R—1)(R+\/E—1)2
B R2R-VR-1)
D(,)i_(R—l)(R—\/1'_3—1)2
B RAR+VR-1) =

Expressions for the fifth order spherical aberration are also
given for reference

A — 3(R — 1)°R?
C4R-VR-1D)R+VR-1)5
AC) 3(R —1)°R?

T 4R-VR-15R+VR-1)

To evaluate the degree of applicability of power series ex-
pansions when addressing optical configurations, numerical
results obtained from ray tracing which use explicit expres-
sions for an optical image are compared with approximate
calculations, including aberrations higher than the third
order. Results of ray tracing using explicit expressions in
turn were checked in Zemax. Figure 2 shows the results of
spherical aberration and distortion comparison.

It can be seen from the comparison with the exact
solution that, as the approximation order increases, the
difference between the exact and approximate solutions
decreases. For example, for the spherical aberration shown
on the left in Figure 2, agreement between the exact and
approximate solutions seems to be quite good up to the
aperture approximately equal to 0.4 — 0.5 for the fifth and
seventh orders. It is expected that, with systematic increase
in the order, approximations will converge to the exact
solution because Figure 3 shows that the difference between
exact and approximate solutions apparently decreases as the
approximation order increases from the third to eleventh.
Though the order of calculated aberrations is too low to
draw conclusions about the convergence rate and behavior
of the corresponding Taylor’s power series (according to
the experience of power series analysis in statistical physics,
approximately one hundred coefficients are required for
this), nevertheless, it seems that, at least in the studied
configuration, this series behaves quite well.

Summing up the study of the Schwarzschild configuration
with spherical mirrors, it can be said that computer algebra
methods provide an exhaustive analysis of this configuration
due to its simplicity. At the same time, the space of possible
parameters is too limited to allow for comprehensive design.
The nonconcentric configuration with spherical mirrors and
fixed magnification allows for only one free parameter —
center-to-center distance between mirrors. Another degree
of freedom for the configuration design may be introduced
using a spheroid instead of a sphere for the first concave
mirror, which will be done in Section 3.
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Figure 2. Comparison of exact ray tracing with third, fifth and seventh order approximations for the Schwarzschild configuration with
the same parameters as in Figure 1. For clarity, coordinates are normalized with respect to the radius of the second mirror. Comparison
for rays coming from a point on the z axis with directions on the xz plane, i.e. with the initial configuration (0, 0, p, 0), is shown on the
left. Comparison for rays parallel to the z axis from a point on the x axis, i.e. with the initial configuration (x, 0, 0, 0), is shown on the
right. To facilitate the comparison, a part corresponding to linear increase was subtracted from the exact solution so that only nonlinear
distortion can be seen
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Figure 3. Numerical difference between exact ray tracing and approximations up to the third, fifth, seventh, ninth and eleventh orders for
the Schwarzschild configuration with the same parameters as in Figure 1. Unlike Figure 2, discrepancy between the exact and approximate
solutions is shown. For clarity, coordinates are normalized with respect to the radius of the second mirror. Results for rays going from a
point on the z axis with directions on the xz plane, i.e. with the initial configuration (0, 0, p, 0), are shown on the left. Results for rays

parallel to the z axis from a point on the x axis, i.e. with the initial configuration (x, 0, 0, 0), are shown on the right.

3. Schwarzschild configuration with one
spherical mirror and one spheroid
mirror

Since explicit ray tracing is also possible, for example,
for spheroids, a double-mirror Schwarzschild configuration
was examined where the first concave mirror is a spheroid
with @ and b. Despite a seemingly minor change in the
optical configuration, the problem complexity (in terms of
the amount of calculation) grows more than by an order of
magnitude. Thus, the size of ASCII text files with exact
expressions for rms), rymg ) rlme) and @™, a;”"g ) dlme)
is now 1091KB and 657 KB.

Due to the growing complexity of expressions, at this
point we limit ourselves to the calculation of first order
quantities such as paraxial focus,

h(a,b,m,zopj)
g(a’ b’ m, ZOhj)

Zparax =

first derivative matrix, third order aberrations, calculation of
which took several hours. The first derivative matrix has the
same form as in equation (6), the only difference being that
a and b are given this time as

a?

ag=—
gla,b,m, zopj)
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2b(2m — 2b + 1)

b=2+ 3 .

a

In the foregoing equations, g(a,b, m,zop;) and

h(a, b, m,zop;) are polynomials in the variablesa, b, m,
<ob; given by

gla,b,m,zopj) =2b(—142b —2m)(b — zop;)

+a*(1 —4b + 2m + 2z o)),
and
h(a, b, m, ZOhj) =2b(b + 2bm — 2m(1 + m))(b — Zobj)

+a?(2m* — 2b(1 + 2m) + z op,

+2m(1 + zopj))-

explicit expressions for the third order aberrations are
so bulky that it was considered unsuitable to give them
here. Nevertheless, calculation results for the Schwarzschild
configuration with spherical mirrors and configurations
with one elliptical mirror were grouped in the form of
a Mathematica batch and are publicly available at gitflic
website.

When dealing with optical configurations with a fixed
magnification M, additionally applying the aplanatic condi-
tion, then the space of solutions will be two-dimensional in
contrast to the Schwarzschild configuration with concentric
spherical mirrors. As an example, a configuration with
tenfold magnification was evaluated by varying a and m. m
was varied from —1 to 1, while ¢ was varied from R* — 1
to R* + 1, where

R — 342M +3M? — (M — 1)V/5 + 6M + 5M?
B 2(1 4+ 2M + M?)

is the radius corresponding to the tenfold magnification

in the concentric Schwarzschild configuration with spherical
mirrors. Figure 4 shows the variation of positions of the
object plane and paraxial focus plane on a and m. b is
calculated in this case from the aplanatic condition and fixed
magnification.

To evaluate the optical configuration quality, correspond-
ing variations of the third order aberrations as shown in
Figure 5 were also calculated. The figure shows that
the aplanatic point of the concentric configuration is the
only one where coefficients of simultaneously three third
order aberrations disappear — spherical aberration, coma
and astigmatism. In addition, it can be seen that the
field curvature and distortion coefficients vary differently in
different directions when a and m are varied, so there is
no obvious configuration other than concentric where both
coefficients are optimal. Thus, for further optimization of
the Schwarzschild configuration, surfaces with order higher
than the second one have to be considered.

Conclusions

The study has shown that simple optical configurations
using mirrors described by second order surfaces can be

Technical Physics, 2025, Vol. 70, No. 10

analyzed in detail using software packages for symbolic
computation. For the Schwarzschild configuration with
spherical mirrors, all aberrations up to the fifth order,
including, and partially some aberrations up to the eleventh
order have been determined. Numerical simulation has been
used to show that the approximate solutions adequately
converged to the exact solutions, holding out a hope of
extending the scope of application of paraxial expansions
provided that we would be in position to calculate higher
orders. Note that the approach used in this work is also
applicable to the review of optical lens configurations. For
chromatic aberration calculation, the aberration calculation
procedure based on Taylor’s series expansions also needs to
include a wavelength dependence.

The concentric Schwarzschild configuration is known to
permit two aplanatic configurations or fixed magnification,
which considerably limits the number of allowable optical
configurations. The number of degrees of freedom may
be increased by using nonconcentric configurations and
replacing the first spherical mirror by a spheroid. For
such systems, third order aberrations were calculated and
the effects of mirror center-to-center distance variation and
deviation from spherical shape were investigated.

In this case, it turned out that an increase in the number
of degrees of freedom didn’t give any significant results be-
cause coma and astigmatism also disappear at the aplanatic
points of the concentric Schwarzschild configuration. It
is commonly known that high order aspherical corrections
are used in practice to improve the image quality in the
Schwarzschild configuration. Therefore, it is reasonable
to ask whether the approach used in the work may be
extended to mirrors with an order higher than the second
one.

As noted in Section 1, explicit ray tracing, from theo-
retical standpoint, may be performed only for surface not
higher than the fourth order. Thus, the approach addressed
in the work will not be generally applicable. In addition, the
approach based on applicability of explicit solutions turns
out to be quite wasteful in terms of computation, because,
in the analysis based on the consideration of aberrations,
albeit of very high order, we use only a small part of
all available information about solutions, i.e. some limited
number of derivatives. Nevertheless, an alternative approach
is possible, which will be described here only in broad terms
and considered in greater detail in next publications. It is
based on two observations: first, matrix optics that describes
first order effects may be generalized so that it includes
arbitrary order aberrations, second, for individual mirrors,
high order aberrations may be determined by calculating
derivatives of implicit functions.

Note that extensions of the matrix approach in the
electron and ion optics for calculation of second order aber-
rations were proposed as early as in the 1960s (see [13,14]),
however, as far as we know, this approach was not
generalized and systematized. The developed generalization
proposes to describe an optical image map from one plane
to another using the so-called matrix representation of the
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Figure 4. Dependence of positions of the object plane zos; and paraxial focus plane on a and m while simultaneously fulfilling the
aplanatic condition. Black point indicates the aplanatic point for the concentric Schwarzschild configuration with spherical mirrors
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group of formal diffeomorphisms where a composition of
images is represented by means of matrix multiplication
(for 1D case, such a representation was given in [15]). The
computation of an optical scheme can be performed in this
case by determining aberrations of the optical image map
from one plane to another, where the planes are properly
arranged between the mirrors, and constructing the resulting

image map from the object plane to the image plane as a
recursively determined composition of image maps.

Finally, note that the representation of the optical image
map in the form of a series expansion, such as (4) can
be also used to evaluate the point spread function, given
the numerical aperture, as it was done in [7]. However, in
contrast to the mentioned work, the point spread function

Technical Physics, 2025, Vol. 70, No. 10
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in our case can be also calculated in off-center position in
dependence on the field coordinate. This aspect is partic-
ularly important in view of the fact that the Schwarzschild
type configurations have nonzero obscuration.
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