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Modeling of Landau levels, Hall and longitudinal resistance in the
topological Anderson insulator based on HgTe/Hg,.;Cd, ;Te quantum well
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The Landau levels, the conditions of the Hall resistance quantization and the behavior of the longitudinal
resistance of the edge states in the magnetic field are studied for the HgTe/Hgo 3Cdo.7Te quantum well with (013)
orientation and 14.1 nm width, corresponding to the semi-metallic spectrum and near the charge neutrality point.
Based on recent experiments for such structure with a disorder in the phase of a topological Anderson insulator and
applying the localization theory for the edge states in a magnetic field, the modeling of the observation threshold
of the Hall conductance plateau is performed, as well as of the dependence of the longitudinal resistance of the
edge states, at different temperature. The modeling results are in a good agreement with the experimental data.
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1. Introduction

Topological insulators (TI) based on quantum wells (QW)
HgTe/Hg; . Cd, Te represent one of the first and deeply
studied examples of this intensively studied phase of mat-
ter [1,2]. One of the attributes of this phase is the localized
nature of the bulk states, in the zone of which the Fermi
level is located, along with the presence of delocalized edge
states. Localization of states in a volume at the Fermi level
can occur both due to its location in the band gap and due
to disorder that localizes initially propagating bulk states. In
the latter case, when forming delocalized edge states, one
speaks of a topological Anderson insulator (TAI) [3-5].

The presence of a gap in the spectrum of bulk states
between the valence band and the conduction band is
an attribute of ,classical® TI. Meanwhile, a semimetal-
lic spectrum appears at a certain crystallographic ori-
entation and well thickness in the quantum wells of
HgTe/Hg;_,Cd, Te, in which the conduction band overlaps
by several meV with the valence band [6,7). Near the
point of charge neutrality, near which the position of the
Fermi level can change, there are two types of carriers in
the system - electrons and holes. If a sufficiently strong
disorder appears in such a structure, then as the temperature
decreases, holes are localized first, and then electrons. At
the same time, as experiments show [8], there are signs
of the existence of edge states through which the main
transport proceeds at low temperatures, when bulk states
are localized due to disorder.
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Results demonstrating the behavior of longitudinal and
Hall conductivity in a magnetic field with induction up to
1.5T were obtained in recent experiments [9)], for a structure
based on the HgTe/Hgy3Cdp;Te quantum well with an
orientation (013) and a thickness of 14nm characterized
by strong disorder. It was found that in a weak magnetic
field, the sample behaves like a two-dimensional topo-
logical insulator with a weakly magnetic-field-dependent
longitudinal resistance detected in both local and non-
local geometries. In this case, the Hall resistance depends
on temperature and has different values. Then, a strong
increase of longitudinal resistance begins after reaching
a relatively weak threshold field of By ~ 5mT, which
increases at low temperature 7 = 0.1K by 2 orders in
the field of B; ~ 0.1 T. At the same time, the Hall resistance
shows strong fluctuations. This behavior was classified
in Ref [9] as the phase of the Anderson insulator, when
edge states experience localization. Finally, the character
of the resistances changes again when the magnetic field
reaches the value of B, ~ 0.4 T: the longitudinal resistance
begins to decrease strongly (by 2—3 orders of magnitude),
and the Hall resistance reaches a plateau h/e?, weakly
dependent on temperature. It was concluded in Ref. [9] that
this regime corresponds to the quantum Hall effect (QHE)
phase with a Landau level filling factor of v = 1. It is of
great interest to find out how the characteristic threshold
values of the magnetic field By and B, are determined, and
also to build a quantitative picture of the dependence of the
longitudinal and Hall resistances on the magnetic field.
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Figure 1. a is the spectrum in the quantum well HgTe/Hgo 3Cdo s Te along the direction (1,1) at k» = k,. The area of overlap of the
electronic E.(k) and hole E,(k) bands is bounded by dotted lines, Er shows the Fermi level; b is the structure of the Landau levels
with the wave function index N, where the levels Eé“’) and E(()h) with linear dispersion law are highlighted.

In this paper, we will try to answer some of the questions
raised in Ref [9] by constructing model estimates of the
results obtained in it. We will use the results of the theory
of the quantum Hall effect in the presence of disorder [10]
and the theory of localization of edge states in the presence
of a magnetic field [11]. Sec. 2 will consider the structure
of the Landau levels in the system under consideration and
the quantization of the Hall resistance in the presence of
disorder. Sec. 3 will discuss modeling the behavior of
longitudinal conduction in a magnetic field. The conclusions
of the work are presented in sec. 4.

2. Modeling of Landau levels and
quantization of Hall conductivity

Our first task is to model the Landau levels for a two-
dimensional spectrum in an HgTe/Hgy3Cdp;Te quantum
well with orientation (013) and thickness of 14nm. The
band structure of the system of interest in the absence of
a magnetic field was calculated in Ref. [6]. Methods for
calculating the spectrum in the framework of the 8-band
Kane model, including in the magnetic field, are described
in a number of papers (see, for example, [12-17]). The final

result of this calculation is shown in Figure 1, where the
panel a shows the spectrum along the direction k, = k, of
the two-dimensional Brillouin zone. There is an overlap of
the electron and hole bands on the scale of ~ 3 meV, which
corresponds to the semimetal structure [6]. The overlap
area is highlighted with dotted lines in Figure 1,a. If the
Fermi level is near the point of charge neutrality, as in the
experiments in Ref. [9], then it also lies inside this region.
The Landau levels in the magnetic field perpendicular to
the plane of the well are shown in Figure 1,5, where
the indexes N mark the states of the column vector
constructed from Landau levels with different numbers [12—-
15]. As is known, in a system with interacting bands,
the Landau levels exhibit a nonlinear dependence on the
magnetic field, with the exception of two ,zero“ levels
E(()e) and Eéh) [12-17]. These two levels have a linear law
of dispersion in the absence of terms in the Hamiltonian
responsible for mixing the states of heavy and light holes
due to the presence of the [16,17] interface, which we
do not take into account in our model. The level E(()e>,
corresponding to the electronic basic function, begins from
the area of overlap of the energy band lying below, which
is caused by the inversion of the spectrum in this structure.
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Let’s discuss the contribution of the Landau levels in
Figure 1,0 in quantization of Hall conductivity. — The
formation of the Hall plateau was observed in the field
starting from B, ~ 0.4T in experiments in Ref. [9]. The
contribution to the Hall resistance is given by the electronic
level E(()e), related to the ,,zero levels linear in the magnetic
field in such a field as follows from Figure 1,5, at the
position of the Fermi level near the point of charge
neutrality, i.e., near the middle of the region of overlap of the
electron and hole bands,. It remains below the Fermi level
in fields up to 6 T, which ensures the formation of a Hall step
with a fill factor of v = 1, when the Hall resistance reaches
the value of Ry = h/(ve?) with v = 1, which was observed
in experiments [9]. As for the hole levels, there is only
one level Eéh) located below the Fermi level on the side of
the filled states for holes, which also belongs to the ,,zero
levels”, as can be seen in Figure 1,b. It crosses the Fermi
level already in a weak magnetic field ~ 0.1 T and does not
contribute to the Hall resistance in stronger fields.

The question arises — why is the contribution of the hole
level Eéh) in the Hall resistance in the experiment in Ref. [9]
not traced in the fields below B, ~ 0.4T. To answer this
question, we will use the result of the theory of the quantum
Hall effect in the presence of disorder [10]. According to it,
monitoring of the QHE state is possible if the condition is
met

w.T > 1, (1)

where the cyclotron frequency
. = eB/m*c (2)

depends on the effective mass of m*, and 7 is a lifetime
between the acts of elastic scattering. The condition (1) is
equivalent to the condition

hw. > h/t, (3)

which means that the distance between the centers of the
Landau levels must exceed their broadening //7. Let us
use the results of experiments in Ref [9] to assess the
broadening of Landau levels due to disorder. It is possible
to estimate the magnitude of this broadening in terms of the
activation energy V,, experimentally determined using the
temperature dependence of resistance in a zero magnetic
field R = Ry exp(V,/2kT) [9]. We obtain from this that

h/t ~V, =1.7meV. (4)

According to (4), the lifetime is
T ~3.6-10"Bc. (5)
Effective masses of electrons and holes, according to
experimental results [6], are in the range of (0.02—0.03)myg

for electrons and (0.2—0.3)my for holes. Choosing the value
0.025my for electrons and estimating the lifetime according
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to (5), we obtain from (1) that the observation of the QHE
regime for electrons is possible in the fields

B > B, (6)

where B. = 0.39T. The experimental results in Ref [9]
indicate that the transition from the insulator mode to
the QHE mode occurs under a magnetic field satisfying
condition (6).

The reasoning given above makes it possible to explain
the absence of a hole contribution to the Hall resistance.
According to (1)—(6), holes will begin to contribute to
the magnetic field starting from B, (k) ~ 3.97T, since their
effective mass is an order of magnitude greater than the
mass of electrons [6]. These considerations are in line with
the statements in the papers in Refs. [8,9], according to
which holes are localized before electrons. The experiments
in Ref. [9] were limited by the magnitude of the magnetic
field in 1.5T, so the contribution of holes to the Hall
resistance was not observed.

3. Calculation of longitudinal resistance
in a magnetic field

The behavior of longitudinal resistance as a function of
the magnetic field in samples of similar geometry to samples
from the experiments we are interested in [9], but in a well
with a thickness of 8.3 nm, was experimentally studied in
Ref. [18]. There, a decrease in longitudinal conductivity was
detected both with a decrease in temperature and with an
increase in the magnetic field. An activation formula has
been proposed for the dependence of conductivity on the
magnetic field and temperature

G ~ exp(—A,/kT). (7)

The magnetic field-dependent activation energy A, is based
on Figure 2,d—e in Ref. [18]. In terms of its physical
meaning, it corresponds to a gap in the spectrum of
edge states, which is calculated, for example, in Ref. [17].
We want to use an expression like (7) to calculate the
dependence of the local resistance Rj,. in the discussed
experimental study [9]. The mechanisms of localization of
edge states in a magnetic field have been discussed in a
number of papers (see, for example, in Refs. [11,13,16]).
We will use some results from Ref [11], where the
scattering processes on the disorder potential are considered
in conjunction with the electron-electron interaction.

— In two-dimensional topological insulators with disor-
der, there is a threshold magnetic field By, below which
the longitudinal resistance of the sample is determined by
the localization length independent of the magnetic field /,,
determined by the disorder potential and depending on the
length of the conducting segment according to the formula

R(L) = Roexp(L/L,), (8)

where Ry has a value of the order of the resistance
quantum h/e>.



316 XXIX International Symposium ,Nanophysics and Nanoelectronics*

— When the magnetic field exceeds the threshold value
of By, the resistance will depend on the localization length
of I, in the magnetic field according to the same law (8)
with replacing [, with [,, while the localization length
depends on the magnetic field according to the formula

l;, = hv/A;,, (9)

where v is the characteristic group velocity of edge states,
A, is the gap that opens in the spectrum of edge states, i.e.,
the activation energy mentioned above in (7). The transition
occurs in a magnetic field By, in which the localization
length I, in (9) equates with the localization length [,
of the disorder potential. With a further increase in the
magnetic field, the length 7, in (9) continues to decrease,
and localization occurs on its scale as on the smallest of the
two (I, I). Typical dependence of [, on the magnetic field,
according to Ref. [11], has the form

lb ~ B—2/(3—2 K), (10)

where the Luttinger parameter K determines the strength
of the electron-electron interaction and the associated
scattering processes, including in the presence of a disorder
potential.  The limit K — 0 corresponds to a strong
interaction when the formula (10) gives the dependence
I, ~B —2/3,

We estimate the localization length [, as a function of the
disorder potential, i.e., in a zero magnetic field, as follows.
According to the experimental data presented in Ref [9],
at low temperatures the local resistance reaches a value
of 10° Ohms. This means that the resistance increases by
2 orders of magnitude in comparison with the quantum of
resistance of ro = h/e? = 26 kOhm, i.e., according to (8),
the parameter

x =1In(R/Ry) = L/1, (11)

is equal to In(10%) ~ 4.61. The characteristic length L of
the conducting segment in Ref [9], on which the local
resistance Rjo. iS measured, was L ~ 100 um. This means
that, according to (11), the localization length of edge states
due to disorder can be estimated as

I, ~20um. (12)

This value significantly exceeds the localization length
estimates for bulk states with a characteristic lifetime (5).
The estimate of (12) allows determining the threshold
magnetic field at which the length of localization in
the magnetic field (10) equates with (12). To do this,
we will use experimental data from Ref [18] for the size
of gap A,. The dependence A, is nonlinear in fields
exceeding 25 mT. We approximate it as follows for obtaining
the best agreement with the experimental data in Ref. [18]:

Ay(B) = Mo((1+ B/Bo)* +¢), (13)

where A¢p=10pueV and By=5mT, and constant
¢ =1—2%3_ The values Ay and By are selected from the
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Figure 2. Experimental results for the gap in the spectrum A,
obtained in Ref. [18] (/) together with simulation results using the
formula (13) (2).

condition that the value A, = A in the field B is such that
the localization length (9) in the magnetic field will be equal
to the localization length (12) due to the disorder. The graph
of the function (13) is shown in Figure 2 by the orange
curve /, next to which a pink polyline 2 connects points
based on experimental data from Ref. [18]. Figure 2 shows
that there is a fairly good agreement with the experiment
in the range of magnetic fields from 0 to 100 mT, for which
experimental results were obtained in Ref. [18].

It should be noted that the approximation (13) in accor-
dance with (9) leads to a dependence of the localization
length on the magnetic field in the form [, ~ B=%/3,
which according to the general theory [11], from which
the formula (10) follows, means a strong electron-electron
interaction in the limit K — 0.

Let’s move on to calculating the local resistance Rjoc.
First, we calculate the local resistance at different tempera-
tures using a formula close to (7). Experimental results in
Ref. [9] suggest that resistance depends exponentially on the
ratio Ag/kT which power index is smaller than unity. It is
most satisfactorily obtained to approximate the experimental
results by dependence

R(T,B < Bg) = Roexp((Ao/kT)"?), (14)

where the value Ry ~ 10° Ohms, i.e. exceeds the quantum
of resistance ro by ~ 4 times. The formula (14) can be
applied in weak magnetic fields B < By, where By = 5mT,
when localization is determined by a length (12) indepen-
dent of the magnetic field. The graphs of the function (14),
constructed for the temperature 7 = 2, 1, 0.5, 0.2, 0.1K,
are shown in the left part of Figure 3 with horizontal lines
drawn up to the value B = By. This region corresponds
to a topological insulator with disorder, i.e., a topological
Anderson insulator.

Starting with the magnetic field B = By, we use an
approximation of the same type as (14), but in which the
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Figure 3. Simulation of longitudinal (local) resistance Rjo. for
experiments [9], executed according to (14) and (15). Different
curves correspond to different temperatures. The area to the
left of the threshold field By = 5mT corresponds to a topological
insulator with fixed localization length /, of edge states, the area to
the right of By corresponds to a decreasing one according to (10)
with index K = 0 the length of localization in the magnetic field.

gap in the spectrum A, (B), or activation energy, is no longer
equal to Ag, but it depends on the magnetic field and is
approximated by the formula (13). The resistance in this
mode is

R(T,B > Bg) = Roexp((Ay(B)/kT)Y?).  (15)

Graphs of the function (15), constructed for the same set of
temperature values, 7 =2, 1, 0.5, 0.2, 0.1K, are plotted
in the right part of Figure 3. This is the insulator mode, in
which the localization length of the edge states decreases
with an increase in the magnetic field. It should be noted
that the modes (14) and (15) correspond physically to the
same system, since the edge states continue to exist, but
with the transition from (14) to (15), the length of their
localization becomes variable, decreasing with increasing
magnetic field. Therefore, in our opinion, the transition
from a topological insulator to the usual resistance behavior
in Figure 3 should be considered quantitative, but not
qualitative. In general, the agreement of the results in
Figure 3 with experimental data from Ref. [9] in fields up to
~ 300mT can be considered satisfactory.

The value B, = 200 mT, is selected as the right boundary
of the magnetic field interval in Figure 3. According to
experimental data from Ref [9], at values of B > Bj, a
decrease in local and nonlocal resistances is observed due
to the transition to the quantum Hall effect mode described
in sec. 2 in this paper. In the field B, ~ 390 mT, according
to (6), conditions for observing QHE are already being
created for bulk states that remained localized and did not
participate in transport at low temperatures. Therefore, our
approximations in fields of order and higher than B, lose
their validity, as the transport of edge states with increas-
ing resistance begins to transform into transport of bulk
and edge states in the quantum Hall effect mode. A detailed
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calculation of these transient modes and the microscopic
structure of edge states in a magnetic field is an interesting
task for future studies.

4. Conclusion

The spectrum and Landau levels have been modeled for
states in the HgTe/Hgp3Cdp;Te quantum well with ori-
entation (013) and thickness of 14nm in the phase of a
topological Anderson insulator with strong disorder for the
purpose of constructing theoretical estimates of recent
experiments in Ref [9] for transport. It is shown that
the quantization threshold of the Hall resistance, which
is manifested when the cyclotron frequency exceeds the
magnitude of the broadening of the Landau levels due to
disorder, corresponds to experimental data. A model of the
dependence of the longitudinal resistance on the magnetic
field for transport through edge states is constructed, taking
into account the gap in the spectrum due to disorder,
which turns into a gap that grows with the magnetic field
according to experimental data. The obtained dependences
of resistance on the magnetic field for different temperatures
are in good agreement with the experimental results. To
build a detailed picture of the edge states in a topological
Anderson insulator in a magnetic field, it is assumed that
research will continue in the future, primarily focusing on
the construction of microscopic models.
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