
Semiconductors, 2025, Vol. 59, No. 6

Modeling of Landau levels, Hall and longitudinal resistance in the
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The Landau levels, the conditions of the Hall resistance quantization and the behavior of the longitudinal

resistance of the edge states in the magnetic field are studied for the HgTe/Hg0.3Cd0.7Te quantum well with (013)
orientation and 14.1 nm width, corresponding to the semi-metallic spectrum and near the charge neutrality point.

Based on recent experiments for such structure with a disorder in the phase of a topological Anderson insulator and

applying the localization theory for the edge states in a magnetic field, the modeling of the observation threshold

of the Hall conductance plateau is performed, as well as of the dependence of the longitudinal resistance of the

edge states, at different temperature. The modeling results are in a good agreement with the experimental data.
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1. Introduction

Topological insulators (TI) based on quantum wells (QW)
HgTe/Hg1−xCdxTe represent one of the first and deeply

studied examples of this intensively studied phase of mat-

ter [1,2]. One of the attributes of this phase is the localized

nature of the bulk states, in the zone of which the Fermi

level is located, along with the presence of delocalized edge

states. Localization of states in a volume at the Fermi level

can occur both due to its location in the band gap and due

to disorder that localizes initially propagating bulk states. In

the latter case, when forming delocalized edge states, one

speaks of a topological Anderson insulator (TAI) [3–5].

The presence of a gap in the spectrum of bulk states

between the valence band and the conduction band is

an attribute of
”
classical“ TI. Meanwhile, a semimetal-

lic spectrum appears at a certain crystallographic ori-

entation and well thickness in the quantum wells of

HgTe/Hg1−xCdxTe, in which the conduction band overlaps

by several meV with the valence band [6,7]. Near the

point of charge neutrality, near which the position of the

Fermi level can change, there are two types of carriers in

the system - electrons and holes. If a sufficiently strong

disorder appears in such a structure, then as the temperature

decreases, holes are localized first, and then electrons. At

the same time, as experiments show [8], there are signs

of the existence of edge states through which the main

transport proceeds at low temperatures, when bulk states

are localized due to disorder.

Results demonstrating the behavior of longitudinal and

Hall conductivity in a magnetic field with induction up to

1.5 T were obtained in recent experiments [9], for a structure

based on the HgTe/Hg0.3Cd0.7Te quantum well with an

orientation (013) and a thickness of 14 nm characterized

by strong disorder. It was found that in a weak magnetic

field, the sample behaves like a two-dimensional topo-

logical insulator with a weakly magnetic-field-dependent

longitudinal resistance detected in both local and non-

local geometries. In this case, the Hall resistance depends

on temperature and has different values. Then, a strong

increase of longitudinal resistance begins after reaching

a relatively weak threshold field of B0 ∼ 5mT, which

increases at low temperature T = 0.1K by 2 orders in

the field of B1 ∼ 0.1 T. At the same time, the Hall resistance

shows strong fluctuations. This behavior was classified

in Ref. [9] as the phase of the Anderson insulator, when

edge states experience localization. Finally, the character

of the resistances changes again when the magnetic field

reaches the value of Bc ∼ 0.4 T: the longitudinal resistance

begins to decrease strongly (by 2−3 orders of magnitude),

and the Hall resistance reaches a plateau h/e2, weakly

dependent on temperature. It was concluded in Ref. [9] that

this regime corresponds to the quantum Hall effect (QHE)

phase with a Landau level filling factor of ν = 1. It is of

great interest to find out how the characteristic threshold

values of the magnetic field B0 and Bc are determined, and

also to build a quantitative picture of the dependence of the

longitudinal and Hall resistances on the magnetic field.
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Figure 1. a is the spectrum in the quantum well HgTe/Hg0.3Cd0.7Te along the direction (1,1) at kx = ky . The area of overlap of the

electronic Ec(k) and hole Ev(k) bands is bounded by dotted lines, EF shows the Fermi level; b is the structure of the Landau levels

with the wave function index N, where the levels E
(e)
0 and E

(h)
0 with linear dispersion law are highlighted.

In this paper, we will try to answer some of the questions

raised in Ref. [9] by constructing model estimates of the

results obtained in it. We will use the results of the theory

of the quantum Hall effect in the presence of disorder [10]
and the theory of localization of edge states in the presence

of a magnetic field [11]. Sec. 2 will consider the structure

of the Landau levels in the system under consideration and

the quantization of the Hall resistance in the presence of

disorder. Sec. 3 will discuss modeling the behavior of

longitudinal conduction in a magnetic field. The conclusions

of the work are presented in sec. 4.

2. Modeling of Landau levels and
quantization of Hall conductivity

Our first task is to model the Landau levels for a two-

dimensional spectrum in an HgTe/Hg0.3Cd0.7Te quantum

well with orientation (013) and thickness of 14 nm. The

band structure of the system of interest in the absence of

a magnetic field was calculated in Ref. [6]. Methods for

calculating the spectrum in the framework of the 8-band

Kane model, including in the magnetic field, are described

in a number of papers (see, for example, [12–17]). The final

result of this calculation is shown in Figure 1, where the

panel a shows the spectrum along the direction kx = ky of

the two-dimensional Brillouin zone. There is an overlap of

the electron and hole bands on the scale of ∼ 3meV, which

corresponds to the semimetal structure [6]. The overlap

area is highlighted with dotted lines in Figure 1, a. If the

Fermi level is near the point of charge neutrality, as in the

experiments in Ref. [9], then it also lies inside this region.

The Landau levels in the magnetic field perpendicular to

the plane of the well are shown in Figure 1, b, where

the indexes N mark the states of the column vector

constructed from Landau levels with different numbers [12–

15]. As is known, in a system with interacting bands,

the Landau levels exhibit a nonlinear dependence on the

magnetic field, with the exception of two
”
zero“ levels

E
(e)
0 and E

(h)
0 [12–17]. These two levels have a linear law

of dispersion in the absence of terms in the Hamiltonian

responsible for mixing the states of heavy and light holes

due to the presence of the [16,17] interface, which we

do not take into account in our model. The level E
(e)
0 ,

corresponding to the electronic basic function, begins from

the area of overlap of the energy band lying below, which

is caused by the inversion of the spectrum in this structure.
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Let’s discuss the contribution of the Landau levels in

Figure 1, b in quantization of Hall conductivity. The

formation of the Hall plateau was observed in the field

starting from Bc ∼ 0.4T in experiments in Ref. [9]. The

contribution to the Hall resistance is given by the electronic

level E
(e)
0 , related to the

”
zero“ levels linear in the magnetic

field in such a field as follows from Figure 1, b, at the

position of the Fermi level near the point of charge

neutrality, i.e., near the middle of the region of overlap of the

electron and hole bands,. It remains below the Fermi level

in fields up to 6 T, which ensures the formation of a Hall step

with a fill factor of ν = 1, when the Hall resistance reaches

the value of RH = h/(νe2) with ν = 1, which was observed

in experiments [9]. As for the hole levels, there is only

one level E
(h)
0 located below the Fermi level on the side of

the filled states for holes, which also belongs to the
”
zero

levels“, as can be seen in Figure 1, b. It crosses the Fermi

level already in a weak magnetic field ∼ 0.1 T and does not

contribute to the Hall resistance in stronger fields.

The question arises — why is the contribution of the hole

level E
(h)
0 in the Hall resistance in the experiment in Ref. [9]

not traced in the fields below Bc ∼ 0.4T. To answer this

question, we will use the result of the theory of the quantum

Hall effect in the presence of disorder [10]. According to it,

monitoring of the QHE state is possible if the condition is

met

ωcτ > 1, (1)

where the cyclotron frequency

ωc = eB/m∗c (2)

depends on the effective mass of m∗, and τ is a lifetime

between the acts of elastic scattering. The condition (1) is

equivalent to the condition

~ωc > ~/τ , (3)

which means that the distance between the centers of the

Landau levels must exceed their broadening ~/τ . Let us

use the results of experiments in Ref. [9] to assess the

broadening of Landau levels due to disorder. It is possible

to estimate the magnitude of this broadening in terms of the

activation energy Va , experimentally determined using the

temperature dependence of resistance in a zero magnetic

field R = R0 exp(Va/2kT ) [9]. We obtain from this that

~/τ ∼ Va = 1.7meV. (4)

According to (4), the lifetime is

τ ∼ 3.6 · 10−13 c. (5)

Effective masses of electrons and holes, according to

experimental results [6], are in the range of (0.02−0.03)m0

for electrons and (0.2−0.3)m0 for holes. Choosing the value

0.025m0 for electrons and estimating the lifetime according

to (5), we obtain from (1) that the observation of the QHE

regime for electrons is possible in the fields

B > Bc , (6)

where Bc = 0.39 T. The experimental results in Ref. [9]
indicate that the transition from the insulator mode to

the QHE mode occurs under a magnetic field satisfying

condition (6).
The reasoning given above makes it possible to explain

the absence of a hole contribution to the Hall resistance.

According to (1)−(6), holes will begin to contribute to

the magnetic field starting from Bc(h) ∼ 3.9T, since their

effective mass is an order of magnitude greater than the

mass of electrons [6]. These considerations are in line with

the statements in the papers in Refs. [8,9], according to

which holes are localized before electrons. The experiments

in Ref. [9] were limited by the magnitude of the magnetic

field in 1.5 T, so the contribution of holes to the Hall

resistance was not observed.

3. Calculation of longitudinal resistance
in a magnetic field

The behavior of longitudinal resistance as a function of

the magnetic field in samples of similar geometry to samples

from the experiments we are interested in [9], but in a well

with a thickness of 8.3 nm, was experimentally studied in

Ref. [18]. There, a decrease in longitudinal conductivity was

detected both with a decrease in temperature and with an

increase in the magnetic field. An activation formula has

been proposed for the dependence of conductivity on the

magnetic field and temperature

G ∼ exp(−1b/kT ). (7)

The magnetic field-dependent activation energy 1b is based

on Figure 2, d−e in Ref. [18]. In terms of its physical

meaning, it corresponds to a gap in the spectrum of

edge states, which is calculated, for example, in Ref. [17].
We want to use an expression like (7) to calculate the

dependence of the local resistance Rloc in the discussed

experimental study [9]. The mechanisms of localization of

edge states in a magnetic field have been discussed in a

number of papers (see, for example, in Refs. [11,13,16]).
We will use some results from Ref. [11], where the

scattering processes on the disorder potential are considered

in conjunction with the electron-electron interaction.

− In two-dimensional topological insulators with disor-

der, there is a threshold magnetic field B0, below which

the longitudinal resistance of the sample is determined by

the localization length independent of the magnetic field lu,

determined by the disorder potential and depending on the

length of the conducting segment according to the formula

R(L) = R0 exp(L/lu), (8)

where R0 has a value of the order of the resistance

quantum h/e2.
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− When the magnetic field exceeds the threshold value

of B0, the resistance will depend on the localization length

of lb in the magnetic field according to the same law (8)
with replacing lu with lb, while the localization length

depends on the magnetic field according to the formula

lb = ~v/1b, (9)

where v is the characteristic group velocity of edge states,

1b is the gap that opens in the spectrum of edge states, i.e.,

the activation energy mentioned above in (7). The transition
occurs in a magnetic field B0, in which the localization

length lb in (9) equates with the localization length lu

of the disorder potential. With a further increase in the

magnetic field, the length lb in (9) continues to decrease,

and localization occurs on its scale as on the smallest of the

two (lu, lb). Typical dependence of lb on the magnetic field,

according to Ref. [11], has the form

lb ∼ B−2/(3−2 K), (10)

where the Luttinger parameter K determines the strength

of the electron-electron interaction and the associated

scattering processes, including in the presence of a disorder

potential. The limit K → 0 corresponds to a strong

interaction when the formula (10) gives the dependence

lb ∼ B−2/3.

We estimate the localization length lu as a function of the

disorder potential, i. e., in a zero magnetic field, as follows.

According to the experimental data presented in Ref. [9],
at low temperatures the local resistance reaches a value

of 106 Ohms. This means that the resistance increases by

2 orders of magnitude in comparison with the quantum of

resistance of r0 = h/e2 = 26 kOhm, i. e., according to (8),
the parameter

x = ln(R/R0) = L/lu (11)

is equal to ln(102) ∼ 4.61. The characteristic length L of

the conducting segment in Ref. [9], on which the local

resistance Rloc is measured, was L ∼ 100 µm. This means

that, according to (11), the localization length of edge states

due to disorder can be estimated as

lu ∼ 20µm. (12)

This value significantly exceeds the localization length

estimates for bulk states with a characteristic lifetime (5).
The estimate of (12) allows determining the threshold

magnetic field at which the length of localization in

the magnetic field (10) equates with (12). To do this,

we will use experimental data from Ref. [18] for the size

of gap 1b . The dependence 1b is nonlinear in fields

exceeding 25mT. We approximate it as follows for obtaining

the best agreement with the experimental data in Ref. [18]:

1b(B) = 10

(

(1 + B/B0)
2/3 + c

)

, (13)

where 10 = 10µeV and B0 = 5mT, and constant

c = 1− 22/3 . The values 10 and B0 are selected from the
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Figure 2. Experimental results for the gap in the spectrum 1b

obtained in Ref. [18] (1) together with simulation results using the

formula (13) (2).

condition that the value 1b = 10 in the field B0 is such that

the localization length (9) in the magnetic field will be equal

to the localization length (12) due to the disorder. The graph

of the function (13) is shown in Figure 2 by the orange

curve 1, next to which a pink polyline 2 connects points

based on experimental data from Ref. [18]. Figure 2 shows

that there is a fairly good agreement with the experiment

in the range of magnetic fields from 0 to 100mT, for which

experimental results were obtained in Ref. [18].
It should be noted that the approximation (13) in accor-

dance with (9) leads to a dependence of the localization

length on the magnetic field in the form lb ∼ B−2/3,

which according to the general theory [11], from which

the formula (10) follows, means a strong electron-electron

interaction in the limit K → 0.

Let’s move on to calculating the local resistance Rloc.

First, we calculate the local resistance at different tempera-

tures using a formula close to (7). Experimental results in

Ref. [9] suggest that resistance depends exponentially on the

ratio 10/kT which power index is smaller than unity. It is

most satisfactorily obtained to approximate the experimental

results by dependence

R(T, B < B0) = R0 exp
(

(10/kT )1/2
)

, (14)

where the value R0 ∼ 105 Ohms, i. e. exceeds the quantum

of resistance r0 by ∼ 4 times. The formula (14) can be

applied in weak magnetic fields B < B0, where B0 = 5mT,

when localization is determined by a length (12) indepen-

dent of the magnetic field. The graphs of the function (14),
constructed for the temperature T = 2, 1, 0.5, 0.2, 0.1K,

are shown in the left part of Figure 3 with horizontal lines

drawn up to the value B = B0. This region corresponds

to a topological insulator with disorder, i. e., a topological

Anderson insulator.

Starting with the magnetic field B = B0, we use an

approximation of the same type as (14), but in which the
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Figure 3. Simulation of longitudinal (local) resistance R loc for

experiments [9], executed according to (14) and (15). Different

curves correspond to different temperatures. The area to the

left of the threshold field B0 = 5mT corresponds to a topological

insulator with fixed localization length lu of edge states, the area to

the right of B0 corresponds to a decreasing one according to (10)
with index K = 0 the length of localization in the magnetic field.

gap in the spectrum 1b(B), or activation energy, is no longer

equal to 10, but it depends on the magnetic field and is

approximated by the formula (13). The resistance in this

mode is

R(T, B > B0) = R0 exp
(

(1b(B)/kT )1/2
)

. (15)

Graphs of the function (15), constructed for the same set of

temperature values, T = 2, 1, 0.5, 0.2, 0.1K, are plotted

in the right part of Figure 3. This is the insulator mode, in

which the localization length of the edge states decreases

with an increase in the magnetic field. It should be noted

that the modes (14) and (15) correspond physically to the

same system, since the edge states continue to exist, but

with the transition from (14) to (15), the length of their

localization becomes variable, decreasing with increasing

magnetic field. Therefore, in our opinion, the transition

from a topological insulator to the usual resistance behavior

in Figure 3 should be considered quantitative, but not

qualitative. In general, the agreement of the results in

Figure 3 with experimental data from Ref. [9] in fields up to

∼ 300mT can be considered satisfactory.

The value B2 = 200mT, is selected as the right boundary

of the magnetic field interval in Figure 3. According to

experimental data from Ref. [9], at values of B > B2, a

decrease in local and nonlocal resistances is observed due

to the transition to the quantum Hall effect mode described

in sec. 2 in this paper. In the field Bc ∼ 390mT, according

to (6), conditions for observing QHE are already being

created for bulk states that remained localized and did not

participate in transport at low temperatures. Therefore, our

approximations in fields of order and higher than B2 lose

their validity, as the transport of edge states with increas-

ing resistance begins to transform into transport of bulk

and edge states in the quantum Hall effect mode. A detailed

calculation of these transient modes and the microscopic

structure of edge states in a magnetic field is an interesting

task for future studies.

4. Conclusion

The spectrum and Landau levels have been modeled for

states in the HgTe/Hg0.3Cd0.7Te quantum well with ori-

entation (013) and thickness of 14 nm in the phase of a

topological Anderson insulator with strong disorder for the

purpose of constructing theoretical estimates of recent

experiments in Ref. [9] for transport. It is shown that

the quantization threshold of the Hall resistance, which

is manifested when the cyclotron frequency exceeds the

magnitude of the broadening of the Landau levels due to

disorder, corresponds to experimental data. A model of the

dependence of the longitudinal resistance on the magnetic

field for transport through edge states is constructed, taking

into account the gap in the spectrum due to disorder,

which turns into a gap that grows with the magnetic field

according to experimental data. The obtained dependences

of resistance on the magnetic field for different temperatures

are in good agreement with the experimental results. To

build a detailed picture of the edge states in a topological

Anderson insulator in a magnetic field, it is assumed that

research will continue in the future, primarily focusing on

the construction of microscopic models.
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