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Экспериментально и теоретически исследованы транспортные и излучательные характеристики квантового

каскадного лазера с
”
резонансно-фононным“ дизайном с частотой излучения вблизи 2.3 ТГц в сильных

магнитных полях до 11.5 Тл при гелиевой температуре. В области магнитных полей 5−6Тл наблюдалось

подавление лазерной генерации вследствие
”
резонансного“ рассеяния с нулевого уровня Ландау, относя-

щегося к верхнему лазерному уровню, на первый уровень Ландау, относящийся к нижнему лазерному

уровню, что приводит к подавлению инверсии населенностей рабочего перехода лазера. Продемонстрировано

трехкратное уменьшение порогового тока лазера при приложении сильного магнитного поля до 11.5 Тл

(по сравнению с нулевым полем) вследствие
”
нульмеризации“ электронных состояний и уменьшения

паразитного рассеяния.
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1. Введение

Возможность усиления и генерации электромагнит-

ного излучения сверхрешеткой квантовых ям (КЯ)
при пропускании электрического тока была предска-

зана более 50 лет назад в работе Р.Ф. Казаринова

и Р.А. Суриса [1]. Эта идея стимулировала многолетние

исследовательские усилия в Bell Labs, которые привели

в 1994 году к созданию первого квантового каскадного

лазера (ККЛ) [2]. ККЛ в настоящее время превосходят

по эффективности диодные лазеры среднего ИК диапазо-

на и используются во многих промышленных и научных

приложениях [3].

Эффективность ККЛ принципиально ограничена ши-

роким спектром двумерных подзон и соответствующим

свободным движением электронов в плоскости КЯ.

Широкий спектр приводит к быстрой безызлучатель-

ной рекомбинации электронов с верхней в нижнюю

рабочую подзону из-за испускания фононов, скорость

которой значительно превышает скорость излучательной

рекомбинации. В результате инверсия населенности,

необходимая для работы лазера, может быть достигнута

только при достаточно высоком пороговом токе, до-

стигающем нескольких кА/см2 [2]. Двумерный характер

спектра электронов в КЯ также приводит к сильному

поглощению на свободных носителях и соответствую-

щим потерям из-за тока, возбуждаемого компонентой

электрического поля в плоскости лазерной моды. В ра-

ботах [4,5] было предложено использовать для создания

ККЛ сверхрешетки квантовых точек, чисто дискрет-

ный спектр которых позволил бы значительно снизить

скорость безызлучательной рекомбинации, оптические

потери и пороговый ток ККЛ (до величин ∼ 10А/см2),
однако даже попытки частично реализовать эту идею

(структура с квантовыми точками в КЯ) не привели

к ожидаемому результату (см., например, [6]).

”
Нульмеризация“ электронного спектра также может

быть достигнута в обычном ККЛ при приложении

квантующего магнитного поля, вектор индукции кото-

рого направлен перпендикулярно к слоям структуры.

В данном контексте под
”
нульмеризацией“ подразуме-

вается случай, когда циклотронная энергия превосхо-

дит энергию квантов излучения ККЛ и излучатель-

ные переходы идут между нулевыми уровнями Ландау,

относящимися к верхнему и нижнему рабочим уров-

ням лазера. Естественно, что для формирования тако-

го дискретного спектра циклотронная энергия должна

кратно превосходить ширину уровней Ландау. Первые
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исследования влияния магнитного поля на работу ла-

зеров были выполнены применительно к ККЛ средне-

го инфракрасного (ИК) диапазона, где при развертке

импульсного магнитного поля до 60 Тл наблюдались

осциллирующие зависимости интенсивности лазерного

излучения от магнитного поля (внешне иногда напо-

минающие осцилляции Шубникова-де Гааза), что свя-

зывалось с зависимостью времени жизни на верхнем

лазерном уровне от величины магнитного поля [7,8]
(см. также [9]). При этом в максимумах осцилляций

интенсивность излучения ККЛ кратно превышала сигнал

при B = 0. Однако таких магнитных полей недостаточно

для надежного выполнения условия
”
нульмеризации“

спектра электронных состояний в ККЛ среднего ИК

диапазона ~ωc ≥ ~ω. Здесь ~ — постоянная Планка, а

ωc = eB/m∗c — циклотронная частота электронов, e —

заряд электрона, c — скорость света. Для ~ω = 100 мэВ

и типичного значения эффективной массы в КЯ GaAs

m∗ = 0.069m0 [10] (m0 — масса свободного электрона)
такая оценка дает B ≥ 60 Тл. В то же время для ККЛ те-

рагерцового диапазона, где энергии квантов на порядок

меньше, условие
”
нульмеризации“ спектра может быть

выполнено в стационарных магнитных полях, доступных

при использовании сверхпроводящих соленоидов. С мо-

мента создания ТГц ККЛ был выполнен ряд исследова-

ний их характеристик в магнитных полях (см., напри-
мер, [10–20]). Осцилляции интенсивности излучения от

магнитного поля наблюдались уже в постоянных маг-

нитных полях до 6 Тл [10–15]. В последующих работах

основное внимание уделялось переключению генерации

на переходы между другими подзонами под действием

магнитного поля [16–20]. В нашей недавней работе [21]
было исследовано влияние магнитного поля до 5 Тл на

излучательные характеристики различных ККЛ диапа-

зона 3.3−3.7 ТГц с
”
резонансно-фононным“ дизайном.

В настоящей работе исследовался более низкочастотный

(2.3 ТГц) ККЛ в магнитных полях до 11.5 Тл, для которо-

го эффекты магнитного квантования проявляются более

ярко.

2. Методика эксперимента и расчеты

Исследовался ККЛ с активной областью на ос-

нове четырех туннельно-связанных квантовых ям

GaAs/Al0.15Ga0.85As в периоде структуры с резонансно-

фононной схемой депопуляции нижнего лазерного уров-

ня. Толщины слоев, начиная с барьера инжектора, со-

ставляли 3.39/9.61/5.65/8.19/3.11/7.06/4.24/16.10 в нм (КЯ
GaAs выделены жирным шрифтом). Широкие (16.10 нм)
КЯ GaAs легировались донорной примесью Si с кон-

центрацией 1.9 · 1016 см−3. Структура общей толщи-

ной ∼ 10мкм была выращена методом молекулярно-

пучковой эпитаксии Ю.Г. Садофьевым. Далее изготавли-

вались лазерные полоски с волноводом металл-металл

по технологии, описанной в работе [22]. Резонатор

Фабри–Перо формировался путем скалывания волново-

да металл-металл, что позволяет формировать зеркала

на сколотых гранях. Ширина полоска исследуемого ККЛ

составляла 100 мкм, длина полоска — 2.4 мм. Лазер

был смонтирован на медный теплоотвод типа C-mount,

к верхнему полоску приваривались несколько золотых

проволок диаметром 30 мкм, равномерно распределен-

ных по всей длине полоска для равномерной инжекции

тока. При измерениях в магнитных полях до 5 Тл ККЛ,

как и в работе [21], располагался в заливном гелиевом

криостате при температуре 4.2K в центре сверхпроводя-

щего соленоида. Лазер ориентировался так, что магнит-

ное поле было перпендикулярно слоям структуры (па-
раллельно току) и излучение выходило в направлении,

перпендикулярном магнитному полю. Для вывода из

криостата излучение с помощью зеркала направлялось

по световоду из полированной трубки из нержавеющей

стали. Излучение регистрировалось с помощью криоген-

ного примесного фотоприемника Ge : Ga, вынесенного

из магнитного поля соленоида, или каналировалось

в фурье-спектрометр Bruker Vertex 80v для записи спек-

тра излучения. В качестве фотоприемника в этом случае

также использовался Ge : Ga, размещенный в световод-

ной вставке в транспортный гелиевый сосуд Дьюара

СТГ-40. В более сильных магнитных полях, до 11.5 Тл,

ККЛ располагался в криостате-вставке Optistat PTR,

который помещался в
”
теплое“ отверстие криостата

сверхпроводящего соленоида Cryofree Superconducting

Magnet фирмы Oxford Instruments. В этом случае ККЛ

находился в теплообменном газе — гелии при темпе-

ратуре ∼ 4K. Магнитное поле и в этом случае было

перпендикулярно слоям структуры ККЛ. Излучение ла-

зера регистрировалось размещенным рядом примесным

фотоприемником Ge :Ga, ориентированным таким обра-

зом, что ток фотоприемника был параллелен магнит-

ному полю. Последнее исключало полное подавление

чувствительности сильным магнитным полем, но при-

водило к ее осцилляциям и кратному падению с ростом

поля [23]. Измерения характеристик ККЛ проводились

в импульсном режиме (длительность импульса состав-

ляла несколько микросекунд, частота повторения —

40−100 Гц).
Расчеты зонного спектра, спектров усиления и гене-

рации проводились на основе системы балансных урав-

нений для локализованных состояний с периодически-

ми граничными условиями [24–26]. Базисные волновые

функции находились k·p-методом [25,26] с последу-

ющим преобразованием специального вида для учета

дефазировки [24]. Вероятности переходов рассчитыва-

лись с учетом изменения плотности состояний в маг-

нитном поле, учитывались процессы туннелирования,

рассеяния на оптических фононах, заряженных примесях

и шероховатостях гетерограниц для среднеквадратичных

флуктуаций толщин слоев 0.3 нм и длины корреля-

ции между неоднородностями в плоскости слоев 9 нм.

Рассеянием на акустических фононах пренебрегалось.

При этом использовались приближенные матричные

элементы взаимодействий, рассчитанные при нулевом
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Рис. 1. Диаграмма зоны проводимости и квадраты модулей

волновых функций электронов исследуемого ККЛ, рассчитан-

ные k·p-методом при температуре T = 55K и напряжении на

периоде структуры V = 50мВ. Прямыми стрелками показаны

излучательные переходы, ~ω0 — энергия продольного оптиче-

ского фонона.

магнитном поле для энергий начальных и конечных

состояний, соответствующих энергиям уровней Ландау.

На рис. 1 представлены рассчитанная в нулевом маг-

нитном поле диаграмма зоны проводимости и квадраты

модулей волновых функций электронов при температуре

T = 55K и напряжении на периоде активной области

ККЛ V = 50 мВ. Прямыми стрелками показаны излуча-

тельные переходы. Верхний лазерный уровень (u) для

эффективного переноса электронов между каскадами

туннельно связан с уровнем инжектора (i). Нижний

лазерный уровень (l) туннельно связан с уровнем экс-

трактора (e), который для эффективного опустошения

отстоит на энергию продольного оптического фонона

~ω0 от уровня инжектора (i ′) следующего периода.

При расчетах температура носителей заряда полагалась

равной температуре кристаллической решетки.

3. Результаты и обсуждение

На рис. 2 представлены измеренные зависимости

интегральной интенсивности излучения от магнитного

поля до 5 Тл при различных токах. Видно, что при токах

1А и 1.1 А генерация возникает только при наложении

магнитного поля, т. е. они меньше порогового тока

в нулевом магнитном поле. При всех токах излучение

сильно подавляется при приближении к магнитному

полю 5Тл, кроме того, при различных токах просмат-

ривается минимум при B = 2.8Тл. На вставке к рис. 2

представлены спектры излучении в нулевом магнитном

поле и в поле 3.75 Тл. Видно, что приложение поля не

изменяет частоту генерации 2.31 ТГц (~ω = 9.54 мэВ),
т. е. переходы происходят между одними и теми же

рабочими уровнями.

Дополнительные измерения спектров излучения в оп-

тическом криостате замкнутого цикла в нулевом магнит-

ном поле показали, что генерация сохраняется вплоть

до T = 105K. Наблюдаемые зависимости интенсивно-

сти излучения от магнитного поля естественно свя-

зать с взаимным расположением уровней Ландау, от-

носящихся к верхнему и нижнему лазерному уровням.

При пересечении n-ым уровнем Ландау, относящимся

к нижнему лазерному уровню, нулевого уровня Ландау,

относящегося к верхнему лазерному уровню, вклю-

чаются механизмы рассеяния на примесях, дефектах

и неровностях интерфейсов, приводящих к опустошению

верхнего лазерного уровня и падению инверсии. Наибо-

лее ярко этот эффект должен быть выражен для n = 1

при B = ~ωm∗c/e = 5.6 Tл (m∗ = 0.069m0 — эффектив-

ная масса электронов в КЯ GaAs [10]), что с учетом

конечной ширины уровней хорошо соответствует наблю-

даемому подавлению интенсивности излучения ККЛ при

приближении к 5 Тл (рис. 2). Наблюдаемый минимум

интенсивности излучения при B = 2.8 Тл соответствует

случаю n = 2. Аналогичные минимумы интенсивности

излучения при развертке магнитного поля для слу-

чаев n = 2.3 наблюдались нами ранее и для других

ТГц ККЛ [21].

Представляет интерес исследование влияния более

сильного магнитного поля на излучательные характе-

ристики ККЛ. На рис. 3 (нижняя панель) представ-

лены рассчитанные зависимости мощности излучения

данного ККЛ от магнитного поля до 12 Тл. Как видно

из рисунка, расчет предсказывает полное подавление

генерации в полях от 5 до 6 Тл (случай n = 1) и более

глубокий по сравнению с экспериментом минимум при

2.8 Тл (случай n = 2). Виден также минимум вблизи

2 Тл, который, очевидно, соответствует n = 3. Расчет

предсказывает кратный рост мощности излучения в по-

лях 10−12Тл по сравнению с мощностью в слабых

магнитных полях. Падение интенсивности лазерного из-
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Рис. 2. Зависимости интегральной интенсивности излучения

ККЛ от магнитного поля ККЛ при различных рабочих токах

лазера (в А). T = 4.2K. На вставке — спектры излучения ККЛ

в нулевом магнитном поле и при B = 3.75 Тл.

5∗ Физика и техника полупроводников, 2025, том 59, вып. 7



436 Р.Х. Жукавин, М.А. Фадеев, А.В. Антонов, Д.А. Постнов, К.А. Ковалевский, С.В. Морозов...

2 4 6 8 10 12
0

50

100

150

B, T

400
500
600

0.3

0.6

γ
, 
m

e
V

su
m

P
, 
m

W
o
u
t

2j, A/cm :

Рис. 3. Рассчитанные мощность генерации ККЛ (нижняя
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Рис. 4. ВАХ и L−I-характеристики ККЛ в различных маг-

нитных полях (в Тл). Уровень сигналов (L−I-характеристики)
в магнитных полях 0−4Тл уменьшен в 3 раза.

лучения в
”
резонансных“ магнитных полях коррелирует

с падением рассчитанного времени жизни на верхнем

лазерном уровне (u на рис. 1) — верхняя панель

на рис. 3. Соответствующая частота рассеяния (обратное
время жизни) в энергетических единицах в максимуме

при B = 5.75Тл составляет ∼ 0.7мэВ, что по-видимому

меньше реальной ширины уровня Ландау, определяемой

также частотой
”
внутриуровнего“ рассеяния. В рабо-

те [9] приводится оценка ширины уровня Ландау в струк-

туре ККЛ ТГц диапазона в случае сильного магнитного

поля 1E ≈ δB1/2, где δ = 1мэВ/Тл1/2. Для магнитного

поля 9 Тл эта оценка дает ширину уровня Ландау

3мэВ, что кратно меньше энергии кванта излучения

ККЛ, и позволяет говорить о формировании дискретного

спектра в активной области лазера.

На рис. 4 представлены результаты исследований

ККЛ в криомагнитной системе замкнутого цикла Oxford

Instruments в магнитных полях до 11.5 Тл. На ВАХ хоро-

шо видно, что в сильных магнитных полях (B > 7Тл)

”
включение“ тока становится более резким, что сви-

детельствует об обужении уровней размерного кванто-

вания, через которые происходит транспорт носителей

заряда. В самых сильных магнитных полях (10−11.5 Тл)
на ВАХ наблюдаются характерные изломы (при токах

0.4−0.45А), соответствующие моментам возникновения

стимулированного излучения. Такие изломы ВАХ, обус-

ловленные ускорением токопереноса вследствие излуча-

тельных переходов электронов между рабочими уров-

нями лазера, свидетельствуют о достаточно высоком

качестве лазерной структуры [27].

Как видно из представленного на рис. 4 семей-

ства L−I-характеристик в магнитных полях 0−11.5 Тл,

с ростом магнитного поля происходит значительное,

почти трехкратное уменьшение порогового тока ККЛ.

Более детально эти данные представлены на рис. 5, где

видно, что пороговый ток слабо меняется до области

”
резонанса“ ~ωc ∼ ~ω (ωc = eB/m∗c — циклотронная

частота) в полях 5−6Тл, где генерация не наблюдается,

а затем быстро уменьшается с полем, что, очевидно,

связано с
”
нульмеризацией“ состояний в магнитном

поле и ожидаемым подавлением паразитного рассеяния

и увеличением времени жизни носителей на верхнем

лазерном уровне. Как видно на рис. 4, в магнитных полях

7−7.5 Тл наблюдается
”
бугорок“ лазерного излучения

в области токов 0.6−0.7 А,
”
предшествующих“ порого-

вым значениям тока ККЛ. Судя по дифференциальному

сопротивлению ККЛ в этой области токов, изменение

тока на 0.1А приводит к изменению напряжения на

периоде структуры на ∼ 3мВ. Как следует из рис. 1, эта

величина изменения напряжения близка к характерным

расстояниям между уровнями размерного квантования

в
”
активной“ области периода структуры ККЛ, в част-

ности, между нижним лазерным уровнем l и уровнем

экстрактора e. При таком изменении тока, по-видимому,

происходит переключение генерации с одной пары уров-
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Рис. 5. Зависимость порогового тока ККЛ от магнитного поля.
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ней на другую (в общем случае генерация возможна не

только при переходах u → l, но на переходах i → l и

u → e), что и приводит к возникновению генерации при

токах ниже
”
истинного“ порогового значения.

4. Заключение

Таким образом, для ККЛ с
”
резонансно-фононным“

дизайном, работающего на частоте 2.3 ТГц, продемон-

стрировано подавление генерации вблизи резонансного

магнитного поля (~ωc ∼ ~ω), обусловленное
”
вклю-

чением“ рассеяния с нулевого уровня Ландау, отно-

сящегося к верхнему лазерному уровню, на первый

уровень Ландау, относящийся к нижнему лазерному

уровню, и подавлением инверсии перехода. Показано,

что приложение сильного магнитного поля до 11.5 Тл

приводит к трехкратному уменьшению порогового то-

ка вследствие нульмеризации электронных состояний

и уменьшению паразитного рассеяния.
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Abstract Transport and emission characteristics of a quantum

cascade laser with a
”
resonant-phonon“ design with an emission

frequency of 2.3 THz in strong magnetic fields up to 11.5 T

at liquid helium temperature were studied experimentally and

theoretically. In the 5−6 T magnetic field range, suppression of

generation was observed due to
”
resonant“ scattering from the

zero Landau level (associated with the upper laser level) to the

first Landau level (associated with the lower laser level) leading to

a reduction in the population inversion of the working transition of

the laser. A threefold decrease in the laser’s threshold current

was demonstrated under a strong magnetic field up to 11.5 T

was applied (compared to the zero field), attributed to the zero-

dimensional nature of electron states, which suppresses parasitic

scattering.
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