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В работе методом составного пьезоэлектрического осциллятора исследована колебательная деформация

в монокристаллах твердого раствора Ga2O3-Al2O3. Получены амплитудные и температурные зависимости

декремента затухания и модуля упругости. Показано наличие амплитудно-зависимого внутреннего трения,

связанного с эффектом микропластичности в исследуемом материале. В исследуемом материале наблю-

дались термоактивируемые эффекты релаксации упругих колебаний при низких температурах T1 ≈ 134K

и T2 ≈ 182K. Было установлено, что ионы алюминия в исследуемых твердых растворах формируют

рассеивающие поля для подвижных дислокаций и обуславливают особенности амплитудно-зависимого

внутреннего трения.
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1. Введение

Полупроводниковые материалы на основе кристаллов

бета фазы оксида галлия (β-Ga2O3) привлекают значи-

тельное внимание научных групп во всем мире [1–4]
благодаря перспективам их использования в силовой

электронике, УФ-детекторах и других оптоэлектрон-

ных устройствах [5,6]. Преимущества бета фазы оксида

галлия включают большую ширину запрещенной зоны

4.8 eV, высокую термическую стабильность и радиаци-

онную стойкость. Возможности выращивания монокри-

сталлов β-Ga2O3 из расплава стимулируют работы в

области изготовления из них подложек и объемных

элементов полупроводниковых устройств [1,7,8]. Функ-

циональные свойства Ga2O3 в значительной степени

определяются его дефектной структурой, в частности

вакансиями различного типа, примесными центрами,

возникающими в процессе роста и дефектами, вноси-

мыми при обработке [1,9]. Одним из значимых направ-

лений работ в области роста объемных кристаллов

оксида галлия является создание твердых растворов

Ga2O3-Al2O3 [10]. Ионы алюминия могут распреде-

ляться в таких кристаллах по октаэдрическим и тет-

раэдрическим позициям подрешетки Ga+3 с сохране-

нием монокристаллической низкодефектной структуры

β-Ga2O3 в большом концентрационном интервале (до
mol. 40% [11]). В то же время, полученный твердый

раствор характеризуется бо́льшими значениями ширины

запрещенной зоны [10,11] и может быть использован в

качестве платформы для создания новых устройств.

Исследование механизмов диссипации энергии в про-

цессе колебательной деформации — внутреннего трения

(ВТ, δ), а также эффективного модуля упругости (МУ, E)
в монокристаллах β-Ga2O3 является крайне актуаль-

ным с точки зрения, как фундаментальной науки, так

и практического применения. Способность материалов

рассеивать энергию механических колебаний при цик-

лическом деформировании характеризует микрострук-

туру материала и, в случае монокристаллов, тесно

связана с наличием в них различных дефектов. Анализ

нелинейной амплитудно-зависимой части внутреннего

трения (АЗВТ) и дефекта модуля упругости (ДМУ) в

области высоких (∼ 105 Hz) частот, позволяет опреде-

лить наличие подвижных дефектов и проанализировать

эффекты релаксации упругих напряжений за счет их

взаимодействия [3,9].

Экспериментальным методом исследования механиче-

ских свойств и дефектной структуры кристаллических

материалов, позволяющим регистрировать величины ВТ

и ДМУ в области высоких частот является метод со-

ставного пьезоэлектрического осциллятора (СПО) [12].
Существенные требования СПО к геометрии образцов

и неравномерное распределение в них колебательных

напряжений требуют особого подхода в процессе под-

готовки монокристаллических образцов для характери-

зации их дефектной структуры. Наличие поверхностных

нарушений кристаллической структуры может оказывать

влияние на измеряемые СПО величины. Так, в случае

материалов с сильным межатомным взаимодействием,

2008



Амплитудно-зависимое внутреннее трение и модуль упругости... 2009

10 mm

a b

c

0.2 mm

2

3

0.2 mm

1

Рис. 1. Внешний вид образцов, зафиксированных на кварцевом преобразователе (а), изображения частей образца, полученное

оптической микроскопией в поляризованном свете (b) и (c). Цифрами 1, 2, 3 обозначены соответственно: включения (газовые
инклюзии), расщепления и монокристаллическая область со следами полос роста.

например, керамики Al2O3 [13] было показано, что нача-

ло движения дефектов обусловлено наличием внутрен-

них напряжений в материале, которые концентрируются

в областях микродефектов, например, у вершин микро-

трещин. Это подтверждено наблюдениями в работе [13]
микропластической деформации при напряжениях на два

порядка ниже макроскопического предела текучести, а

также симметричной петлей гистерезиса [14], характер-
ной для фрикционного механизма диссипации энергии.

Ранее метод СПО использовался для описания упругих

свойств и микропластичности ионных кристаллов, в том

числе сверхширокозонного полупроводника — нитрида

галлия (см. [15]). Анизотропия ДМУ и ВТ в GaN была

объяснена как зависимостью от кристаллической ориен-

тации, так и анизотропией в распределении дефектов,

обусловленной методом получения материала.

В случае исследования твердых растворов деформаци-

онные зависимости, получаемые методом СПО, позво-

ляют разделить механизмы взаимодействия дислокаций

с атомами примеси, локализованными в плоскостях

скольжения дислокаций — преодолеваемыми в термоак-

тивируемом режиме, и атомами примеси, влияющими на

дислокации за счет упругого взаимодействия — преодо-

леваемыми атермически [16]. Для твердых растворов на

основе ионных кристаллов Ga2O3-Al2O3 при интерпре-

тации данных и разделении вкладов механизмов ВТ воз-

никает необходимость учета сложного дефектообразова-

ния, включающего различные виды кислородных (VO) и

галлиевых вакансий (VGa), атомов замещения (AlGa), их
комплексов, а также структурное состояние образцов,

обусловленное методом их получения и обработки.

В данной работе проведено экспериментальное ис-

следование микропластической деформации монокри-

сталлов твердого раствора Ga2O3-Al2O3 при измерении

амплитудно-зависимого внутреннего трения и модуля

упругости методом СПО на частоте около 100 kHz. Ана-

лиз данных, полученных методом СПО, направлен на

установление взаимосвязи между дефектной структурой

и структурозависимыми характеристиками материала,

определение суммарного вклада вносимого дефектной

структурой материала в затухание упругих колебаний,

а также, описание влияния на ВТ взаимодействия дис-

локаций с полями барьерных и дальнодействующих

дефектов.

2. Методика эксперимента

Нами изучались образцы в виде стержней прямо-

угольного поперечного сечения (рис. 1, а) с характер-

ными размерами 2×3×32mm вырезанные из объемных

кристаллов твердого раствора Ga2O3-Al2O3, полученных

методом роста из расплава [10]. Вырезанные образцы ис-

следовались при помощи анализа изображений оптиче-

ской микроскопии в поляризованном отраженном свете

(микроскоп MET-5T, Altami). Рентгеновские измерения

проводили по схеме Брэгга−Брентано с использованием

Cu-Kα излучения и стандартной щелевой конфигурации

дифрактометра ДРОН-8 (Буревестник). Для исследова-

ния колебательной деформации применялся метод со-

ставного пьезоэлектрического осциллятора на базе квар-

цевых преобразователей [12] при частоте возбуждения

около 100 kHz и относительной амплитудой деформации

от 10−7 до 10−4. Направление распространения упругих

колебаний (ультразвука) совпадало с длинной стороной

стержня и с кристаллографическим направлением [010]

в решетке бета-фазы Ga2O3-Al2O3, которое являлось на-

правлением роста кристалла и вдоль которого вырезали

образцы. Фотографии исследуемых образцов, зафиксиро-

ванных на кварцевом преобразователе, аналогично [9],
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а также изображения, полученные при помощи оптиче-

ской микроскопии, приведены на рис. 1.

Методом СПО измеряли величины декремента зату-

хания δ, соответствующего ВТ в материале, резонанс-

ной частоты f колебаний и относительной амплитуды

деформации ε. Исследование амплитудных зависимостей

проводили при монотонном увеличении (прямой ход) ве-
личины ε от начального значения ε0, соответствующего

устойчивому возбуждению резонансных колебаний СПО

при малых амплитудах деформации εmax ∼ 10−7, до

максимального εmax ∼ 10−4 и ее уменьшении (обратный
ход) до значений, соответствующих первоначальным

условиям. Для исследования температурных зависимо-

стей использовались режимы охлаждения и нагрева со

скоростью не более 2K/min при помощи низкотем-

пературной приставки, аналогичной описанной в [17].
Методика обработки данных, полученных СПО, расчета

амплитудно-зависимого внутреннего трения и модуля

упругости, описана более подробно в работах [9,12,18].
Амплитудно-зависимое внутреннее трение (δd), и дефект

модуля упругости (1E/E)d определялись аналогично

этим работам относительно величин (E0, δ0), измерен-
ных при малых ε ∼ 10−7 амплитудах деформации.

δ = δ0 + δd (1)

(1E/E)d =
(E − E0)

E0

(2)

Также по измеренным величинам дополнительно вы-

числяли коэффициент r пропорциональности АЗВТ

и ДМУ:

δd = r(1E/E)d (3)

По величине данного коэффициента определяли вид

дислокационного взаимодействия с преодолеваемыми

барьерами, а по амплитудной зависимости r(ε) про-

странственное распределение дефектов, выступающих в

роли этих барьеров.

Ранее полученные данные по исследованию кристал-

лов чистого β-Ga2O3 методом СПО приведены в рабо-

тах [3,9].

3. Экспериментальные результаты

3.1. Оптическая микроскопия

Изображения оптической микроскопии исследуемых

образцов позволили визуализировать области, содержа-

щие различные макроскопические дефекты, как связан-

ные с методом роста кристалла (рис. 1, b), так и вы-

званные подготовкой (выкалыванием, резкой) образцов

(рис. 1, c). Наибольшая область нарушенной структуры

в исследуемых образцах находилась на торцах стержней

и не превышала 0.8mm от их края. В центральной

части исследуемых акустической методикой образцов,

вносящей наибольший вклад в измеряемые характери-

стики наблюдались система параллельных полос, обра-

зованных в процессе роста кристалла (см. например,

”
striations“ [19]).
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Рис. 2. Рентгеновская дифрактограмма (а) и кривая кача-

ния (b) в условиях отражения 4 0 0.

3.2. Рентгеновская дифрактометрия

Полученные данные дифракции рентгеновского излу-

чения для исследованного кристалла в диапазоне углов

2θ = 10◦−120◦ и кривая дифракционного отражения в

условиях рефлекса 4 0 0 приведены на рис. 2.

При исследовании центральной области образца на-

блюдалась серия дифракционных отражений, соответ-

ствующих плоскости (1 0 0) бета-фазы Ga2O3-Al2O3

(рис. 2, а). Ширина кривой дифракционного отражения

4 0 0 на половине высоты (FWHM) для исследуемого

кристалла составила 75′′ .

3.3. Исследования методом СПО

Для малых амплитуд деформации ε ≈ 10−7 были най-

дены значения модуля упругости E0 = 292GPa и декре-

мента затухания упругих колебаний δ0 = 8 · 10−7 . Дан-

ные амплитудных зависимостей декремента ВТ δ = δ(ε)
были получены при постепенном увеличении εmax до
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10−4. При этом наблюдался гистерезис с увеличением

начальных измеряемых значений декремента δ0 и со-

хранением вида АЗВТ для прямого и обратного хода

(циклы 0-2 на рис. 3, а). При достижении εmax ≈ 10−5

происходило изменение зависимости (перегиб на кривых

АЗВТ) с резким увеличением значений δ0 при обратном

ходе (циклы 2-5 на рис. 3, а). Дальнейшие измерения по-

казывали уменьшение начального значения декремента

(циклы 5-10, на рис. 3, а).

Значения модуля E уменьшались при возрастании

амплитуды деформации, что соответствует положитель-

ной величине ДМУ. Также, величины E были меньше

соответствующих при обратном ходе — отрицатель-

ный гистерезис вызванный уменьшением (колебатель-

ной) упругости (рис. 3, b). Для пороговых значений

εmax ≈ 10−5 наблюдается обратное к δ0 поведение —

изменение амплитудной зависимости E(ε) и резкое

уменьшение абсолютных значений с сохранением вели-

чины относительного изменения.

Данные температурных зависимостей модуля E и де-

кремента δ при охлаждении и нагреве образца кристалла

Ga2O3−Al2O3 для амплитуды деформации εmax = 10−6

представлены на рис. 4, а. Такая степень деформации в

образцах, при получении температурных зависимостей

была выбрана на основании данных рис. 3, как соответ-

ствующая началу АЗВТ. Модуль упругости практически

монотонно увеличивается с понижением температуры,

что отражает стандартное тепловое поведение модуля

Юнга в кристаллических телах. Относительное изме-

нение модуля 1E ≈ 0.8% сохраняется при охлаждении

до 93K и нагреве образца до 273K. Зависимость E(T )
имеет перегибы в точках T1 ≈ 134K и T2 ≈ 182K. Внут-
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Рис. 5. Коэффициент r пропорциональности амплитудно-зависимого трения δd и дефекта модуля упругости (1E/E)d для

комнатных (а) и низкотемпературных (b) измерений. Цифрами обозначена последовательность циклов нагружения, стрелкой

показано увеличение амплитуды деформации (прямой ход) и ее уменьшение (обратный ход).

реннее трение в исследуемых образцах уменьшается при

понижении температуры (рис. 4, a — декремент δ). Из-

менение δ(T ) немонотонное с локальными максимумами

при температурах T1 и T2. Для минимальной темпера-

туры охлаждения T = 93K была получена последова-

тельность измерений E и δ с изменением максимальной

амплитуды деформации аналогичная рис. 3. Декремент

ВТ при низкой температуре увеличивался с повышением

амплитуды аналогично высокотемпературным зависимо-

стям, однако практически не изменялся между циклами

измерений (рис. 4, b).

Коэффициент r пропорциональности АЗВТ δd и ДМУ

(1E/E)d для комнатных и низкотемпературных измере-

ний не превышал значения 2, однако в обоих случаях по-

казывал выраженную зависимость от амплитуды дефор-

мации (рис. 5). Эффект изменения ВТ δ0 при достиже-

нии максимальной амплитуды деформации εmax ≈ 10−5

изменял зависимость r(ε) и уменьшал его абсолютную

величину при комнатных температурах (рис. 5, а), в то

время как при низких температурах зависимость r(ε)
соответствовала состоянию уже деформированного об-

разца (рис. 5, b).

4. Обсуждение результатов

Во всем объеме исследованных образцов наблюдались

неоднородности в виде полос роста (область 3 на

рис. 1, b), которые могли быть образованы неоднородно-

стью распределения вакансий (VO,VGa) и атомов заме-

щения (AlGa), или изменением условий роста кристалла.

Известно, что соответствующие дефекты (striations), а
также сопутствующие им дислокационные структуры и

микротрещины (microcracks) образуются в кристаллах

β-Ga2O3, выращенных вдоль направления [0 1 0] раз-

личными методами [20,21]. Влияние макроскопических

дефектов другого рода (области 1, 2 на рис. 1, b) и

нарушений кристалла в результате резки в данной ра-

боте исключали за счет отбора образцов и особенностей

применяемой методики — распределения колебательных

напряжений в образце [22].
По данным рентгеновской дифракции (рис. 2) был

рассчитан псевдокубический параметр a
pc

Ga2O3
= 3.74�A.

С использованием линейного приближения Вегарда

и соответствующего параметра для решетки оксида

алюминия a
pc

Al2O3
= 3.59�A [23] молярная доля алюми-

ния в исследуемом твердом растворе определена рав-

ной ∼ 3.5%. Уширение кривой дифракционного отраже-

ния (рис. 2, b) в области больших углов может указывать

на изменение параметра в небольшом диапазоне значе-

ний для отдельных областей кристалла. С учетом данных

рентгеновского анализа при низких значениях содержа-

ния алюминия в решетке (до at. 10%) атомы алюминия

AlGa замещают атомы галлия только в октаэдрических

позициях [10]. Наличие ионов алюминия в этих позициях
формирует для дислокаций, движущихся в основных

системах скольжения рассеивающие поля (см.
”
diffuse“

в [16]). Однако даже малая степень замещения AlGa,

оказывает существенное влияние на дефектную струк-

туру образца, в частности на наличие различного типа

вакансий, а также на появление в образце примесных

полос (полос роста).
Полученные данные для модуля упругости

E ≈ 294GPa и применяемая методика с максимальными

амплитудами деформации εmax ≈ 10−5 позволяют

оценить возникающие напряжения в центре образца

σmax < 300MPa. Однако наличие высоких внутренних

напряжений и микротрещин говорит о возможной

подвижности дислокаций и точечных дефектов

в исследуемом кристалле, несмотря на высокие

критические напряжения сдвига в нем (см. например, [4],
модуль сдвига в различных системах скольжения для
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направления [0 1 0] не менее 3.9 GPa). Минимальное

значение ВТ δ0 = 8 · 10−4 определяется микропроцесса-

ми, не связанными с микропластичностью: выгибанием

отрезков дислокаций и термоупругими эффектами. Мик-

ропластическая деформация в исследуемых образцах,

соответствующая АЗВТ и изменению МУ на рис. 3, ана-

логично [13] определяется их дефектным состоянием на

различных уровнях — наличием микротрещин и дисло-

кационных структур (стенок), как источника подвижных

дислокаций, а также взаимодействием подвижных

дислокаций в этих областях с другими дефектами.

Наличие локальных максимумов δ(T ) соответствую-

щее изменению упругости E(T ) при температурах T1 и

T2 (рис. 4, а) показывает термоактивируемые процессы

релаксации механических напряжений. В качестве соот-

ветствующих дефектов могут выступать легкие примеси

(С+, Si и др.), либо комплексы кислородных вакансий с

донорными примесями. Ионы алюминия, в виду малой

степени замещения, являются источником дальнодей-

ствующих сил и обуславливают ВТ, соответствующее

спадающей части зависимости r(ε) для образца после

высокой степени деформации при комнатной температу-

ре (циклы 4-7 на рис. 5, а) и неизменной зависимости

при низких температурах (рис. 5, b).

5. Выводы

Для монокристаллов твердого раствора Ga2O3-Al2O3

при малых амплитудах деформации (чисто упругая

деформации) измерены величины модуля упругости

E0 = 292GPa и декремента затухания упругих коле-

баний δ0 = 8 · 10−4, соответствующие их фундамен-

тальным упругим и релаксационным характеристикам.

В сравнении с кристаллами β-Ga2O3, полученными и

исследованными в тех же условиях наблюдается увели-

чение модуля упругости (EGa2O3

0 = 260GPa [9]). В ис-

следуемых кристаллах показано наличие амплитудно-

зависимого внутреннего трения, связанного с эффектом

микропластичности и возникающего за счет термоак-

тивируемых взаимодействий подвижных дислокаций с

дефектами. В исследуемых кристаллах не наблюдались

эффекты релаксации, связанные с наличием вакансий и

обнаруженные ранее в кристаллах β-Ga2O3. Ионы алю-

миния в исследуемом твердом растворе Ga2O3-Al2O3

создают рассеивающие дальнодействующие поля, что

отражено в наблюдаемых особенностях дислокацион-

ного внутреннего трения и подтверждено амплитудной

зависимостью коэффициента r(δ), полученной при низ-

котемпературных измерениях.
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