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1. Введение

Материалы, используемые в промышленности, часто

подвергаются повышенным разрушающим нагрузкам.

Поэтому актуальным являются исследования формиро-

вания их свойств при наложении интенсивной мегапла-

стической деформации. Скорость нарастания подобных

нагрузок может быть низкой или высокой. В последнем

случае может возникнуть импульсная волна в форме

кинка. Этот процесс является автоволновым и пред-

ставляет собой простейший топологический солитон.

Кинк выглядит как стенка, разделяющая две области

пространства с различными значениями некоторой вели-

чины. Очевидно, что после прохождения кинка должно

установиться равновесное состояние. Однако, если им-

пульс внешнего воздействия будет достаточно сильным,

то система независимо от первоначального состояния

перейдет в стационарное, существование которого об-

наружено в [1–5] при исследовании двухкомпонентных

растворов меди при наложении интенсивной пластиче-

ской деформации кручением (ИПДКР).

Автоволновые процессы широко распространены

в природе. В частности, это волны в реакции

Белоусова−Жаботинского [6], в биологических тка-

нях [7,8], межфазных границах [9,10], локализованные

сильнонеравновесные состояния в однородных диссипа-

тивных структурах [11,12]. В настоящее время динамика

кинка достаточно подробно для различных процессов

изучается на основе уравнения синус-Гордона. В рабо-

те [13] изучена динамика кинка в среде с простран-

ственной неоднородностью периодического потенциала

и с одиночной точечной примесью. Исследованы [14]

аналитические зависимости от времени скорости кинка,

движущегося под действием однородной нестационар-

ной внешней силы в среде с диссипацией и рассмотрены

случаи гармонически зависящей от времени внешней

силы и силы, зависящей от времени ступенчатым обра-

зом. Показано, что в случае приближения
”
недеформи-

руемого кинка“ примесь действует как притягивающий

потенциал, поэтому солитоны могут быть локализованы

и излучать [15].

Для случая приближения
”
деформируемого кинка“,

в дополнение к колебательному движению кинка на

потенциале, создаваемом примесью, возникают эффекты

деформации кинка (например, сильное изменение его

формы), имеющие резонансный характер [15]. Учитыва-

лась и возможность возбуждения примесной моды при

рассеянии кинка, приводящая к существенному измене-

нию результатов динамики кинка [16]. Отметим здесь

такой интересный эффект, как отражение кинка притяги-

вающей примесью из-за резонансного обмена энергией

между трансляционной модой кинка и примесной модой.

Рассматривался также случай многих
”
точечных при-

месей“ дельтообразного вида, представляющих интерес

для некоторых физических приложений [17], и даже

случай пространственной модуляции периодического по-

тенциала гармонического вида [18]. Необходимо отме-

тить, что влияние больших возмущений в общем случае

можно проводить только с помощью численных мето-

дов [19,20]. В работе [21] показано, что возмущенное

уравнение синус-Гордона качественно хорошо описыва-

ет динамику и взаимодействие кинков с топологически-

ми зарядами S = ±1 в нематических жидких кристаллах.
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Кроме того, изучена [22] зависимость скорости дви-

жения волны переброса от параметра нелокальности

среды, рассмотрены дозвуковой и сверхзвуковой режи-

мы движения волны. Исследованы условия устойчивости

кинка и антикинка в системах
”
среда−источник“ [23].

Необходимо отметить, что изучение формы кинка с

помощью феноменологической теории Ландау в об-

щем виде в двухкомпонентных соединениях меди при

наложении ИПДКР без учета поведения дислокаций

проводилось в [24].
Рассмотренные ранее модели кинка не учитывали

наличия имеющихся в реальных физических соедине-

ниях взаимодействующих между собой динамических

подсистем, в частности различного рода дислокаций,

которые играют важную роль при фазовых переходах.

В настоящей работе, которая является продолжением

серии работ, посвященных изучению влияния ИПДКР

на двухкомпонентные растворы меди (см. обзоры [1,2]),
сделана попытка восполнить этот пробел с исполь-

зованием автомодельных решений системы уравнений

Ландау−Халатникова. Следует подчеркнуть, что экспе-

риментальные данные, подтверждающие выводы данной

статьи, на данный момент отсутствуют, и полученные

теоретические результаты служат основанием для поста-

новки соответствующего эксперимента.

2. Теория

Как показано в работах [2,25], феноменологическая

теория Ландау удовлетворительно описывает процессы,

происходящие в двухкомпонентных растворах. Обуслов-

лено это тем, что в теории твердое тело представлено

в виде непрерывного континуума. Однако, симметрия

задачи учитывается при выборе соответствующих пара-

метров порядка. Исходя из феноменологической теории

Ландау, неравновесный термодинамический потенциал,

описывающий распространение кинка при наложении

ИПДКР вдоль оси OZ, имеет вид
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где αi (i = 1−3), βi (i = 1−5), ωi (i = 1−5),
δi (i = 1−3), γi (i = 1−2) — феноменологические па-

раметры, q [m] — векторный структурный параметр

порядка (ПП), который определяется как линейная ком-

бинация сдвигов атомов элементарной ячейки и преоб-

разуется по некоторому неприводимому представлению

группы симметрии кристалла, qx , qy , qz — компоненты

векторного структурного ПП, ϕ1, ϕ2 [m−2] — плотно-

сти краевых и винтовых дислокаций, т. е. суммарная

длина соответствующих дислокаций в единице объе-

ма, N — число оборотов, r−s = 4 (r = 6, s = 2) [2],
M(N) [N·m] — направленный по оси OZ момент круче-

ния. Благодаря этому моменту возникает пространствен-

ная неоднородность кристаллической структуры, описы-

ваемая производными от компонент структурного ПП.

Кроме этого, имеет место неоднородность плотностей

распределения дислокаций. Конкуренция последних двух

слагаемых с производными от структурного ПП при-

водит к появлению винтовой оси симметрии, а также

спирального распределения структурного ПП и плотно-

стей дислокаций [2]. Первое из этих двух слагаемых,

составленное из инвариантов Лифшица, может быть

равно нулю в кристаллах некоторой симметрии, но при

наложении ИПДКР, когда симметрия понижается, будет

отлично от нуля. Этим обстоятельством и обусловлено

появление множителя M(N)2 в двух последних слага-

емых выражения (1). Как указано выше, плотность ϕ2

описывает винтовую дислокацию. В настоящей зада-

че предполагается, что ϕ2 6= 0 только при наложении

ИПДКР. Следовательно, ω1 = 0, ω3 < 0 и соответству-

ющее слагаемое имеет множитель M(N)2 . Кроме это-

го аналогичный множитель содержит и слагаемое с

пространственной производной от ϕ2, поскольку при

M(0) = 0 винтовая дислокация отсутствует. Необходимо

отметить, что при наложении ИПДКР по оси OZ вектор

структурного ПП при движении вдоль OZ вращается

вокруг этой оси, т. е. меняются компоненты qx , qy , а qz

остается постоянным при неизменной величине момен-

та. Однако модуль структурного ПП и его компоненты

зависят от величины наложенного момента.

Хотя в реальных ГЦК-металлах дислокации обычно

имеют смешанный характер и часто связаны с дефек-

тами упаковки, в рамках феноменологической теории

Ландау ограничимся рассмотрением краевых и винтовых

компонент. При этом, поскольку дислокации между

собой взаимодействуют локально в местах пересечений

их дислокационных линий (ядер), то важным является,

каков общий процент концевых или винтовых дислока-

ций не зависимо от того, являются они составными или

чистыми. По этой же причине в феноменологическом

приближении не имеет значения, являются они беско-

нечными или образуют петли. Частичные дислокации

здесь также эффективно учтены, поскольку плотность

дислокаций того или иного вида меняется непрерывно,

и наличие частичных дислокаций приведет к некоторому

(небольшому) изменению плотности дислокаций того

вида, к которому ближе всего по своей природе данная

частичная дислокация.

Динамику кинка рассмотрим с помощью системы

дифференциальных уравнений Ландау−Халатникова для
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компонент векторного и скалярных ПП
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— функциональные производные, t — время, χ — мат-

ричный кинетический коэффициент, характеризующий

скорость релаксации системы к положению равновесия.

Подставляя выражения (3) в (2) получаем
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В систему уравнений (4) время t явно не входит, по-

этому она является автономной. Такие уравнения имеют

множество решений. Для облегчения их поиска приме-

няют автомодельные подстановки, в которых независи-

мые переменные связываются определенным способом.

В нашем случае удобно воспользоваться автомодельной

подстановкой типа
”
бегущая волна“, которая имеет вид

u = z − ct, (5)

где c — скорость распространения кинка. В результате

первоначальная система преобразуется в систему обык-

новенных дифференциальных уравнений и полученное

решение будет неподвижным относительно новой систе-

мы координат.

После подстановки (5) в (4) имеем
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В случае γ2 = 0, β5 = 0, ω5 = 0 система (6) будет

системой обыкновенных дифференциальных уравнений

первого порядка. В теории этих уравнений доказано, что

все интегральные кривые сходятся к стационарной точ-

ке, которая определяется как точка пересечения изоклин

горизонтальных и вертикальных производных (главные
или нуль изоклины). Изоклиной, по определению, на-

зывается геометрическое место точек, в которых каса-

тельные к интегральным кривым имеют одно и тоже на-

правление. Изоклина вертикальных производных в авто-

номных уравнениях отсутствует. Поэтому горизонталь-

ная изоклина является асимптотой для интегральных

кривых и стационарное состояние, экспериментально

обнаруженное в [1,3,5,25], математически недостижимо

за конечный промежуток времени. Включение вторых

производных в системе (6) приводит к возникновению

затухающих колебательных процессов при увеличении

значения переменной u.

Поскольку нахождение решения системы (6) в ана-

литической форме затруднительно, то для численного

анализа использовался математический пакет MatLab.

Поскольку феноменологические параметры конкретно

для двухкомпонентных растворов меди не определены,

то их значения выбирались из условия существования

решения. В предложенной схеме эксперимента [1,3,5,25]
перед наложением ИПДКР образец подвергался отжигу.

В результате такого воздействия менялись размеры

элементарной ячейки. При наложении ИПДКР наблю-

даемые величины независимо от температуры отжига

асимптотически сходились к определенным значениям,

характерным для стационарного состояния. В настоя-

щей работе изменение размера элементарной ячейки

описывает структурный ПП. Следовательно, его вели-

чина зависит от температуры отжига. В силу этого

начальные условия (НУ) для структурного ПП при

решении системы (6) определялись в соответствии с

результатами работ [1,3,5,25]. Для плотности винтовых

дислокаций, ввиду их появления только при наложении

ИПДКР, НУ выбирались нулевыми. Начальные условия
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для плотности краевых дислокаций определялись из

уравнения равновесия при отсутствии ИПДКР

β1 + β2ϕ1 + β3ϕ
2
1 + β4ϕ

3
1 + δ1q

2
0 = 0, (7)

где q0 — начальное условие для структурного ПП.

3. Обсуждение результатов

Результаты, полученные при численном анализе пред-

ставлены на рис. 1. Движение кинка в реальной системе

координат осуществляется справа налево, т. е. после его

прохода система переходит в равновесное состояние.

Колебательный характер этого перехода, похожий на

последовательность солитонов, обусловлен инерцион-

ностью системы. Подобного типа кинки наблюдались

при прохождении волны в плазме и носят название

бесстолкновительных. При построении графика на рис. 1

начальные условия для структурного ПП выбирались

меньше, чем его значение в стационарном состоянии.

Однако, если температура отжига будет такой, что

величина структурного параметра до наложения ИПДКР

будет больше стационарного, то волна переключения

также будет иметь осциллирующий характер с затухани-

ем с фазой колебания сдвинутой на 180◦ по отношению

к представленному на рис. 1, но во всех случаях асимп-

тотическое поведение будет одинаковым, что свидетель-

ствует о переходе в стационарное состояние. Из рис. 1

видно, что частота колебательного процесса не является

стабильной. Чем больше амплитуда, тем меньше период

колебаний. В силу наличия взаимодействия между раз-

личными ПП изменение дислокационных характеристик

также имеет осциллирующий характер с затуханием.

Каждая из этих кривых приближается к соответствую-

щей асимптоте. Как видно из графика рис. 1 экстремумы

кривых на начальном этапе не совпадают. Это рас-

согласование, по-видимому, связано с инерционностью

установления равновесия между подсистемами.

Рассмотрим вопрос динамики дислокационных плот-

ностей как функций деформации и времени. В теории

упрочнения и динамического возврата в ее атомно-

дислокационной формулировке [26,27] предполагается,

что изменение плотности дислокаций с возрастанием

степени деформации dq за
”
время“ du имеет вид

dϕi =
∂ϕi

∂q
dq +

∂ϕi

∂u
du, (8)

где ∂ϕi/∂q — интенсивность размножения дислокаций

в процессе деформации, ∂ϕi/∂u — интенсивность из-

менения плотности дислокаций за счет их генераций и

аннигиляций вследствие необратимых внутренних про-

цессов, записанная в автомодельной переменной. Сле-

дует учесть, что реальная скорость определяется как

∂ϕi/∂t, где t — время, причем знаки этих определений

противоположны в силу соотношения (5). Тогда полная
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Рис. 1. Конфигурации кинка (A), плотностей краевых (B) и

винтовых (C) дислокаций.
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Рис. 2. Зависимости скоростей рождения и уничтожения

дислокаций краевого вида и их суммы. Объяснение в тексте.

скорость изменения плотностей как функций от дефор-

мации имеет вид

dϕi

dq
=

∂ϕi

∂q
+

∂ϕi

∂u

(

∂q

∂u

)−1

. (9)

На рис. 2 показаны графики первого (C) и второго (B)
слагаемых правой части соотношения (9), кривая (A) —

их сумма. Как следует из (9), имеет место сингулярность

(разрыв второго рода) каждого слагаемого и их суммы

в точках экстремума зависимости величины кинка от

автомодельной переменной. Такая сингулярность озна-

чает, как показано на рис. 3, изменение знака направ-

ления движения в координатах ϕ−q. Нули производных
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Рис. 3. Зависимость плотности дислокаций ϕ1 от деформации

в процессе наложения ИПДКР.

на рис. 2 соответствуют экстремумам зависимости ϕ(q).
В итоге образуется сходящаяся к определенной особой

точке структура, по форме напоминающая логарифми-

ческую спираль (рис. 3). Единственность этой точки

(устойчивый фокус) обусловлена переходом системы

в стационарное состояние. Отсюда следует вывод, что

все кривые ϕ1(q) независимо от температуры отжига

(начальное состояние) будут сходиться к одной точке.

Рассмотрим первый интервал от нуля до точки первого

максимума кинка (рис. 2). Все слагаемые выражения (9)
отрицательны. Следовательно, в этом промежутке ско-

рость рождений дислокаций падает и ввиду отрицатель-

ности второго слагаемого (9) растет скорость анниги-

ляции, причем этот процесс является доминирующим

ввиду большей величины по модулю соответствующей

производной. В результате плотность дислокаций падает

(часть кривой AB , рис. 3). После прохождения точки

разрыва все производные меняют знак. Кроме этого,

величина кинка (|q|) падает, что означает движение

на плоскости ϕ−q в обратную сторону (участок BD).
Этот интервал удобно разбить на два части. Первая —

от точки разрыва до точки нуля производных, что

соответствует движению от точки B на рис. 3 до точки C .

Второй — от точки нуля до точки разрыва производных

при большем значении переменной u (от точки C до точ-

ки D на рис. 3). На первом интервале все производные

положительны, но их величины уменьшаются. Следо-

вательно, часть плотности дислокации, обусловленную

изменением деформации, при движении B → C имеет

тенденцию к уменьшению. Одновременно идет процесс

сильного торможения рождения за счет внутренних

процессов, и суммарная плотность дислокаций падает

(см. рис. 3, нижняя ветвь BC). На втором интервале

все производные по автомодельной переменной отрица-

тельны, но при движении в обратную сторону падают

по абсолютной величине. Следовательно, превалируют

процессы, отвечающие за рост плотности дислокаций

(рис. 3, участок CD). Поскольку на последующих интер-

валах размах колебаний кинка уменьшается, то спираль

на рис. 3 скручивается в точку.

Представляет интерес провести для сравнения подоб-

ный анализ для возникающей при наложении ИПДКР

спиральной дислокации. Как видно из рис. 1, раз-

мах колебаний и соответствующие мгновенные частоты

плотностей ϕ1 и ϕ2 не совпадают. В связи с этим,

поведение соответствующих производных существенно

различаются. На рис. 4 приведены результаты вычис-

лений. Кривые A и B — графики кинка и плотности

винтовой дислокации, D, E и C — скорости анниги-

ляции, рождения и их сумма соответственно. Такое

различие связано с тем, что синхронизация колебаний

винтового и структурного ПП достигается при боль-

ших значениях переменной u. В силу этого знак всех

производных в интервалах, где полностью отсутствует

синхронизация, не меняется. В частности, в первом

интервале 0 < u < 1 все производные положительны,

а во втором 1 < u < 2.5 (первый промежуток меж-

ду сингулярностями) — отрицательны (рис. 4). Также
на обоих интервалах зависимости обоих ПП меня-

ются монотонно. На третьем интервале 2.5 < u < 4.2

(второй промежуток между сингулярностями) характер

поведения зависимости ϕ2(q) существенно меняется,

и она становится немонотонной. Далее соотношения

поведения рассматриваемых зависимостей становится

похожей на представленные на рис. 2. Однако, следует

учитывать, что колебания плотности винтовой дисло-

кации характеризуются малым декрементом. Все это
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Рис. 4. Зависимости скоростей рождения и уничтожения

винтовой дислокаций и их суммы. Объяснение в тексте.
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в процессе наложения ИПДКР.
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Рис. 6. Фазовый портрет структурного ПП при наложении

ИПДКР.

приводит к тому, что фазовая траектория напоминает

восьмерку (рис. 5). С ростом переменной u петли

восьмерки сужаются, и с ростом u она вырождается

отрезок прямой линии с уменьшающейся длины и на

бесконечности схлопывающейся в точку (устойчивый
фокус).

На рис. 6 приведен фазовый портрет структурного

ПП. Очевидно, что особая точка, представляющая собой

стационарное состояние, является устойчивым фокусом,

а фазовая траектория приближенно является логариф-

мической спиралью. Такое поведение траектории описы-

вает неустойчивость состояния системы в переходном

слое, что подтверждается осциллирующим поведением

структурного ПП, представленным на рис. 1.

Практически аналогичным образом ведут себя и фазо-

вые портреты плотностей дислокаций. Различие между

ними состоит в скорости скручивания и форме петель

при движении к устойчивому фокусу.

4. Выводы

Теоретически предсказано, что граница области пере-

хода (кинк) в стационарное состояние при наложении

ИПДКР не является ступенькой и имеет конечную

ширину в пространстве, внутри которой переход яв-

ляется осциллирующим с затуханием. Благодаря коле-

бательным процессам в переходной области возникают

сингулярности скоростей рождения и аннигиляции дис-

локаций как функций от деформации.
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