07,11,16

Фононный спектр, кристаллическая структура и стабильность молекулы рутеноцена при высоком давлении

© К.П. Мелетов¹, А.В. Кузьмин¹, М.А. Фараонов²

¹ Институт физики твердого тела им. Ю.А. Осипьяна РАН, Москва. Россия

E-mail: mele@issp.ac.ru

Поступила в Редакцию 25 сентября 2025 г. В окончательной редакции 25 сентября 2025 г. Принята к публикации 2 октября 2025 г.

Изучены фононный спектр, кристаллическая структура и стабильность молекулы рутеноцена при нормальном и высоком давлении. Кристалл рутеноцена обладает орторомбической структурой Pnma, Z=4, а изменение его кристаллических параметров при высоком давлении описывается уравнением состояния Мурнагана $(V_0/V)^{B'}=\{1+P\cdot B'/B_0\}$ с $B_0=9.68$ GPa и B'=6.1 до давления 4 GPa. Барическая зависимость фононных частот при гидростатическом сжатии испытывает скачки при ~ 4 , ~ 8 и ~ 5 GPa в трех независимых сериях измерений. Результаты всех измерений при обратном ходе давления совпадают между собой, но отличаются от прямого хода. В негидростатических условиях эти изменения происходят плавно в диапазоне от ~ 4 до ~ 10 GPa. Молекула рутеноцена устойчива в конформации eclipsed, однако перескоки в конформацию staggered возможны при нагреве. Из зависимости ширины фононных полос от температуры определен барьер между конформациями (273 ± 19) meV/mol.

Ключевые слова: рутеноцен, фононный спектр, барическая зависимость, параметры Грюнайзена.

DOI: 10.61011/FTT.2025.10.61976.265-25

1. Введение

Рутеноцен $RuC_{10}H_{10}$ относится к семейству металлоорганических молекул, состоящих из двух расположенных друг над другом циклопентадиенильных колец С₅Н₅ с атомом металла между ними. Первый представитель металлоценов, ферроцен FeC₁₀H₁₀, был синтезирован в 1951 г. и положил начало активному изучению этих материалов [1]. Нижнее и верхнее циклопентадиенильные кольца Ср в металлоценах могут менять взаимную ориентацию относительно центральной оси пятого порядка молекулы, формируя две устойчивые конформации. В конформации eclipsed с симметрией D_{5h} верхнее кольцо расположено параллельно нижнему, а в конформации staggered с симметрией D_{5d} оно повернуто относительно нижнего на 36 градусов [2,3]. Свободная молекула ферроцена стабильна в конформации eclipsed, а в моноклинной кристаллической фазе представлены обе конформации молекулы и наблюдается конформационный беспорядок. В низкотемпературной триклинной фазе LT1, низкотемпературной орторомбической фазе LT2 и в моноклинной фазе высокого давления молекулы упорядочены в конформации staggered [4–8].

Кристалл рутеноцена при нормальных условиях имеет орторомбическую структуру (пространственная группа Pnma, Z=4), молекула стабильна в конформации eclipsed [9]. Недавние рентгеноструктурные исследования при высоком давлении показали, что орторомбическая фаза α (группа Pnma) переходит в орторомбиче-

скую фазу β (группа Pcmb) при давлении $\sim 3.9\,\mathrm{GPa}$, что сопровождается значительным ухудшением кристалличности [10]. Исследования фазы β рутеноцена в диапазоне давлений от 0.7 до 2.3 GPa были выполнены на монокристаллах, выращенных при давлении $\sim 1\,\mathrm{GPa}$ из раствора рутеноцена в тетрагидрофуране [10]. Они показали, что обратный переход в орторомбическую фазу α происходит при давлении 0.7 GPa с большим гистерезисом, а изоструктурный переход из α в β фазу связан с изменением конфигурации коротких контактов Ru . . . Н между молекулами рутеноцена [10].

В настоящей работе изучен фононный спектр и структура кристалла рутеноцена при нормальном и высоком давлении, определены барические коэффициенты сдвига и параметры Грюнайзена фононных мод, изучены изменения параметров кристаллической структуры при высоком давлении и устойчивость конформации молекулы. Подтверждена структура кристалла в фазе α (орторомбическая Pnma, Z=4) с параметрами ячейки при нормальных условиях $a = 7.119 \,\text{Å}$, $b = 8.9899 \,\text{Å}, \ c = 12.8084 \,\text{Å}, \ V_0 = 819.73 \,\text{Å}^3$. Изменение кристаллических параметров при высоком давлении описывается уравнением состояния Мурнагана $(V_0/V)^{B'} = \{1 + P \times B'/B_0\}$ с $B_0 = 9.68$ GPa и B' = 6.1до давления 4 GPa, выше которого дифракционная картина сильно ухудшается из-за резкого уширения дифракционных максимумов вследствие увеличения мозаичности. Барическая зависимость частот межмолекулярных и

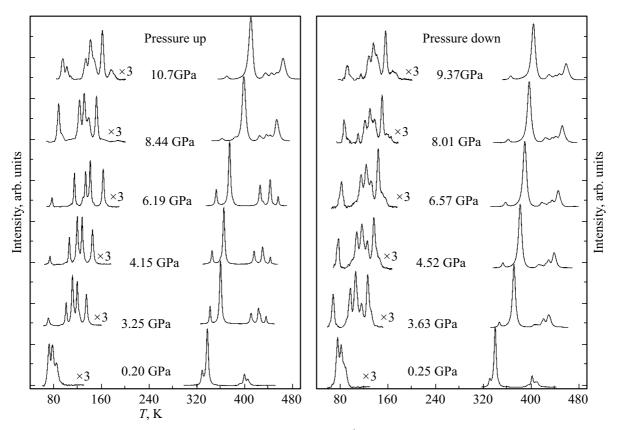
² Федеральный исследовательский центр проблем химической физики и медицинской химии РАН, Черноголовка, Россия

внутримолекулярных фононов скачкообразно изменяется при гидростатическом сжатии в смеси метанол/этанол при $\sim 4, \sim 5$ и $\sim 8\,\mathrm{GPa}$ в трех независимых сериях измерений спектров комбинационного рассеяния света (КРС). При обратном ходе давления она одинакова во всех сериях и отличается от исходной, что свидетельствует о необратимом фазовом переходе. С ростом давления частота фононных мод увеличивается: барические коэффициенты сдвига составляют от 1 до $23 \, \text{cm}^{-1}/\text{GPa}$. При обратном ходе давления частоты фононов уменьшаются, а барическая зависимость фононных мод и коэффициенты сдвига отличаются от исходных. При сжатии кристалла в квазигидростатических условиях в силиконовом масле отдельные полосы внутримолекулярных фононов расщепляются и происходит постепенное перераспределение интенсивности между расшепленными компонентами в диапазоне от 4 до 10 GPa. Эти изменения необратимы и сохраняются при обратном ходе давления вплоть до ~ 0.8 GPa, при котором происходит скачкообразный переход в исходное состояние.

Молекула рутеноцена при нормальных условиях стабильна в конформации eclipsed, однако при нагреве происходят перескоки в конформацию staggered. В спектрах КРС кристаллов рутеноцена при температуре до 373 К это приводит к уширению полос межмолекулярных фононов по сравнению с внутримолекулярными фононами. Перескоки уменьшают время жизни конформации молекулы вплоть до периода колебаний решетки, что приводит к потере когерентности межмолекулярных фононов и значительному уширению полос [4,6,11]. Энергетический барьер между eclipsed и staggered конформациями молекулы рутеноцена, определенный из зависимости Аррениуса ширины полос межмолекулярных фононов от обратной температуры $1/k_{\rm B}T$, составляет (273 ± 19) meV/молекулу [3,11–13].

2. Методика эксперимента

Качественные монокристаллы рутеноцена выращивались из порошка, растворенного в гексане, в процессе медленного испарения растворителя при комнатной температуре. Рентгеноструктурный анализ (PCA) проводился при нормальном и высоком давлении с использованием четырех-кружного дифрактометра Oxford Diffraction Gemini-R с двумерным CCD детектором Atlas S2 (Мо $K_{\alpha 1}$, $\lambda = 0.71073$ Å, графитовый монохроматор, ω -сканирование) и камерой высокого давления с алмазными наковальнями типа Беллера.

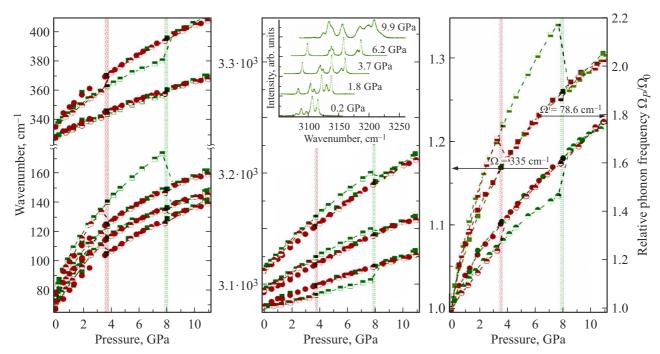

Спектры КРС измерялись в геометрии обратного рассеяния на спектрографе Acton SpectraPro-2500i с охлаждаемым до $-70\,^{\circ}$ С ССD-детектором Pixis2K и микроскопом Olympus BX51 с использованием лазера $\lambda=532\,\mathrm{nm}$ и краевого фильтра с OD=6 и полосой пропускания от $60\,\mathrm{cm}^{-1}$. Лазерный луч с интенсивностью $\sim2.1\,\mathrm{mW}$ перед наковальнями фокусировался

на образец объективом Olympus $50\times$ в пятно диаметром $\sim 1.3\,\mu\mathrm{m}$. Для измерений при высоком давлении и комнатной температуре использовалась камера с алмазными наковальнями типа Мао-Белла, а в температурном интервале $80-370\,\mathrm{K}$ использовалась камера типа Меррила-Бассета. Компактная камера в форме цилиндра диаметром/высотой 39 mm плотно размещалась в цилиндрической полости внутри теплообменника азотного криостата с температурным контроллером и резистивным нагревателем, который поддерживал температуру с точностью $\pm 0.4\,\mathrm{K}$ [14]. В качестве среды, передающей давление, использовалась смесь 4:1 метанол/этанол или силиконовое масло, а калибровка давления проводилась по спектральному положению R1-линии люминесценции микрокристаллов рубина [15,16].

3. Экспериментальные результаты

Спектры КРС кристалла рутеноцена в области энергий $40-495\,\mathrm{cm}^{-1}$ при комнатной температуре и давлении до $\sim 11\,\mathrm{GPa}$ приведены на рис. 1. Область до $100\,{\rm cm^{-1}}$ отвечает межмолекулярным фононам, а в области 300-490 cm⁻¹ расположены полосы внутримолекулярных дыхательной (328 и 335 $\rm cm^{-1}$) и (390, 400 и $406\,\mathrm{cm}^{-1}$) изгибной колебательных мод циклопентадиенильных колец относительно оси молекулы. В области $1100\,\mathrm{cm^{-1}}$ и $3100\,\mathrm{cm^{-1}}$ расположены внутримолекулярные моды, отвечающие вибрационным С-С и С-Н колебаниям циклопентадиенильного кольца, соответственно (не приведены на рисунке). С ростом давления спектр сдвигается вверх по энергии: полосы межмолекулярных фононов сдвигаются сильнее, чем внутримолекулярных, что характерно для кристаллов с ван-дер-ваальсовой связью [11,17].

Исключение составляют вибрационные С-Н колебания, сдвиг которых близок к сдвигу межмолекулярных фононов как, например, в молекулярном кристалле нафталина [17]. На левой панели рис. 1 приведены спектры при увеличении давления, где начальный спектр идентичен спектру при нормальном давлении и азотной температуре, полученном ранее в работе [18]. С ростом давления частота полос монотонно растет до давления ~ 8 GPa, при котором происходит скачкообразный сдвиг полос межмолекулярных фононов вниз по энергии, а внутримолекулярная мода $335\,\mathrm{cm}^{-1}$ скачкообразно сдвигается вверх по энергии. При дальнейшем росте давления продолжается монотонный сдвиг всех полос спектра в сторону более высоких энергий. Следует отметить, что при P > 8 GPa несколько изменяется и соотношение интенсивности полос межмолекулярных фононов и вблизи полос появляются слабые спутники. В правой части рис. 1 показаны спектры при понижении давления, где наблюдается монотонный сдвиг полос в сторону меньших энергий без изменения структуры

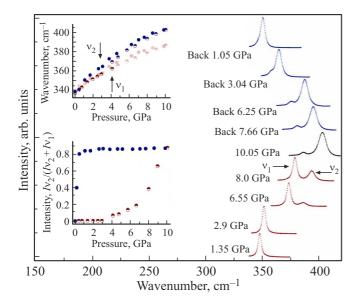

Рис. 1. Спектры КРС кристаллов рутеноцена в диапазоне $40-495\,\mathrm{cm}^{-1}$ при комнатной температуре и давлении до $\sim 11\,\mathrm{GPa}$.

вплоть до давления $\sim 0.8\,\mathrm{GPa}$, когда спектр скачкообразно приобретает вид исходного в цикле прямого хода давления.

На рис. 2 приведена барическая зависимость частот фононных мод для прямого и обратного хода давления в двух независимых циклах измерений. Наполовину закрашенные символы отвечают прямому ходу давления, а полностью закрашенные символы — обратному ходу давления. Круглыми красными и квадратными зелеными символами показаны экспериментальные результаты для первой и второй серий измерений при высоком давлении, соответственно. Частота фононов определялась аппроксимацией профиля полос функцией Фойхта с точностью $\pm 0.3\,\mathrm{cm}^{-1}$. В левой нижней части рис. 2 приведена барическая зависимость трех полос межмолекулярных фононов с частотами 78.6, 72.7 и 67.4 cm⁻¹, а в верхней части приведены данные для внутримолекулярных фононов 328 и 335 cm $^{-1}$. Скачкообразные изменения барической зависимости частот вблизи 4 и 8 GPa в первой и второй сериях измерений, соответственно, отмечены вертикальной красной и зеленой штриховкой. Для простоты на рисунке не приведены результаты третьей серии измерений, в которой аналогичные изменения наблюдались при давлении $\sim 5\,\mathrm{GPa}$. Результаты двух серий измерений для прямого хода давления полностью совпадают до давления $\sim 4\,\mathrm{GPa}$, а данные второй серии между 4 и 8 GPa являются продолжением барической зависимости первой серии измерений. В точках перехода частота межмолекулярных фононов скачкообразно уменьшается, а частота внутримолекулярной моды 335 сm⁻¹ увеличивается. Экспериментальные результаты для обратного хода давления в разных сериях измерений приведены сплошными круглыми красными и квадратными зелеными символами и полностью совпадают между собой во всей области давлений, но отличаются от данных прямого хода давления ниже точек перехода.

На центральной панели рис. 2 приведены спектры КРС рутеноцена в области $3050-3250\,\mathrm{cm}^{-1}$, где расположены полосы С—Н колебательных мод (вверху). В спектре наблюдается пять С—Н полос, что свидетельствует о некотором различии длин С—Н связей в циклопентадиенильном кольце, что наблюдалось ранее и в кристалле ферроцена [4,6]. С увеличением давления все полосы плавно сдвигаются в сторону более высоких энергий, а при давлении $\sim 4\,\mathrm{GPa}$ в первой серии измерений и $\sim 8\,\mathrm{GPa}$ во второй наблюдаются скачкообразные изменения. Отметим, что моды с частотами ~ 3095 и $\sim 3113\,\mathrm{cm}^{-1}$ сдвигаются в коротковолновую сторону, подобно межмолекулярным фононам, а низкочастотная мода $\sim 3080\,\mathrm{cm}^{-1}$ в длинноволновую, как и внутримолекулярная мода $335\,\mathrm{cm}^{-1}$.

Значения барических коэффициентов сдвига полос межмолекулярных фононов составляют от 18


Рис. 2. Барическая зависимость межмолекулярных 78.6, 72.7 и 67.4 cm $^{-1}$ и внутримолекулярных 328 и 335 cm $^{-1}$ мод кристалла рутеноцена (слева). Спектры КРС рутеноцена в области С-Н колебаний и барическая зависимость частоты некоторых фононных мод (в центре). Барическая зависимость частоты Ω_p/Ω_0 мод 75 и 335 cm $^{-1}$ (справа). Круглые красные символы и штриховка — переход при ~ 4 GPa, зеленые квадратные символы и штриховка — переход при ~ 8 GPa. Наполовину и полностью закрашенные символы — это прямой и обратный ход давления соответственно.

до $23.2\,\mathrm{cm^{-1}/GPa}$ для прямого хода давления и от $13.9\,$ до $19.9\,\mathrm{cm^{-1}/GPa}$ для обратного хода давления. Для внутримолекулярных фононов они составляют $2.4-14.2\,\mathrm{cm^{-1}/GPa}$ при прямом ходе давления и $5.5-13.3\,\mathrm{cm^{-1}/GPa}$ при обратном ходе. Уменьшение коэффициентов сдвига для обратного хода давления связано, вероятнее всего, с изоструктурным фазовым переходом [10]. Интересно, что для мод $\sim 335\,\mathrm{u} \sim 3080\,\mathrm{cm^{-1}}$ коэффициенты увеличиваются, а для мод $\sim 3095\,\mathrm{u} \sim 3113\,\mathrm{cm^{-1}}$ они уменьшаются, при этом первые испытывают скачки частоты вверх, а вторые вниз. Отметим, что барические коэффициенты сдвига моды $328\,\mathrm{cm^{-1}}$, не испытывающей скачкообразных изменений, одинаковы для прямого и обратного хода лавления и составляют $\sim 5.5\,\mathrm{cm^{-1}/GPa}$.

Наконец, на правой панели рис. 2 показаны изменения относительной частоты Ω_p/Ω_0 для межмолекулярной моды $78.6~{\rm cm}^{-1}$ и внутримолекулярной моды $335~{\rm cm}^{-1}$ при прямом и обратном ходе давления. Рисунок отражает детали скачкообразного смягчения и ужесточения этих мод при критических значениях давления и свидетельствует о необратимом фазовом переходе, происходящего при двух разных значениях давления. При обратном ходе давления переход в исходную фазу происходит при $P\sim 0.8~{\rm GPa}$ с гистерезисом, который составляет $\sim 3.2, \sim 4.2~{\rm u} \sim 7.2~{\rm GPa}$ в трех независимых циклах измерений. Изменения в спектрах связаны, на наш взгляд, с необратимым изоструктурным фазовым

переходом из α -фазы Pnma в β -фазу Pcmb, который впервые наблюдался в рентгеноструктурных исследованиях [10] при давлении 3.9 GPa.

Большая часть измерений при высоком давлении проводились в условиях гидростатического сжатия с использованием смеси метанол/этанол, но в части измерений использовалось силиконовое масло, которое затвердевает при P > 3.5 GPa и в кристалле возникают напряжения. На рис. 3 приведены спектры КРС рутеноцена в области внутримолекулярного колебания $335\,\mathrm{cm}^{-1}$, полученные в этих условиях. В правой части рис. 3 красным цветом показаны спектры при прямом ходе давления до 10 GPa, а синим цветом — при обратном ходе давления. До давления ~ 4 GPa в спектре наблюдается полоса v_1 с частотой 335 cm⁻¹, а затем у нее появляется слабый спутник $v_2 = 370\,\mathrm{cm}^{-1}$, интенсивность которого растет до максимума при $P \sim 10\,\mathrm{GPa}$. При обратном ходе давления спектр сдвигается без изменений вниз по энергии до давления ~ 0.8 GPa, а затем резко переходит в исходный. Отметим, что разность частот полос v_1 и ν_2 в момент расщепления полосы при $\sim 4\,\mathrm{GPa}$ составляет $\sim 8\,{\rm cm}^{-1}$, также, как и скачок частоты при фазовом переходе в условиях гидростатического сжатия. На верхней правой вставке показан барический сдвиг моды $v_1 = 335 \, \text{cm}^{-1}$: наполовину заполненные красные и синие символы показывают сдвиг полос v_1 и v_2 , соответственно. При $P \ge 4$ GPa сдвиг ослабленной полосы v_1 показан затененными символами. Сплошными красными

Рис. 3. Спектры КРС кристалла рутеноцена вблизи полосы $\nu_1=335\,\mathrm{cm}^{-1}$ при сжатии в силиконовом масле. Красный и синий цвет — прямой и обратный ход давления, соответственно. При $P\geq 4\,\mathrm{GPa}$ появляется спутник $\nu_2=370\,\mathrm{cm}^{-1}$, при сижении давления спектр переходит в исходный при $\sim 0.8\,\mathrm{GPa}$. Верхняя вставка — барический сдвиг мод $\nu_1=335\,\mathrm{cm}^{-1}$ и $\nu_2=370\,\mathrm{cm}^{-1}$, красные и синие символы соответственно. Нижняя вставка — изменение доли новой фазы при прямом и обратном ходе давления.

и синими символами показаны эти две полосы при обратном ходе давления, при этом красные символы также затенены из-за ослабления полосы ν_1 . Можно предположить, что при давлении $\sim 4\,\mathrm{GPa}$ образец частично переходит в новую фазу и становится двухфазным, а доля каждой фазы пропорциональна интенсивности ν_1 и ν_2 полос. На нижней вставке приведена зависимость относительной интенсивности полосы ν_2 от давления (наполовину заполненные красные символы), которая показывает постепенное увеличение доли новой фазы до $\sim 83\,\%$ при увеличении давления до $10\,\mathrm{GPa}$. При обратном ходе давления (сплошные синие символы) доля новой фазы не меняется вплоть до $\sim 0.8\,\mathrm{GPa}$, после чего весь образец переходит в исходную фазу.

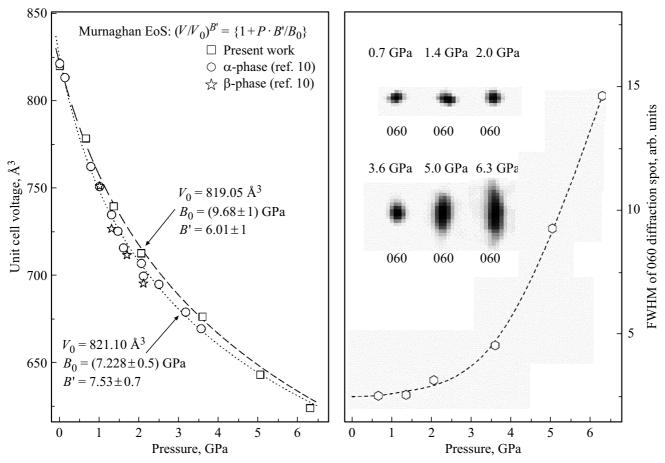
Исследования кристаллической структуры рутеноцена при нормальных условиях и при высоком давлении были выполнены методом РСА на монокристаллах высокого качества. По полученным данным, структура при нормальных условиях орторомбическая Pnma, Z=4, a=7.119 Å, b=8.9899 Å, c=12.8084 Å, $V_0=819.73$ Å 3 , что хорошо согласуется с полученными ранее данными [9,10]. Измерения при высоком давлении показали, что кристаллическая структура хорошо определяется до давления 4 GPa, при превышении которого качество дифракционной картины резко ухудшается. В левой части рис. 4 различными символами показана барическая зависимость объема кристаллической ячейки от давления. Квадратами показаны результаты

Значения для межмолекулярных фононных мод в α и β фазах

$\Omega_i^0,\mathrm{cm}^{-1},$ давление	<i>γ_i</i> , <i>α</i> -фаза	Ω_i^0 , cm $^{-1}$, давление	γ_i, α -фаза
увеличивается		уменьшается	
67.6	2.25 ± 0.32	67.4	1.74 ± 0.24
72.2	2.18 ± 0.31	74.1	2.12 ± 0.3
75.3	2.48 ± 0.35	77.6	2.09 ± 0.29
67.6	2.25 ± 0.32	67.4	1.74 ± 0.24
72.2	2.18 ± 0.31	74.1	2.12 ± 0.3
75.3	2.48 ± 0.35	77.6	2.09 ± 0.29

настоящей работы, а круглыми символами показаны аналогичные данные, пересчитанные из опубликованной ранее зависимости удельного молекулярного объема от давления для α -фазы [10]. Звездочками показана такая же зависимость для β -фазы, пересчитанная из зависимости удельного молекулярного объема от давления в диапазоне от 2 до 0.9 GPa [10]. Обе зависимости для α -фазы гладкие и хорошо согласуются между собой, также, как и немногочисленные данные для β -фазы. На вставке в правой части рисунка показана ширина дифракционного пятна (060), полученная в наших экспериментах при давлении до 6 GPa. Зависимость от давления полной ширины дифракционного пятна на полувысоте приведена в нижней части рисунка: она мало изменяется до $\sim 3.5\,\mathrm{GPa}$, а затем начинает резко увеличиваться. Уширение рефлекса связано с ухудшением качества кристалла при переходе из α -фазы Pnma в β -фазу Рсть, сопровождающемся скачкообразным изменением кристаллических параметров [10]. Изменение объема ячейки с давлением хорошо описывается уравнением состояния Мурнагана:

$$(V_0/V)^{B'} = \{1 + P \cdot B'/B_0\},\tag{1}$$


где $B_0=9.68\,\mathrm{GPa}$ — объемный модуль, а $B'=6.1\,$ его производная. Пунктирные линии на левой части рисунка — аппроксимация наших экспериментальных данных и данных работы [10] уравнением состояния (1) до давления $\sim 4\,\mathrm{GPa}$.

Эти данные близки друг к другу, также, как и получаемые параметры уравнения состояния Мурнагана. Используя полученные ранее барические коэффициенты сдвига фононных мод $\partial \Omega_i/\partial P$ можно определить параметры Грюнайзена:

$$\gamma_i = (\partial \Omega_i / \Omega_i) / (\partial V / V) = (B_0 / \Omega_i^0) / (\partial \Omega_i / \partial P). \tag{2}$$

Их значения для межмолекулярных фононных мод в α и β фазах, рассчитанные по формуле (2) для прямого и обратного хода давления и объемного модуля $B_0=9.68$ GPa приведены в таблице.

Молекула рутеноцена в свободном состоянии и в кристалле при нормальных условиях имеет конформацию eclipsed [9,10], но при нагреве начинаются перескоки в конформацию staggered, обладающую большей энергией. Перескоки между двумя конформациями

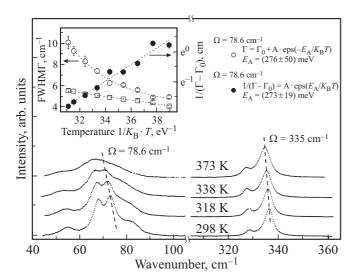


Рис. 4. Слева: барическая зависимость объема кристаллической ячейки от давления. Квадратные и круглые символы — результаты настоящей работы и данные работы [10] для α -фазы, соответственно, звездочки — зависимость для β -фазы [10]. Справа: наверху — дифракционное пятно $\langle 060 \rangle$ при увеличении давления, внизу — зависимость ширины пятна на половине высоты от давления.

молекулы уменьшают время жизни межмолекулярных фононов до времени жизни конформации и приводят к уширению полос в спектре КРС. Так, в кристалле ферроцена конформационный беспорядок приводит к нарушению трансляционной симметрии и уширению полос межмолекулярных фононов, величина которого зависит от давления и температуры [4,6,11]. В спектрах КРС кристаллов рутеноцена при нормальных условиях полосы межмолекулярных и внутримолекулярных фононов имеют практически одинаковую ширину. Ширина полос межмолекулярных фононов в кристалле рутеноцена практически не зависит от давления, но заметно увеличивается при нагреве. В нижней части рис. 5 показаны спектры КРС межмолекулярных фононов в области $45-105\,\mathrm{cm}^{-1}$ и внутримолекулярной дыхательной моды в области $310-360\,\mathrm{cm}^{-1}$ при нагреве до 373 К. Пунктирной линией отмечен сдвиг максимумов полос межмолекулярного фонона $\Omega = 78.6\,\mathrm{cm}^{-1}$ и внутримолекулярного фонона $\Omega = 335 \, \mathrm{cm}^{-1}$: нагрев приводит к их смягчению. На вставке рис. 5 светлыми кругами и квадратами показана зависимость ширины полосы межмолекулярного фонона $\Omega = 78.6\,\mathrm{cm}^{-1}$ и полосы внутримолекулярного фонона $\Omega = 335\,\mathrm{cm}^{-1}$ от

обратной температуры $1/k_{\rm B}T$, где $k_{\rm B}$ — постоянная Больцмана. Ширина полосы фонона $\Omega = 335\,\mathrm{cm}^{-1}$ линейно увеличивается от $4.1\,\mathrm{cm}^{-1}$ при комнатной температуре до $5.5\,\mathrm{cm^{-1}}$ при $373\,\mathrm{K}$. В то же время, ширина полосы фонона $\Omega = 78.6\,\mathrm{cm}^{-1}$ растет экспоненциально от $4.9\,\mathrm{cm}^{-1}$ при комнатной температуре до $10.1\,\mathrm{cm}^{-1}$ при 373 К. Пунктиром показана аппроксимация этой зависимости функцией $\Gamma = \Gamma_0 + A \exp(-E_A/k_{\rm B}T)$, где $\Gamma_0 = (4.1 \pm 0.4) \, \mathrm{cm}^{-1}$, $E_A = (276 \pm 50) \, \mathrm{meV}$. Такая зависимость характерна для термоактивационных процессов и отражает уширение полосы межмолекулярных фононов из-за уменьшения времени жизни, обусловленного перескоками между конформациями. Здесь E_A является энергией активации перескоков между конформациями и фактически определяет барьер между ними, а Γ_0 не зависящая от температуры начальная ширина полосы фонона.

Она включает в себя ширину щели спектрального прибора $\sim 3\,\mathrm{cm}^{-1}$, а также неоднородную и однородную ширину полос. Неоднородная ширина в кристаллах связана с рассеянием фононов на дефектах кристаллической решетки и примесях, а однородная — с фонон-фононным рассеянием. При нормальных усло-

Рис. 5. Спектры КРС кристалла рутеноцена в области $45-360\,\mathrm{cm}^{-1}$ при температуре до $373\,\mathrm{K}$. Пунктир — сдвиг полос фононов $\Omega=78.6\,\mathrm{cm}^{-1}$ и $\Omega=335\,\mathrm{cm}^{-1}$. На вставке — светлые круглые и квадратные символы — зависимость ширины полосы межмолекулярного фонона $\Omega=78.6\,\mathrm{cm}^{-1}$ и внутримолекулярного фонона $\Omega=335\,\mathrm{cm}^{-1}$ от обратной температуры $1/k_{\mathrm{B}}T$. Темные круглые символы — эксперимент, пунктирная линия — аппроксимация Аррениуса для полосы фонона $\Omega=78.6\,\mathrm{cm}^{-1}$.

виях они на порядок меньше спектральной ширины щели прибора, но увеличиваются с ростом дефектности кристалла и температуры [19]. Нарушение трансляционной симметрии из-за конформационного беспорядка приводит к потере когерентности межмолекулярных колебаний и уширению полос, при этом когерентность внутримолекулярных колебаний не нарушается, и их ширина слабо зависит от температуры [11]. Круглыми темными символами на вставке приведена зависимость $1/(\Gamma - \Gamma_0)$ от обратной температуры, а пунктир зависимость Аррениуса $1/(\Gamma - \Gamma_0) = A \exp(E_A/k_BT)$, где $E_A = (273 \pm 19) \,\mathrm{meV} \, - \,$ энергия активации перескоков между конформациями. Отметим, что таким образом ранее описывалось уширение фононных полос в спектрах КРС кристаллов NH₄ClO₄, обусловленное либрацией NH_4^+ ионов в кристаллической решетке [19,20]. Время жизни кристаллических фононов τ , обусловленное перескоками между конформациями, можно оценить по ширине $(\Gamma - \Gamma_0)$. По соотношению неопределенности в квантовой механике $\Delta E \cdot \Delta t = \hbar$ время жизни фононов равно $\tau = \hbar/(\Gamma - \Gamma_0)$, где $(\Gamma - \Gamma_0)$ — ширина фононных полос, обусловленная перескоками между конформациями, \hbar — постоянная Планка [21,22]. Подобным образом ранее оценивалось время жизни фононов в кристаллах нитридов алюминия, индия и галлия [19,22,23]. В нашем случае время перескоков между конформациями, огранивающее время жизни фононов и определяющее ширину полос межмолекулярных фононов. уменьшается с ростом температуры в семь и составляет $\sim 1\,\mathrm{ps}$ при 373 K.

4. Обсуждение результатов

Спектры КРС кристаллов рутеноцена при высоком давлении указывают на необратимый фазовый переход с огромным гистерезисом, который предполагает сосуществование двух фаз. Фононные спектры этих фаз близки, однако частота фононных мод скачкообразно изменяется при переходе. В трех циклах измерений в гидростатических условиях сжатия переход наблюдался при значениях давления 4, 5 и 8 GPa, соответственно. Результаты для обратного хода давления отличатся от прямого, но совпадают между собой во всех циклах измерений. Минимальное давление 4 GPa, при котором наблюдаются скачкообразные изменения в фононном спектре, совпадает с давлением 3.9 GPa для изоструктурного фазового перехода из α -фазы Pnma в β -фазу Pcmb, обнаруженного впервые в [10]. Этот переход связан с перестройкой взаимодействия между молекулами, когда появляются дополнительные координационные Ru-H связи атомов водорода циклопентадиенильного кольца одной молекулы с атомом рутения соседней молекулы. Согласно [10], длина этих контактов в α -фазе одинакова для нижнего и верхнего колец и составляет 3.369 Å, а после перехода в β -фазу она уменьшается до 3.169 Å для нижнего кольца и увеличивается до 3.699 А для верхнего кольца. Эти изменения увеличивают эффективную массу и жесткость молекулы, что приводит к скачкообразному уменьшению частоты межмолекулярных фононов и увеличению частоты внутримолекулярной дыхательной моды. Обратный переход в исходную фазу происходит при давлении 0.7 GPa по данным PCA [10] и при давлении $\sim 0.8\,\mathrm{GPa}$ по нашим данным КРС. Фазовый переход имеет значительный гистерезис, величина которого составляет от ~ 3.2 до 7.2 GPa. Это предполагает возможность возникновения двухфазных состояний в области давлений, где устойчивы обе фазы. Такая ситуация наблюдается в экспериментах по спектроскопии КРС и рентгеноструктурному анализу при квазигидростатическом сжатии в силиконовом масле, когда при его затвердевании в кристалле возникают механические напряжения. Об этом свидетельствует расщепление полосы внутримолекулярного фонона $335\,\mathrm{cm^{-1}}$, увеличение интенсивности новой компоненты и, соответственно, доли второй фазы до 83 % при 10 GPa. При обратном ходе давления это соотношение сохраняется до давления $\sim 0.8\,\mathrm{GPa}$, при котором происходит скачкообразный переход в исходную фазу. Гистерезис и сосуществование фаз является довольно частым явлением: например, такое наблюдалось при фазовом переходе нематик-холестерик в жидких кристаллах [24], или при электрокристаллизации переохлажденной воды, заключенной между графеновыми слоями в условиях конфайнмента [25]. Полученные в настоящей работе значения объемного модуля, барического сдвига фононных мод и параметров Грюнайзена типичны для молекулярных кристаллов и коррелируют с данными для других кристаллов такого типа [13,26–29]. Рентгеноструктурные данные работы [10] недостаточны для точного определения объемного модуля β -фазы, но если предположить, что он близок к значению для α -фазы, то параметры Грюнайзена для β -фазы несколько меньше из-за уменьшения коэффициентов сдвига фононных мод в этой фазе.

Молекула рутеноцена в свободном состоянии и в кристалле стабильна в конформации eclipsed [9,10], но перескоки между конформациями возможны при нагреве кристалла, что приводит к уширению полос межмолекулярных фононов. Уменьшение времени жизни конформации из-за перескоков приводит к потере трансляционной симметрии кристалла, уменьшению времени жизни межмолекулярных фононов и уширению полос. Спектры КРС при температуре до 373 К показывают слабое уширение полос внутримолекулярных фононов, линейно зависящее от обратной температуры $1/k_{\rm B}T$, и значительное уширение полос межмолекулярных фонов, экспоненциально зависящее от $1/k_{\rm B}T$. Последнее характерно для термоактивационных процессов и отражает уменьшение времени жизни фононов из-за перескоков между конформациями молекулы. Энергия активации перескоков — барьер между конформациями — составляет $E_A = (273 \pm 19) \, \text{meV}$. Он значительно превосходит величину барьера 16.9 meV в кристалле ферроцена при нормальных условиях и величину 80 meV при 4.9 GPa [11].

Заключение

Таким образом, изменение кристаллических параметров рутеноцена при высоком давлении хорошо описывается уравнением состояния Мурнагана $(V_0/V)^{B'} = \{1 + P \cdot B'/B_0\}$ с параметрами $B_0 =$ $= 9.68\,\mathrm{GPa}$ и $B' = 6.1\,$ при давлении 4 GPa, выше которого дифракционная картина ухудшается из-за резкого уширения дифракционных максимумов. Барическая зависимость фононных частот в спектрах КРС демонстрирует скачкообразные изменяется при гидростатическом сжатии вблизи ~ 4 , ~ 5 и ~ 8 GPa в трех независимых сериях измерений. Изменение частоты фононов связано с характерным изменением геометрии координационных Ru-H связей атомов водорода циклопентадиенильного кольца одной молекулы с атомом рутения соседней молекулы [10]. Наблюдаемые изменения в спектрах КРС свидетельствует о необратимом фазовом переходе и подтверждают результаты работы [10]. В квазигидростатических условиях при ~ 4 GPa дыхательная мода $335\,\mathrm{cm^{-1}}$ расщепляется на две компоненты и образец становится двухфазным. Доля новой фазы растет до максимума 83 % при 10 GPa и остается неизменной при обратном ходе давления до $\sim 0.8\,\mathrm{GPa}$, когда происходит

скачкообразный переход в исходное состояние. Энергетический барьер между eclipsed и staggered конформациями молекулы рутеноцена, определенный по зависимости Аррениуса ширины полос межмолекулярных фононов, на порядок больше чем в кристалле ферроцена и составляет $(273\pm19)~{\rm meV/молекулу}.$

Финансирование работы

Работа выполнена в рамках Государственного задания Института физики твердого тела имени Ю.А. Осипьяна РАН. Монокристаллы рутеноцена были получены в Институте Проблем Химической Физики РАН при финансовой поддержке Министерства науки и высшего образования РФ (проект 124013100858-3).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] T.J. Kealy, P.L. Pauson. Nature 168, 1039 (1951).
- [2] A. Haaland, J.E. Nilsson. Acta Chem. Scand. 22, 2653 (1968).
- [3] Zh.-F. Xu, Ya. Xie, W.-L. Feng, H.F. Shaefer III. J. Phys. Chem. A 107, 15, 2716 (2003).
- [4] D. Paliwoda, K. Kowalska, M. Hanfland, A. Katrusiak. J. Phys. Chem. Lett. **4**, **23**, 4032 (2013).
- [5] D. Paliwoda, M. Hanfland, A. Katrusiak. J. Phys. Chem. C 123, 42, 25719 (2019)
- [6] A.V. Kuzmin, K.P. Meletov, M.A. Faraonov. J. Phys. Chem. C 126, 7, 3688 (2022).
- [7] A. Katrusiak, M. Rusek, M. Dušek, V. Petříček, M. Szafrański. J. Phys. Chem. Lett. 14, 13, 3111 (2023).
- [8] I. Moszcynska, D. Palivoda, A. Katrusiak. J. Phys. Chem. C 128, 45, 19392 (2024).
- [9] G.L. Hardgrove, D.H. Templeton. Acta Crystallogr. 12, 28 (1959).
- [10] I. Moszcynska, A. Katrusiak. J. Phys. Chem. C 126, 10, 5028 (2022).
- [11] K. Meletov. J. Raman Spectrosc. 55, 10, 1105 (2024).
- [12] C.H. Holm, J.A. Ibers. J. Chem. Phys. 30, 4, 885 (1959).
- [13] A.B. Gardner, J. Howard, T.C. Waddington, R.M. Richardson, J. Tomkinson. Chem. Phys. **57**, *3*, 453 (1981).
- [14] K.P. Meletov. Instrum. Exp. Techn. 63, 2, 291 (2020).
- [15] J.D. Barnett, S. Block, G.J. Piennarini. Rev. Sci. Instrum. 44, 1, 1 (1973).
- [16] A. Jayaraman. Rev. Sci. Instrum. 57, 6, 1013 (1986).
- [17] К.П. Мелетов. ФТТ 55, 3, 527 (2013).
- [18] J.S. Bodenheimer, W. Low, Spectrochim. Acta bf 29, 9, 1733 (1973).
- [19] J.W. Pomeroy, M. Kuball, H. Lu, W.J. Shaff, X. Wong, A. Yoshikava. Appl. Phys. Lett. 86, 22, 223501 (2005).
- [20] T. Chakraborty, S.S. Khatri, A.L. Verma. J. Chem. Phys. 84, 12, 7018 (1986).
- [21] Л.Д. Ландау, Е.М. Лифшиц. Квантовая механика. Наука, М. (1974). 66 с.

- [22] M. Kuball, J.M. Hayes, Ying Shi, J.H. Edgar. Appl. Phys. Lett. 77, 13, 1958 (2000).
- [23] T. Beechem, S. Graham. Appl. Phys. Lett. **103**, *9*, 093507 (2008).
- [24] Y. Yabe, D.-Sh. Seo. Liq. Cryst. 17, 6, 847 (1994).
- [25] R.M. Khusnutdinov, A.V. Mokshin. JETP Lett. 110, 8, 557 (2019).
- [26] L. Pintschovius, O. Blaschko, G. Krexner, N. Pyka. Phys. Rev. B 59, 11020 (1999).
- [27] K.P. Meletov, D.V. Konarev, A.O. Tolstikova. JETP 120, 6, 989 (2015).
- [28] K.P. Meletov, A.V. Kuzmin, M.A. Faraonov. J. Phys. Chem. C 128, 1, 597 (2024).
- [29] K.P. Meletov, A.V. Kuzmin, S.S. Khasanov, D.V. Konarev. J. Polym. Res. **28**, 38 (2021).

Редактор А.Н. Смирнов