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Разработана фазово-полевая модель формирования двумерных материалов в процессе эпитаксиального

роста. В модели учитывается анизотропия энергии границы материала, тепловые флуктуации, а также

наличие непрерывных процессов осаждения и испарения атомов с поверхности подложки. Изучено

формирование островков с гексагональной и треугольной геометрией границ, свойственной двумерным

материалам, а также процессы их роста и слияния вплоть до формирования сплошной однородной пленки.

В процессе слияния двух и более островков наблюдалось формирование дефектов структуры, которые

носили неравновесный характер и постепенно зарастали в процессе осаждения. Установлены закономерности

динамики среднего размера, концентрации двумерных островков, а также их функции распределения по

размерам.
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1. Введение

Эпитаксиальный рост является важнейшим механиз-

мом формирования пленок, используемым для целевого

синтеза различных двумерных материалов. С его по-

мощью стало возможным получать высококачественные

образцы различных двумерных материалов, к которым

относятся графен [1,2] и графеноподобные материа-

лы [3,4], группа борофеновых наноаллотропов [5,6],
псевдо-двумерные дихалькогениды переходных металлов

(MoS2, WTe2 и др.) [7,8], монослой гексагонального

нитрида бора (h-BN) [9] и др. Уникальные свойства

двумерных материалов — их атомарная тонкость, гиб-

кость и отсутствие объемной структуры — приводят к

необычным электронным, оптическим и механическим

характеристикам, недостижимым в их трехмерных ана-

логах. Благодаря этому открываются перспективы для

создания сверхлегкой и гибкой электроники, высокоэф-

фективных сенсоров и новых поколений энергонакопи-

тельных устройств. Например, графен с его рекордной

подвижностью носителей заряда рассматривается как

основа для посткремниевых транзисторов [10], полу-

проводниковые дихалькогениды — для ультратонких и

гибких дисплеев и фотодетекторов [11], а борофен,

благодаря одновременно высокой электропроводности,

механической гибкости и низкой плотности, перспек-

тивен в разработке аккумуляторов нового поколения,

каталитических реакциях и водородном хранении [12].
На основе двумерных материалов могут быть синтези-

рованы весьма разнообразные вертикальные и горизон-

тальные гетероструктуры [13–16], а также композитные

материалы различного назначения [1,17,18].

Механизм эпитаксиального роста наиболее часто ис-

пользуется при реализации управляемого синтеза вы-

сококачественных двумерных материалов, применяемых

для фундаментальных исследований и создания прототи-

пов электронных устройств [1,2,7,19]. Текущий уровень

развития технологических процессов синтеза позволяет

осуществлять эпитаксиальный режим роста двумерных

материалов с помощью химического осаждения из паро-

вой фазы (chemical vapor deposition, CVD). Этот процесс
подразумевает осаждение атомов из газовой фазы на

подложку при протекании химических реакций, что при-

водит к формированию и росту ориентированных ост-

ровков (листов) двумерного материала. Поиск оптималь-

ных режимов синтеза двумерных материалов с необхо-

димыми свойствами требует глубокого теоретического

анализа на различных пространственно-временных мас-

штабах, что достигается различными методами. Мето-

дами расчетов ab initio надежно прогнозируются струк-

турные, электронные, оптические, а также некоторые

механические и пьезоэлектрические свойства известных

и предсказанных двумерных материалов [20,21]. Про-

цесс формирования двумерных материалов может быть
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изучен с помощью метода молекулярной динамики или

метода Монте-Карло [1], которые фактически рассматри-

вают процессы движения и взаимодействия отдельных

атомов, что предъявляет существенные требования к

качеству потенциалов межатомного взаимодействия и

накладывает существенные ограничения на возможность

анализа процессов роста пленок на макроскопических

пространственно-временных масштабах. Для изучения

процесса формирования сплошных пленок часто при-

меняются методы классической теории нуклеации [22–
24]. Также используются подходы теории фазового по-

ля [24–27], которые позволяют оперировать большими

пространственно-временными масштабами, чем методы

атомистического моделирования. Методы теории фа-

зового поля применялись для согласованного анализа

фазовых диаграмм и динамики фазовых превращений в

однокомпонентных [24,25], а также в двухкомпонентных

пленках с учетом процессов осаждения и испарения мо-

лекул с поверхности подложки [26]. В ряде других работ

фазово-полевые модели использовались для описания

дендритного роста уединенных островков двумерных

материалов [27].

В настоящей работе проводится теоретическое иссле-

дование динамики формирования двумерного материала

в процессе непрерывного осаждения и испарения, начи-

ная от стадии зарождения и заканчивая формированием

сплошной пленки. Исследование проводится с помощью

методов теории фазового поля, что позволяет непо-

средственно учитывать анизотропию энергии границ

двумерных материалов, а также тепловые флуктуации.

Учет анизотропии энергии границ отражает симметрию

кристаллической решетки материала, а также может

приводить к возникновению огранки островков или пор,

формируемых на различных стадиях синтеза сплошных

пленок.

2. Фазово-полевая модель
эпитаксиального роста
двумерных материалов

Рассмотрим процесс формирования и роста двумерно-

го материала, характеризуемого анизотропной энергией

границы на идеальной подложке в условиях непрерыв-

ного осаждения. Будем характеризовать рассматрива-

емую систему концентрацией c = c(r, t) осажденного

вещества (например, бора или углерода) и параметром

порядка φ = φ(r, t), который позволяет различать неупо-

рядоченную (φ = 0) и упорядоченную (φ = 1) фазы.

Используя общие подходы теории фазового поля,

свободную энергию двумерного материала можно задать

в виде функционала

F = n0

∫

S

(
f (c, φ) +

1

2
ε2(n)(∇φ)2 +

1

2
κ(∇c)2

)
ds .

(1)

Здесь f (c, φ) — плотность свободной энергии, учи-

тывающая взаимодействие осажденных атомов с под-

ложкой и между собой, ε2(n) и κ — коэффициенты

градиентной энергии. При этом функция ε(n) зависит от
положения нормали n = {nx , ny} к фронту параметра по-

рядка φ [28–31] и определяется электронной структурой

материала и ориентационными свойствами подложки, на

которой реализуется эпитаксиальный рост. Положение

нормали может быть связано с параметром порядка

с помощью формулы n = R̂α∇φ, где R̂α — оператор

поворота на произвольный постоянный угол α, опреде-

ляющий ориентацию растущего двумерного материала

относительно подложки. Интегрирование в функциона-

ле (1) осуществляется по всей площади подложки S, на

которой формируется двумерный материал.

В рассматриваемой модели плотность свободной энер-

гии отражает наличие устойчивых состояний, соответ-

ствующих неупорядоченной A (c ≈ 0, φ ≈ 0) и упо-

рядоченной B (c ≈ 1, φ ≈ 1) фазам. Два этих состо-

яния разделены между собой барьером, преодоление

которого требует наличия перенасыщения, а также теп-

ловых флуктуаций, позволяющих преодолеть данный

барьер. При достаточно больших степенях перенасыще-

ния, соответствующих области неустойчивых состояний,

фазовый переход может оказаться безактивационным,

что соответствует спинодальному механизму формиро-

вания фаз.

Плотность свободной энергии f (c, φ), отражающей

наличие устойчивых состояний, соответствующих обра-

зующимся фазам, может быть записана в виде

f (c, φ) = f A(c)h(φ) + f B(c)
[
1− h(φ)

]
+

1

4
Wφ2(1− φ)2,

(2)
где f A(c) и f B(c) — плотности свободной энер-

гии для неупорядоченного и упорядоченного состоя-

ний соответственно, W — параметр взаимодействия,

h(φ) = φ2(3− 2φ) — аппроксимирующая функция.

Плотности свободной энергии с учетом энергий ато-

мов в различных состояниях, а также конфигурационной

энтропии могут быть записаны в виде выражений

f i(c) = f 0
i + f 1

i c + f 2
i (1− c)

+ kBT
[
c ln c + (1− c) ln(1− c)

]
, i = {A,B}.

(3)
Здесь f 0

i , f 1
i и f 2

i — параметры взаимодействия,

определяющие энергию атомов в рассматриваемых со-

стояниях, а также учитывающие их взаимодействие с

подложкой.

Примеры рельефа плотности свободной энергии, от-

ражающие возможность фазового перехода между со-

стояниями A и B, отражены на рис. 1. Учет парных

взаимодействий между частицами приводит к возник-

новению квадратичных членов по концентрации (см.,
например [26]) в формуле (3), что может приводить

к возникновению дополнительных устойчивых состоя-

ний, например, (c ≈ 1, φ ≈ 0). В этом случае фазовый
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Рис. 1. a) Рельеф плотности свободной энергии f (c, φ), отражающий одноступенчатый фазовый переход между двумя

устойчивыми состояниями (c ≈ 0, φ ≈ 0) и (c ≈ 1, φ ≈ 1). b) Плотности свободной энергии для неупорядоченного ( f (c, 0) —

кривая 1) и упорядоченного ( f (c, 1) — кривая 2) состояний. Точками A и B отмечены экстремумы плотности свободной энергии.

Таблица 1. Феноменологические (безразмерные) параметры, использованные для моделирования

W T f 0
A f 1

A f 2
A f 0

B f 1
B f 2

B λ

1.0 0.3 −0.7 −1.8 0.0 0.0 −0.2 −1.2 0.1

κ Mc Mφ I+ I− K τ0 α δ

0.0002 1.0 33.0 2.0 · 10−2 0.0−7.0 · 10−2 3 0.1 π/4 0.25

6 0.2 π/8 0.45

переход может осуществляться через промежуточное

состояние, а процесс нуклеации может проходить по

двухступенчатому механизму [32–36]. Параметры моде-

лирования приведены в таблице 1.

Анизотропия энергии границы для двумерных матери-

алов с учетом различных типов симметрии может быть

выражена с помощью общего выражения, введенного

в двумерной модели неизотермической кристаллизации,

разработанной Кобаяси [28]:

ε = ε0
[
1 + δ cos(Kθ)

]
, (4)

где ε0 — постоянная величина, определяющая вклад гра-

диентной энергии параметра порядка, δ — постоянный

безразмерный множитель, задающий интенсивность ани-

зотропии, K — множитель, соответствующий порядку

оси симметрии. Угол поворота границы θ зависит от

положения нормали к фронту, для которой справедливо

выражение cos(θ) = nx/
√

n2
x + n2

y . Анизотропия энергии

границы двумерных материалов характеризуется нали-

чием осей симметрии третьего или шестого порядков,

поэтому K может принимать значения 3 или 6. Для

металлов, образующих субмонослойные пленки, может

наблюдаться и кубическая симметрия (K = 4), которая
наиболее часто обсуждается в литературе при решении

задач о дендритном росте кристаллов [37–41]. Используя

Таблица 2. Аналитические выражения для функции a(n) при

различных значениях K

K Функция a(nx , ny )

3 1 + δnx (n
2
x − 3n2

y )/(n
2
x + n2

y )
3/2

4 1− 3δ + 4δ(n4
x + n4

y )/(n
2
x + n2

y )
2

6 1 + δ(n2
x − n2

y )(n
4
x − 14n2

x n2
y + n4

y )/(n
2
x + n2

y )
3

данные значения K, из формулы (3) с помощью триго-

нометрических преобразований можно получить анали-

тические выражения для функции анизотропии энергии

границы a(n) = ε(n)/ε0, приведенные в таблице 2.

В дальнейшем мы рассмотрим динамику формиро-

вания пленок, характеризуемых анизотропией энергии

границы a(n) с осью симметрии третьего и шестого

порядков, которые наиболее часто наблюдаются для дву-

мерных материалов (K = 3 — h-BN, WS2 [42], K = 6 —

графен, полосковый борофен [43]). Примеры функции

a(n) при данных значениях K в полярных координатах

показаны на рис. 2. Для пространственной ориентации

зависимости a(n) был использован оператор поворота

R̂α на угол α в двумерном пространстве.
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Рис. 2. Функция анизотропии поверхностной энергии, построенная в виде ρ(nx , ny ) = a(n){nx , ny} при nx = cosψ, ny = sinψ

(0 ≤ ψ ≤ 2π): a) K = 6, δ = 0.25; b) K = 3, δ = 0.45. Сплошные линии рассчитаны с помощью формул из таблицы 2: кривая 1 —

α = 0, 2 — a) α = π/8, b) α = π/4. Пунктирные линии получены с помощью формулы при указанном значении параметров.

Учитывая свойство консервативности концентрацион-

ного поля и неконсервативность поля параметра поряд-

ка, можем записать динамические уравнения для данных

переменных в виде

∂c

∂t
=∇ ·

[
Mc∇

δF

δc

]
+I+(1−c)+I−

[
1−h(φ)

]
c+∇ · ξ

a2(n)
∂φ

∂t
= −Mφ

δF

δφ
+ ζ





,

(5)
где Mc — подвижность осаждаемых атомов, Mφ —

постоянная релаксации параметра порядка, I+ и I− —

постоянные коэффициенты, определяющие скорость оса-

ждения и испарения атомов с поверхности подлож-

ки в рассматриваемых изотермических условиях, ξ и

ζ — случайные Гауссовы поля, задающие тепловые

флуктуации. Коэффициенты скоростей осаждения I+ и

испарения I− определяются потоком и химическими

потенциалами осаждаемых атомов во внешней среде

и на подложке, а также температурой [26]. При этом

считается, что процесс испарения относится главным

образом к атомам, не перешедшим в фазу двумерно-

го материала. При присоединении атомов к растущим

островкам новой фазы появление новых ковалентных

связей между адсорбированными атомами приводит к

резкому уменьшению скорости испарения, значением

которой можно пренебречь по сравнению с испарением

отдельных атомов, которые взаимодействуют лишь с

подложкой, образуя, как правило, сравнительно слабые

связи ван-дер-ваальсовского типа. Поскольку испарение

атомов из сформированной двумерной фазы мало́, то

можно ожидать, что степень покрытия подложки θc
будет асимптотически стремиться к единице в процессе

осаждения (см. также [26]). Отметим также, что на

подложках могут быть синтезированы и многослойные

двумерные материалы (например, многослойный гра-

фен), однако межслойные связи также имеют ван-дер-

ваальсовскую природу. Данные сравнительно слабые

межслойные связи могут являться причиной высокой

скорости испарения атомов, что дает возможность син-

тезировать протяженные однослойные структуры, кото-

рые и рассматриваются в настоящей работе.

После вычисления вариационных производных в урав-

нениях (5) приходим к уравнениям вида

∂c

∂t
= ∇ ·

[
Mc∇

{
∂ f

∂c
− κ∇2c

}]

+ I+(1− c) + I−
[
1− h(φ)

]
c + ∇ · ξ

a2(n)
∂φ

∂t
= −Mφ

[
∇ · ε2∇φ +

∂

∂x

{
(∇φ)2ε

∂ε

∂φx

}

+
∂

∂y

{
(∇φ)2ε

∂ε

∂φy

}
− ∂ f

∂φ

]
+ ζ






.

(6)
Флуктуационные члены в (6) зададим с помощью

корреляционных функций [26,44]:

〈ξi (r, t), ξi(r
′, t′)〉 = 2MckBTw(r− r

′)δ(t − t′)δi j

〈ζ (r, t), ζ (r′, t′)〉 = 2MφkBTw(r− r
′)δ(t − t′)

}
. (7)

где δ(t) — дельта-функция, δi j — символ Кронекера,

а пространственная корреляция задана с помощью функ-
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ции Гаусса [44]:

w(r− r
′) =

1

2πλ2
exp

[
− (r− r

′)2

2λ2

]
, (8)

λ — корреляционная длина. В пределе λ → 0 функция

Гаусса стремится к дельта-функции, и соотношение (8)
принимает вид корреляционной функции, соответствую-

щей белому шуму [45].

3. Численные методы, параметры
модели и граничные условия

Дальнейшее математическое моделирование роста

двумерных материалов в процессе осаждения осуществ-

ляется в следующих единицах:

[r] = l, [ f ] = W, [T ] =
W

kB

, [t] = n0W Mc/l2

[M] = Mc, [L] = Mcl
2, [κ] = W l2, [I±] = [t]−1





, (9)

где l — пространственный масштаб, который принимал-

ся равным 10 nm.

Решение системы дифференциальных уравнений (6)
осуществлялось с помощью явной конечно-разностной

схемы Эйлера на прямоугольной однородной сетке раз-

мером S = 1024h×1024h, где h = 0.02l — шаг простран-

ственной сетки. Дискретизация производных по про-

странственным переменным осуществлялось с помощью

разностных схем [46–48], обеспечивающих изотропность

соответствующих дифференциальных операторов. Гра-

ничные условия являлись периодическими. Для каждого

набора параметров выполнялось (50−125) · 106 итера-

ций с шагом по времени 1t = 2.0 · 10−5. Корреляцион-

ная длина в безразмерных единицах при этом состав-

ляла λ ≈ 0.1. Моделирование проводилось с помощью

графического ускорителя Nvidia A100, а расчеты зани-

мали около 40 h для наиболее продолжительной серии

расчетов.

Принимая коэффициент диффузии атомов по поверх-

ности подложки равным D ≈ 10−13 m2/s, можно вве-

сти временной масштаб τ ≈ n0McW/l2 ≈ c0DW/(kBT l2)
≈ 0.009 s, использованный для перехода к размерным

единицам времени, c0 — равновесная концентрация

атомов на подложке в обедненной фазе.

4. Результаты моделирования
и их обсуждение

На рис. 3 и 4 показаны результаты моделирования

формирования и роста двумерных материалов на под-

ложке в процессе непрерывного осаждения при ма-

лой скорости испарения атомов и различными типами

анизотропии параметра порядка. На начальной стадии

процесса осаждения островки новой фазы отсутствуют, а

система характеризуется неоднородным распределением

концентрационного поля и параметра порядка, обуслов-

ленного флуктуациями (см. рис. 4, a). По мере уве-

личения количества осажденного вещества происходит

образование островков либо по механизму нуклеации,

либо по безактивационному (спинодальному) механиз-

му. Реализация того или иного механизма зарождения

новой двумерной фазы зависит от скоростей осажде-

ния и испарения. При медленном процессе осаждения

преодоление барьера нуклеации, достигаемое за инкуба-

ционное время, может произойти до достижения грани-

цы метастабильности. При быстром осаждении переход

в область неустойчивых состояний может произойти

быстрее, чем будет преодолен барьер нуклеации, что

может приводить к безактивационному формированию

новой фазы.

На стадии формирования новой фазы, образующиеся

островки имеют геометрию треугольников (рис. 3, a) и

шестиугольников (рис. 4, b), обусловленную анизотропи-

ей энергии границы. Такая геометрическая особенность

отличает разработанную модель от классических подхо-

дов теории нуклеации, где в основном рассматриваются

зародыши с круговой (2D) или сферической симмет-

рией (3D), свойственной изотропной энергии границы

(т. е. при δ= 0). В процессе осаждения атомов и роста

островков происходит рост степени покрытия. В силу

большой концентрации образующихся зародышей на-

блюдается высокая интенсивность слияния островков,

которая приводит к росту их размера и уменьшению

поверхностной концентрации. Другой механизм, обу-

словленный диффузионным переносом вещества между

островками (Оствальдовское созревание), проявлялся

достаточно слабо. Данный механизм, детально изучен-

ный в работах [23–25], может иметь большее значение

при более медленном осаждении.

В процессе слияния сформированных островков про-

исходит образование перколяционной структуры с ха-

рактерной геометрией, соответствующей выбранному

типу анизотропии энергии границы (рис. 3, c и 4, d).
Дальнейший рост степени покрытия подложки приводит

к образованию изолированных пор, имеющих геомет-

рию, также определяемую функцией ε(n) (рис. 3, d

и 4, d).

На рис. 5 и 6 показана динамика среднего размера

и поверхностной концентрации островков для рассмот-

ренных случаев анизотропии энергии границы (K = 3

и 6). Поскольку для рассмотренных скоростей осажде-

ния и испарения доминирующим механизмом является

слияние островков между собой, наблюдаемая динамика

существенно отличается от широко известных зависимо-

стей, описываемых в рамках механизмов диффузионного

роста или коалесценции [23]. Для рассмотренного роста

двумерного материала при K = 3 наблюдался очень

быстрый рост среднего размера 〈R〉 ∝ t1.5−1.8 при резкой

убывающей (гиперболической) зависимости поверхност-

ной концентрации Xc. Для K = 6 наблюдавшаяся ско-

рость роста оказалась заметно медленнее: 〈R〉 ∝ t .
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Рис. 3. Динамика осаждения сплошного слоя двумерного материала, имеющего ось симметрии третьего порядка (K = 3), при
отсутствии испарения (I− = 2 · 10−3) в различные моменты времени t : a) 1.1 s, b) 1.8 s, c) 4.5 s, d) 10.1 s.

Подобное явление обсуждалось ранее в теории быст-

рой коагуляции Смолуховского, в рамках которой ди-

намика концентрации островков может быть описана

с помощью кинетического уравнения dXc/dt = −kX2
c

(k — кинетический коэффициент). Данное уравнение

приводит к простой качественной зависимости по-

верхностной концентрации от времени Xc(t) = Xc(t0)

×
[
1 + kXc(t0)(t − t0)

]−1
(t0 — начальный момент време-

ни), вид которой согласуется с данными, полученными

на основе теории фазового поля (рис. 5 и 6).
На рис. 7 показаны функции распределения островков

по размерам на различных этапах формирования сплош-

ного слоя двумерного материала. В рассматриваемых

условиях интенсивного слияния островков на рассмот-

ренных стадиях максимальный наблюдаемый размер не

превышает (1.7−1.8)〈R〉.

Одним из универсальных подходов теории фазовых

переходов является модель Джонсона−Меля−Аврами–
Колмогорова (JMAK), которая позволяет анализировать

кинетику сформированной доли новой фазы с помощью

соотношения [49–51]

θc = θ0
[
1− exp (−{K0 t}n)

]
. (10)

Здесь θc — доля новой фазы (степень покрытия), θ0 —
асимптотическое значение доли новой фазы (θ0 = 1),
K0 — константа, n — показатель Аврами. Значение

показателя n зависит от размерности системы и меха-

низма переноса вещества между островками. Также на

наблюдаемое значение показателя n может существенно

влиять характер зависимости скорости формирования

новой фазы от времени [49–51]. На рис. 8 показаны

зависимости θc, полученные на основе выполненных
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Рис. 4. Динамика осаждения сплошного слоя двумерного материала, имеющего ось симметрии шестого порядка (K = 6) при

наличии испарения (I− = 8 · 10−3) в различные моменты времени t : a) 1.1 s, b) 1.18 s, c) 2.7 s, d) 9.1 s.
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Рис. 6. Динамика a) среднего радиуса и b) поверхностной концентрации островков двумерного материала (K = 6) при различных

коэффициентах скорости испарения материала I− : кривая 1 — 0.0 (без испарения), 2 — 2.5 · 10−2, 3 — 7.0 · 10−2 .
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I− = 7.0 · 10−2 в различные моменты времени: a) t = 2.9 s, b) t = 5.5 s.
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зависимостями для определения показателя n в формуле (10). a) K = 3, кривая 1 — n = 1.06, 2 — n = 1.14, 3 — n = 1.22,

4 — n = 2.5. b) K = 6, кривая 1 — n = 1.06, 2 — n = 1.06, 3 — n = 1.25, 4 — n = 2.3.

расчетов для различных скоростей испарения I−. Как

следует из рисунка, на этапе быстрого слияния остров-

ков двумерной фазы данный показатель имеет значение

n ≈ 1.06−1.25. На более ранней стадии (рис. 8, a и b,

пунктирные линии 4), когда еще реализуются процессы

зарождения и диффузионного роста, значение пока-

зателя может достигать n = 2.3−2.5, что согласуется

с выводами [49]. Сравнительный анализ результатов

фазово-полевого моделирования в случае двумерной

дендритной кристаллизации сплавов проводился ранее в
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работе [51]. Установленная динамика показателя Аврами
на различных стадиях фазового превращения показала,

что показатель имеет немонотонную зависимость от

времени и на поздних стадиях (θ → θ0) может снижаться
до значений ∼ 0.5−1.5, что также согласуется с полу-

ченными нами результатами.

5. Заключение

Разработана фазово-полевая модель зарождения и ро-

ста двумерных материалов на поверхности подложки

в процессе осаждения. В модели учтена анизотропия

энергии границы материала, которая позволяет анали-

зировать динамику сформированных островков, характе-

ризуемых осями симметрии третьего или шестого по-

рядков, наблюдаемых в двумерных материалах (графене,
борофене, дихалькогенидах переходных металлов и др.).
В результате выполненного моделирования могут быть

сделаны следующие выводы.

1. При быстром осаждении и небольших скоростях

испарения основным механизмом формирования сплош-

ных слоев двумерного материала является слияние со-

седних островков. В области слияния соседних остров-

ков формируются дефекты структуры, которые являют-

ся энергетически невыгодными, что делает их предпо-

чтительным местом для присоединения новых атомов.

При отсутствии слияний с другими островками данные

дефекты быстро зарастают, что приводит к релаксации

островка к форме, определяемой характером анизотро-

пии энергии границы.

При реализации данного механизма роста двумерного

материала на начальном этапе наблюдалась высокая

скорость роста среднего размера островков 〈R〉 ∝ tα

(α = 1.0−1.8). На поздней стадии формирования сплош-

ной пленки наблюдалась значительная интенсификация

процесса слияний и существенное ускорение роста сред-

него размера.

2. На этапе формирования сплошных слоев двумер-

ных материалов, как результата слияния соседних ост-

ровков, могут образовываться поры, которые имеют гео-

метрию, характерную для свойственного материалу типа

анизотропии энергии границы. Некоторые из уединен-

ных пор могут в процессе формирования приобретать

правильную форму, характеризуемую наличием осей

симметрии соответствующего порядка.

3. Анализ динамики доли сформированной двумерной

фазы показал, что показатель Аврами зависит от коэф-

фициентов скоростей осаждения и испарения, а также

убывает с течением времени. На ранней стадии форми-

рования пленки, где доминируют процессы зарождения и

роста, были получены значения показателя n ≈ 2.3−2.5.

На поздней стадии, когда доминирует механизм слияния

соседних островков, значения показателя существенно

уменьшались, до значений n ≈ 1.06−1.25.
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