05,07

Кристаллическая структура, пьезо- и диэлектрические свойства нового ряда твердых растворов $SrBi_2Nb_{2-x}Ta_xO_9$ (x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0)

© С.В. Зубков, Ю.А. Куприна

НИИ физики, Южный федеральный университет, Ростов-на-Дону, Россия

E-mail: svzubkov61@mail.ru

Поступила в Редакцию 22 октябр 2025 г. В окончательной редакции 22 октября 2025 г. Принята к публикации 24 октября 2025 г.

Керамика Ауривиллиуса—Смоленского (AC) SrBi $_2$ Nb $_{2-x}$ Ta $_x$ O $_9$ ($x=0.0,\ 0.2,\ 0.4,\ 0.6,\ 0.8,\ 1.0$), число перовскитоподобных слоев n=2 была синтезирована (для $x=0.2,\ 0.4,\ 0.6,\ 0.8,\ 1.0$) традиционным путем твердофазной реакции. По данным рентгеновской порошковой дифракции было установлено, что все соединения являются однофазными со структурой фаз АС (число перовскитоподобных слоев n=2) с орторомбической кристаллической решеткой (пространственная группа A2 $_1$ am). Были рассчитаны параметры кристаллической решетки a,b,c, измерены относительная диэлектрическая проницаемость $\varepsilon/\varepsilon_0(T)$, тангенс угла диэлектрических потерь tg δ , температура Кюри $T_{\rm C}$, пьезомодуль d_{33} .

Ключевые слова: фазы Ауривиллиуса—Смоленского, температура Кюри, микроструктура, диэлектрическая проницаемость, пьезомодуль.

DOI: 10.61011/FTT.2025.10.61971.290-25

1. Введение

В 1949 г. при изучении системы $Bi_2O_3-TiO_2$ В. Ауривиллиус установил образование оксида Ві₄Ті₃О₁₂ со структурой типа перовскита [1]. Спустя десять лет группа Г. Смоленского [2] открыла сегнетоэлектрические свойства в Bi₂PbNb₂O₉, относящегося к этому семейству соединений, после чего начался интенсивный этап исследования данных соединений. В связи с этим, по праву, эти соединения можно назвать фазами Ауривиллиуса-Смоленского (ФАС) [3]. В 1961-1962 гг. Е.С. Суббарао получил около десяти новых соединений, почти все они оказались сегнетоэлектриками [4,5]. В настоящее время синтезированы сотни ФАС. Они образуют большое семейство висмут-содержащих слоистых соединений типа перовскита, химический состав которых описывается общей формулой $Bi_2A_{m-1}B_mO_{3m+3}$. Кристаллическая структура ФАС включает чередующиеся слои $[\mathrm{Bi}_2\mathrm{O}_2]^{2+}$, разделенные m перовскитоподобными слоями $[A_{m-1}B_m\mathrm{O}_{3m+1}]^{2-}$, где A-позиции заняты ионами большого радиуса: Na⁺ [6], K⁺ [7], Ca²⁺ [8], Sr²⁺ [9], Ba²⁺ [10], Pb²⁺ [11], Y³⁺ [12,13], Bi³⁺, La³⁺ [14], Nd [15], Sm [16], Gd [17], Ce [18], Tb [19], Dy [20], Ho [21], Er [22], Eu [23] и Ac, Th, Pr (актиниды), которые демонстрируют додекаэдрическую координацию. В-позиции внутри кислородных октаэдров заняты высокозаряженными ($\geq 3^+$) катионами малого радиуса: Fe, Cr, Mn, Co [24–26], а также Cu²⁺ [27], Mg²⁺ [28], Ti⁴⁺, W^{6+} [29], Nb^{5+} [30], Ta^{5+} [31]. Значение m определяется числом слоев перовскита $m [A_{m-1}B_m O_{3m+1}]^{2-}$, расположенных между флюоритоподобными слоями $[Bi_2O_2]^{2+}$ вдоль псевдотетрагональной оси c [32], и может быть

целым или полуцелым [33] числом в диапазоне 1-5. Замещения атомов в позициях A и B существенно влияют на электрические свойства ФАС. Имеют место большие изменения диэлектрической проницаемости и электропроводности; кроме того, температура Кюри $T_{\rm C}$ также может изменяться в широких пределах. Таким образом, изучение катион-замещенных соединений ФАС имеет большое значение при разработке материалов различного технического назначения.

 $SrBi_2Nb_2O_9$ (SBN) является одним из наиболее перспективных кандидатов для энергонезависимой памяти с произвольным доступом и резонаторов с точностью изменения частоты (около 15%) [34–36].

Проведены многочисленные исследования, направленные на улучшение сегнетоэлектрических и пьезоэлектрических свойств керамики SBN путем ионного легирования [37,38]. Легирование Pr, Nd и La позиции Bi в SBN приводит к релаксорному поведению [39–41]. Также сообщалось о высоком пьезомодуле $d_{33} \leq 20\,\mathrm{pC/N}$, низких диэлектрических потерях SBN [42–45] и превосходных свойствах отсутствия усталости [46–50].

Настоящая работа направлена на исследование влияния изоморфного замещения на пьезосвоства синтезированного ряда $SrBi_2Nb_{2-x}Ta_xO_9$ ($x=0.0,\ 0.2,\ 0.4,\ 0.6,\ 0.8,\ 1.0$).

2. Эксперимент

Поликристаллический ряд Φ AC $SrBi_2Nb_{2-x}Ta_xO_9$ ($x=0.0,\ 0.2,\ 0.4,\ 0.6,\ 0.8,\ 1.0$) был синтезирован твердофазной реакцией соответствующих оксидов Bi_2O_3 ,

9 1921

N_{Ω}	Образец	$l(Nb_1-O_1)$	$l(Nb_2-O_2)$	$l(Nb_4-O_4)$	$l(Nb-O_5)$
1	SrBi ₂ NbTaO ₉	2.1465	1.9295	2.0698	2.06287
2	SrBi ₂ Nb _{1.2} Ta _{0.8} O ₉	2.1471	1.93101	2.0698	2.0623
3	SrBi ₂ Nb _{1.4} Ta _{0.6} O ₉	2.144	1.9274	2.0698	2.0624
4	SrBi ₂ Nb _{1.6} Ta _{0.4} O ₉	2.1455	1.92877	2.0698	2.0623
5	SrBi ₂ Nb _{1.8} Ta _{0.2} O ₉	2.1437	1.9271	2.0709	2.065
6	SrBi ₂ Nb ₂ O ₉	2.1456	1.9288	2.0698	2.0623

Таблица 1. Длины связей в кислородном октаэдре для $SrBi_2Nb_{2-x}Ta_xO_9$

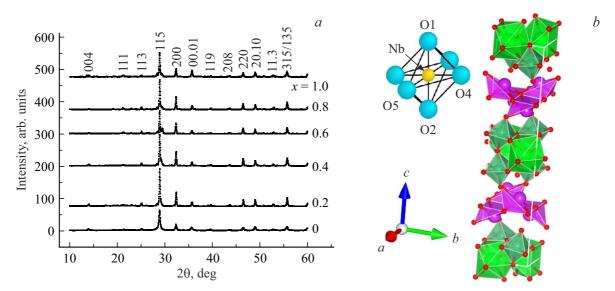
SrCO₃, Ta₂O₅, Nb₂O₅. Все исходные соединения были марки ЧДА (аналитической чистоты). После взвешивания по стехиометрическому составу и тщательного измельчения исходных оксидов с добавлением этилового спирта прессованные образцы прокаливали при температуре 860-870°C в течение 4h. Обжиг образцов проводился в лабораторной муфельной печи на воздухе. Затем образец дробили, многократно измельчали и прессовали в таблетки диаметром 9 mm и толщиной 1.0-1.5 mm с последующим финальным синтезом при температуре 1140°C (2h). Рентгенограмма регистрировалась на дифрактометре Rigaku Ultima IV с Си-рентгеновской трубкой. Излучение Си K_{α_1,α_2} было выделено из общего спектра с помощью Ni-фильтра. Рентгенограмму измеряли в диапазоне углов 2θ от 10 до 60° с шагом сканирования 0.02° и экспозицией (время регистрации интенсивности) 4 s на точку. Анализ профиля рентгенограммы, определение положения линий, их индексация (hkl) и уточнение структуры проведено методом Ритвельда в программе Full Prof Suitt. Для измерения диэлектрической проницаемости и электропроводности на плоские поверхности исследуемых образцов наносились электроды с использованием Ад-пасты, отожженной при температуре 720°C (20 min). Температурные и частотные зависимости диэлектрических характеристик измерялись с помощью измерителя иммитанса Е7-20 в диапазоне частот от 100 kHz до 1 MHz и в интервале температур от комнатной до 500°C. Для измерения пьезомодуля d_{33} образец подвергался поляризации в масляной бане при 150°C при напряжении 45-65 kV/cm в течение 30 min. Значение пьезомодуля исследуемых соединений находили из соотношения с известным значением пьезомодуля эталонного образца кварца Х-среза.

3. Результаты и их обсуждение

Порошковые рентгенограммы всех исследованных твердых растворов $SrBi_2Nb_{2-x}Ta_xO_9$ ($x=0.0,\ 0.2,\ 0.4,\ 0.6,\ 0.8,\ 1.0$) соответствуют однофазным ФАС с m=2 и не содержат дополнительных рефлексов. Эти соединения изоструктурны известному перовскитоподобному оксиду ФАС SBN. Все пики были проиндексированы на основе орторомбических ячеек, связанных с пространственной группой $A2_1$ am, которая соответствует файлу

ЈСРDS под номером № 49-0617 (№ 36 в программе PCW 2.4). На рис. 1, a представлены экспериментальные порошковые рентгенограммы исследуемых соединений $SrBi_2Nb_{2-x}Ta_xO_9$ ($x=0.0,\ 0.2,\ 0.4,\ 0.6,\ 0.8,\ 1.0$). Пик (115) на рентгенограмме рис. 1, a показывает самую высокую интенсивность в плоскости (11(2m+1)). Этот типичный дифракционный пик соответствует слоистой структуре SBN [51].

В табл. 1 приведены длины связей Nb/Ta-O для ряда SrBi₂Nb_{2-x}Ta_xO₉ (x=0.0,0.2,0.4,0.6,0.8,1.0).


3.1. Кристаллическая решетка

По данным рентгеновской дифракции были определены параметры элементарной ячейки (постоянные решетки a_0 , b_0 , c_0 и объем V), которые приведены в табл. 2.

В табл. 2 приведены параметры орторомбической δb_0 и тетрагональной $\delta c'$ деформации; средний тетрагональный период a_t , средняя толщина одного перовскитоподобного слоя c', где $c'=3c_0/(8+6m)$, $a_t=(a_0+b_0)/(2\sqrt{2})$ — среднее значение тетрагонального периода; a_0,b_0,c_0 — периоды решетки; $\delta c'=(c'-a_t)/a_t$ — отклонение ячейки от кубической формы, то есть удлинение или сокращение кубической формы; $\delta b_0=(b_0-a_0)/a_0$ — орторомбическая деформация [52,53]. В.М. Гольдшмидтом [54] был введен толеранс-фактор t, как геометрический критерий, определяющий степень устойчивости и искажения кристаллической структуры:

$$t = (R_A + R_O)/\sqrt{2}(R_B + R_O),$$
 (1)

где R_A и R_B — радиусы катионов в подрешетке A и B соответственно; $R_{\rm O}$ — ионный радиус кислорода. Очевидно, что значение t для для всего ряда синтезированных соединений имеет одно и тоже значение. В настоящей работе толеранс-фактор рассчитывался с учетом таблицы ионных радиусов Р.Д. Шеннона [55] для соответствующих координационных чисел (КЧ): O^{2-} (КЧ = 6), $R_{\rm O^{2-}}=1.40$ Å; Ta^{5+} (КЧ = 12), $R_{\rm Ta^{5+}}=0.64$ Å; Nb^{5+} (КЧ = 12), $R_{\rm Nb^{5+}}=0.64$ Å. Шеннон не привел ионный радиус Bi^{3+} для координации с KЧ = 12. Поэтому его значение определялось из ионного радиуса с KЧ = 6

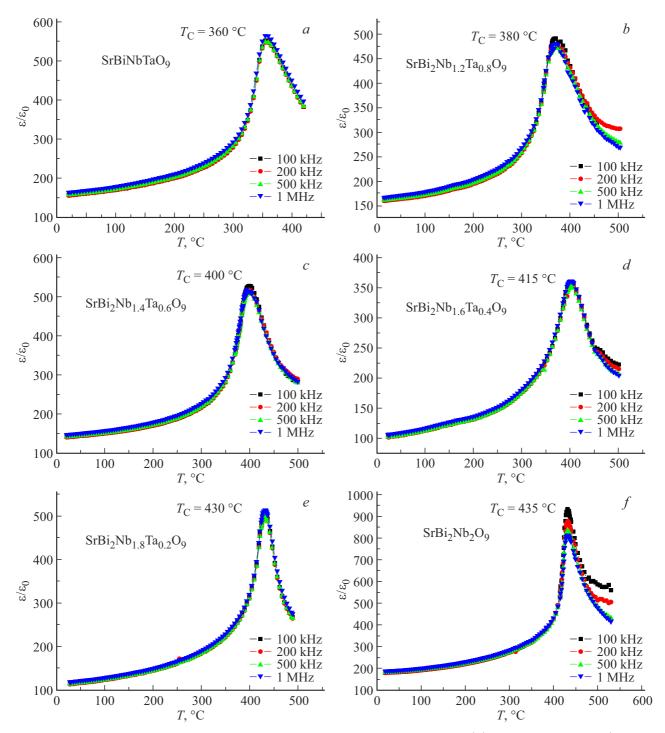
Рис. 1. a) Рентгеновские дифрактограммы керамики $SrBi_2Nb_{2-x}Ta_xO_9$ ($x=0.0,\ 0.2,\ 0.4,\ 0.6,\ 0.8,\ 1.0$) в диапазоне $2\theta\ 10-60^\circ$. b) Кристаллическая структура $SrBi_2Nb_2O_9$, изображенная с решеткой, и позиционные параметры в кислородном октаэдре.

Таблица 2. Параметры элементарной ячейки a_0 , b_0 , c_0 , V, a_t — параметр тетрагонального периода, c' — высота октаэдра по оси c, $\delta c'$ — отклонение от кубической формы, δb_0 — ромбическое искажение

Nº	Образец	a ₀ , Å	b_0 , Å	c ₀ , Å	c'	a_t	$\delta c'$	δb_0	V, Å ³
1	SrBi ₂ NbTaO ₉	5.5103	5.513	25.0648	3.7686	3.9064	-3.52	0.235	761.425
2	SrBi ₂ Nb _{1.2} Ta _{0.8} O ₉	5.5072	5.5142	25.0072	3.76365	3.9068	-3.66	0.216	759.413
3	SrBi ₂ Nb _{1.4} Ta _{0.6} O ₉	5.5064	5.5168	25.0356	3.7674	3.9043	-3.5	0.345	760.275
4	SrBi ₂ Nb _{1.6} Ta _{0.4} O ₉	5.5062	5.517	25.0537	3.7656	3.9046	-3.56	0.235	761.074
5	SrBi ₂ Nb _{1.8} Ta _{0.2} O ₉	5.5109	5.5197	25.0317	3.767	3.905	-3.53	0.217	761.427
6	SrBi ₂ Nb ₂ O ₉	5.5059	5.5167	25.054	3.768	3.904	-3.48	0.315	761.

 $(R_{\rm Bi^{3+}}=1.17\,{\rm \AA})$, умноженного на коэффициент аппроксимации 1.179, тогда для ${\rm Bi^{3+}}$ (KЧ = 12) $R_{\rm Bi^{3+}}=1.38\,{\rm \AA}$. Как видно из табл. 2, $\delta c'$ имеет отрицательное значе-

как видно из таол. 2, *ос* имеет отрицательное значение, что соответствует "сжатому" состоянию октаэдра в перовскитовом слое [56,57].


Практически все параметры ячеек остаются постоянными, что и ожидаемо при изоморфном замещении Nb на Ta.

3.2. Диэлектрические свойства

Зависимости относительной диэлектрической проницаемости $\varepsilon/\varepsilon_0$ и тангенса угла диэлектрических потерь $\mathrm{tg}\,\delta$ от температуры для ФАС $\mathrm{SrBi_2Nb_{2-x}Ta_xO_9}$ (x=0.0,0.2,0.4,0.6,0.8,1.0), число перовскитоподобных слоев n=2 представлены на рис. 2 и 3 соответственно, при значениях частоты от $100\,\mathrm{kHz}$ до $1\,\mathrm{MHz}$ для керамик, спеченных при температурах $1140-1150^\circ\mathrm{C}$.

Максимум диэлектрической проницаемости $\varepsilon/\varepsilon_0(T)$, соответствующий фазовому переходу сегнетоэлектрик-параэлектрик, отчетливо наблюдается для всего ряда

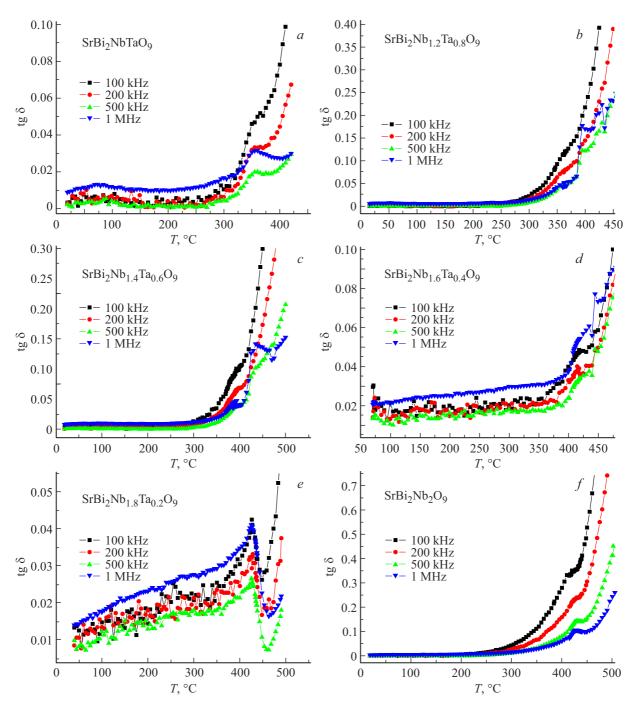

твердых растворов $SrBi_2Nb_{2-x}Ta_xO_9$ (x = 0.0, 0.2, 0.4,0.6, 0.8, 1.0), n = 2 на частотах от $100 \,\mathrm{kHz}$ до $1 \,\mathrm{MHz}$. Для ряда $SrBi_2Nb_{2-x}Ta_xO_9$ (x = 0.2, 0.4, 1.0), n = 2можно также наблюдать уменьшение $\operatorname{tg}\delta$ практически в десять раз по сравнению с SBN, для ряда $SrBi_2Nb_{2-x}Ta_xO_9$ ($x=0.6,\ 0.8$) — в 2 раза. Уменьшение $\operatorname{tg}\delta$ для всего ряда $\operatorname{SrBi}_{2}\operatorname{Nb}_{2-x}\operatorname{Ta}_{x}\operatorname{O}_{9}$ ($x=0.2,\ 0.4,\ 0.6,$ 0.8, 1.0) можно объяснить уменьшением дефектности кристаллической структуры и, как следствие, кислородных вакансий. Уменьшение дефектности связано с тем, что замещение Nb на Та делает связи (Ta,Nb)-О менее ковалентными. Поскольку 5d-орбиталь Та более протяженна, чем 4*d*-орбиталь Nb, гибридизация 5*d*орбитали Та с О2р уменьшает энергию связи и делает связь менее ковалентной. Ковалентность играет важную роль в структурных искажениях и сегнетоэлектричестве в сегнетоэлектрических оксидах [58]. Таким образом, уменьшение ковалентного взаимодействия в октаэдрическом звене приводит к уменьшению структурных искажений и к уменьшению значений температуры Кюри $T_{\rm C}$.

Рис. 2. Температурные зависимости относительной диэлектрической проницаемости $\varepsilon/\varepsilon_0(T)$ для $SrBi_2Nb_{2-x}Ta_xO_9$ ($x=0.0,\ 0.2,\ 0.4,\ 0.6,\ 0.8,\ 1.0$).

Для всего ряда ${\rm SrBi_2Nb_{2-x}Ta_xO_9}~(x=0.2,0.4,0.6,0.8,1.0)$ наблюдается отсутствие дисперсии $\varepsilon/\varepsilon_0(T)$ по частоте. Для ${\rm tg}\,\delta$ у ${\rm SrBi_2Nb_{2-x}Ta_xO_9}~(x=0.2,0.4)$ в интервале x=0.2-0.4 не наблюдается привычной зависимости температуры Кюри $T_{\rm C}$ и минимума значения ${\rm tg}\,\delta$ (см. рис. 3,f и e). Кроме того, наблюдается смешение минимума ${\rm tg}\,\delta$ в сторону больших значений для x=0 от температуры фазового перехода, что может быть

косвенным признаком релаксорных свойств $SrBi_2Nb_2O_9$, с одной стороны. С другой стороны, замещение Nb на Ta при значениях x=0.2 связано с уменьшением кислородных вакансий и уменьшением диэлектрических потерь. О том, что при концентрации x=0.2 не происходит замещения Nb на Ta в кислородном октаэдре, можно судить о незначительном изменении температуры Кюри $T_C=435$ и $430^{\circ}C$ для x=0.0 и 0.2 соответственно.

Рис. 3. Температурные зависимости тангенса угла диэлектрических потерь $\operatorname{tg}\delta$ для $\operatorname{SrBi}_2\operatorname{Nb}_{2-x}\operatorname{Ta}_x\operatorname{O}_9$ ($x=0.0,\,0.2,\,0.4,\,0.6,\,0.8,\,1.0$).

В табл. 3 приведены температуры фазового перехода $T_{\rm C}$ при увеличении параметра x. Температура Кюри $T_{\rm C}$ уменьшается практически линейно с увеличением x.

Как видно из табл. 3, температура фазового перехода $T_{\rm C}$ проявляет практически линейную зависимость от параметра x.

3.3. Пьезоэлектрические измерения

Для измерения пьезомодуля d_{33} образец подвергался поляризации в масляной бане при $150^{\circ}\mathrm{C}$ при напряже-

нии 45-65 kV/ст в течение 30 min. Значение пьезомодуля, исследуемых соединений, находили из соотношения с известным значением пьезомодуля эталонного образца кварца X-среза. Значение пьезоэлектрической константы d_{33} для стехиометрической керамики SBN составило 14 pC/N и хорошо согласуется с опубликованными значениями [59]. Для составов ${\rm SrBi_2Nb_{2-x}Ta_xO_9}~(x=0.2,0.4,0.6)$ значения пьезомодуля лежат в интервале 16-17 pC/N, для для ${\rm SrBi_2Nb_{2-x}Ta_xO_9}~(x=0.8,1.0)$ в интервале 12-14 pC/N. Рост пьезомодуля от 14 до 17 pC/N можно связать с уменьшением дефектности

Таблица 3. Температура Кюри $T_{\rm C}$, относительная диэлектрическая проницаемость $\varepsilon/\varepsilon_0$ и тангенс потерь tg δ , измеренные на частоте 100 kHz, пьезомодуль d_{33}

N₂	Состав	T _C , °C	$\varepsilon/\varepsilon_0$	d ₃₃ , pC/N	$tg \delta (100 kHz)$
1	SrBi ₂ NbTaO ₉	360	580	14	0.05
2	$SrBi_2Nb_{1.2}Ta_{0.8}O_9$	380	490	12	0.14
3	SrBi ₂ Nb _{1.4} Ta _{0.6} O ₉	400	528	17	0.1
4	SrBi ₂ Nb _{1.6} Ta _{0.4} O ₉	415	360	16	0.05
5	SrBi ₂ Nb _{1.8} Ta _{0.2} O ₉	430	513	17	0.04
6	SrBi ₂ Nb ₂ O ₉	435	935	14	0.38

соединений и уменьшением степени ковалентности и совершенно не связано с уменьшением ковалентности связей в кислородном октаэдре.

4. Выводы

Выполнены исследования электрофизических свойств перовскитоподобных оксидов AC твердых растворов ${\rm SrBi_2Nb_{2-x}Ta_xO_9}$ ($x=0.0,\ 0.2,\ 0.4,\ 0.6,\ 0.8,\ 1.0$). Керамика была изготовлена традиционным методом твердофазной реакции. Рентгенограммы проиндексированы как орторомбические ${\rm A2_1am}$ для всех твердых растворов ФАС. Изоморфное замещения Nb на Ta для состава ${\rm SrBi_2Nb_{2-x}Ta_xO_9}$ ($x=0.0,\ 0.2,\ 0.4,\ 0.6,\ 0.8,\ 1.0$) привело к уменьшению температуры Кюри $T_{\rm C}$ на $75^{\circ}{\rm C}$, от $435^{\circ}{\rm C}$ для ${\rm SrBi_2Nb_2O_9}$ до $360^{\circ}{\rm C}$ для ${\rm SrBi_2NbTaO_9}$. Тангенс угла диэлектрических потерь уменьшился в 10 раз для ${\rm SrBi_2Nb_{1.8}Ta_{0.2}O_9}$ по сравнению с нелегированным SBN. Очевидно, что уменьшние ${\rm tg}\ \delta$ приводит к увеличению ${\rm d}_{33}$.

Пьезомодуль для всего ряда синтезированных соединений $SrBi_2Nb_{2-x}Ta_xO_9$ ($x=0.0,\ 0.2,\ 0.4,\ 0.6,\ 0.8,\ 1.0$) имеет величину от 12 до 17 рС/N, что позволяет сделать вывод о независимости пьезомодуля от степени ковалентности связей в кислородном октаэдре при изоморфном замещении.

Синтезированные соединения ряда $SrBi_2Nb_{2-x}Ta_xO_9$ (x=0.0,0.2,0.4,0.6,0.8,1.0) являются кандидатами для высокотемпературных пьезоэлектрических приложений.

Финансирование работы

Работа выполнена при финансовой поддержке Министерства науки и высшего образования РФ (государственное задание в сфере научной деятельности 2023 г., проект № FENW-2023-0015).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] B. Aurivillius. Arkiv. Kemi. **1**, *54*, 463 (1949).
- [2] Г.А. Смоленский, В.А. Исупов, А.И. Аграновская. ФТТ **3**, *3*, 651 (1961). G.A. Smolensky, V.A. Isupov, A.I. Agranovskaya. Sov. Phys. Solid State **3**, *3*, 651 (1961).
- [3] I.A. Parinov, S.V. Zubkov. J. Adv. Dielectr. **14**, *06*, 2340007 (2024).
- [4] E.C. Subbarao. J. Am. Ceram. Soc. 45, 4, 166 (1962).
- [5] E.C. Subbarao. J. Chem. Phys. **34**, *2*, 695 (1961).
- [6] C. Long, Q. Chang, Y. Wu, W. He, Y. Li, H. Fan. J. Mater. Chem. 3, 34, 8852 (2015).
- [7] W.S. Woo, S.S. Won, C.W. Ahn, S.A. Chae, A. Ullah, I.W. Kim. J. Appl. Phys. 115, 3, 034107 (2014).
- [8] T. Li, X.L. Li, Z. Zhao, H. Ji, Y. Dai. J. Integr. Ferroelectr. **162**, *1*, 1 (2015).
- [9] S.V. Zubkov, I.A. Parinov, A.V. Nazarenko, Y.A. Kuprina. Springer Proceed. Mater. 20, 163 (2023).
- [10] S. Dubey, O. Subohi, R. Kurchanic. Appl. Phys. A 124, 7, 461 (2018).
- [11] S.V. Zubkov. J. Adv. Dielectrics 11, 5, 2160016 (2021).
- [12] С.В. Зубков, В.Г. Власенко. ФТТ **59**, *12*, 2303 (2017). [S.V. Zubkov, V.G. Vlasenko. Phys. Solid State **59**, *12*, 2325 (2017).]
- [13] Y. Li, C.J. Lu, J. Su, Y.C. Zhang, C. Zhang, S.F. Zhao, X.X. Wang, D.J. Zhang, H.M. Yin. J. Alloys. Compd. 687, 707 (2016).
- [14] J. Su, Y. Long, Q. Li, C. Lu, K. Liang, J. Li, L. Luo, L. Sun, X. Lu, J. Zhu. J. Alloys. Compd. 747, 1002 (2018).
- [15] D.L. Zhang, L. Feng, W. Huang, W. Zhao, X. Li. J. Appl. Phys. 120, 15, 154105 (2016).
- [16] F. Rehman, L. Wang, H.-B. Jin, P. Ahmad, Y. Zhao, J.-B. Li. J. Alloys. Compd. 709, 686 (2017).
- [17] V. Koval, I. Skorvanek, G. Viola, M. Zhang, C. Jia, H. Yan. J. Phys. Chem. C 122, 27, 15733 (2018).
- [18] P. Fang, P. Liu, Z. Xi, W. Long, X. Li. Mater. Sci. Eng. B 186, 21 (2014).
- [19] A. Faraz, J. Ricote, R. Jimenez, T. Maity, M. Schmidt, N. Deepak, S. Roy, M.E. Pemble, L. Keeney. J. Appl. Phys. 123, 12, 124101 (2018).
- [20] Y. Qiu, S. Zhao, Z. Wang. Mater. Lett. 170, 89 (2016).
- [21] Y. Bai, J. Chen, S. Zhao. RSC Adv. 6, 47, 41385 (2016).
- [22] D. Peng, H. Zou, C. Xu, X. Wang, X. Yao, J. Lin, T. Sun. AIP Adv. 2, 4, 042187 (2012).
- [23] Z. Zhu, X. Li, W. Gu, J. Wang, H. Huang, R. Peng, X. Zhai, Z. Fu, Y. Lu. J. Alloys. Compd. 686, 306 (2016).
- [24] Y. Li, M. Bian, N. Zhang, W. Bai, J. Yang, Y. Zhang, X. Tang, J. Chu. Ceram. Int. 45, 7 Part A, 8634 (2019).
- [25] H. Sun, T. Yao, X. Xie, Y. Lu, Y. Wang, Z. Xu, J. Han, X. Chen. J. Colloid. Interf. Sci. 534, 499 (2019).
- [26] Y. Shu, Q. Ma, L. Cao, Z. Ding, X. Chen, F. Yang. J. Alloys Compd. 773, 934 (2019).
- [27] H. Zhao, H. Wang, Z. Cheng, Q. Fu, H. Tao, Z. Ma, T. Jia, H. Kimura, H. Li. Ceram. Int. 44, 11, 13226 (2018).
- [28] Y. Huang, L. Mi, J. Qin, S. Bi, H.J. Seo. J. Am. Ceram. Soc. **102**, *6*, 3555 (2019).
- [29] X.Z. Zuo, J. Yang, B. Yuan, D.P. Song, X.W. Tang, K.J. Zhang, X.B. Zhu, W.H. Song, J.M. Dai, Y.P. Sun. J. Appl. Phys. 117, 11, 114101 (2015).
- [30] F. Rehman, L. Wang, H.-B. Jin, A. Bukhtiar, R. Zhang, Y. Zhao, J.-B. Li. J. Am. Ceram. Soc. 100, 2, 602 (2017).

- [31] H. Zou, J. Li, X. Wang, D. Peng, Y. Li, X. Yao. Opt. Mater. Express 4, 8, 1545 (2014).
- [32] C.A. Paz de Araujo, J.D. Cuchiaro, L.D. McMillan, M.C. Scott, J.F. Scott. Nature 374, 6523, 627 (1995).
- [33] T. Kikuchi. J. Less Common Met. 48, 2, 319 (1976).
- [34] C.A. Paz de Araujo, J.D. Cuchiaro, L.D. McMillan, M.C. Scott, J.F. Scott. Nature 374, 6523, 627 (1995).
- [35] D.P. Volanti, L.S. Cavalcante, E.C. Paris, A.Z. Simöes, D. Keyson, V.M. Longo, A.T. de Figueiredo, E. Longo, J.A. Varela, F.S. De Vicente, A.C. Hernandes. Appl. Phys. Lett. 90, 26, 261913 (2007).
- [36] A. Ando, M. Kimura, Y. Sakabe. Jpn. J. Appl. Phys. 42, 2R, 520 (2003).
- [37] S. Sen, R.N.P. Choudhary, P. Pramanik. Ferroelectrics 324, 1, 121 (2005).
- [38] S.E. Park, J.A. Cho, T.K. Song, M.H. Kim, S.S. Kim, H.-S. Lee. J. Electroceram. 13, 1, 51 (2004).
- [39] S. Huang, C. Feng, L. Chen, X. Wen. Solid State Commun. 133, 6, 375 (2005).
- [40] S. Huang, C. Feng, M. Gu, Y. Li. J. Alloys. Compd. 472, 1–2, 262 (2009).
- [41] L. Sun, C. Feng, L. Chen, S. Huang. J. Appl. Phys. 101, 8, 084102 (2007).
- [42] R. Singh, V. Luthra, R.S. Rawat, R.P. Tandona. Ceram. Int. 141, 4468 (2015).
- [43] B.J. Kennedy, Ismunandar. J. Mater. Chem. 9, 2, 541 (2006).
- [44] P. Banerjee, A. Franco. Mater. Chem. Phys. 225, 213 (2019).
- [45] Y. Wu, M.J. Forbess, S. Seraji, S.J. Limmer, T.P. Chou, C. Nguyen, G. Cao. J. Appl. Phys. 90, 10, 5296 (2001).
- [46] T. Wei, C.Z. Zhao, Q.J. Zhou, Z.P. Li, Y.Q. Wang, L.S. Zhang. Opt. Mater. 36, 7, 1209 (2014).
- [47] V. Shrivastava. Ceram. Int. 42, 8, 10122 (2016).
- [48] M. Nagata, D.P. Vijay, X. Zhang, S.B. Desu. Physica Status Solidi A 157, 1, 75 (1996).
- [49] P. Banerjee, A. Franco. Physica Status Solidi 214, 10, 1700067 (2017).
- [50] Y. Shimakawa, Y. Kubo, Y. Tauchi, T. Kamiyama, H. Asano, F. Izumi. Appl. Phys. Lett. 77, 17, 2749 (2000).
- [51] X. Du, I.-W. Chen. J. Am. Ceram. Soc. 81, 12, 3253 (1998).
- [52] V.A. Isupov. Ferroelectrics **189**, *1*, 211 (1996).
- [53] В.А. Исупов. Неорган. материалы 42, 11, 1353 (2006).[V.A. Isupov. Inorg. Mater. 42, 11, 1236 (2006).]
- [54] V.M. Goldschmidt. Geochemische Verteilungsgesetze der Elemente. J. Dybwad, Oslo (1923–1927).
- [55] R.D. Shannon. Acta Crystallographica A 32, 5, 751 (1976)
- [56] T. Obata, T. Manako, Y. Shimakawa, Y. Kubo. Appl. Phys. Lett. 74, 2, 290 (1999).
- [57] N.C. Hyatt, J.A. Hriljac, T.P. Comyn. Mater. Res. Bull. 38, 5, 837 (2003).
- [58] R.E. Cohen. Nature **358**, 6382, 136 (1992).
- [59] X. He, R. Chu, Z. Xu, Z. Yao, J. Hao. RSC Adv. 8, 28, 15613 (2018).

Редактор Е.В. Толстякова