
Физика твердого тела, 2025, том 67, вып. 10

05,08

Магнитные характеристики и коэффициенты Блоха

в тонких пленках Sr2Fe1−xMo1+xO6−δ

© Д.А. Киселев 1, С.С. Старухина 1, А.С. Быков 1, А.В. Петров 2, А.Г. Юденков 3, Н.А. Каланда 2,¶

1 НИТУ
”
МИСИС“,

Москва, Россия
2 ГО

”
НПЦ НАН Беларуси по материаловедению“,

Минск, Беларусь
3 НТЦ

”
Белмикросистемы“ ОАО

”
Интеграл“,

Минск, Беларусь
¶ E-mail: kalanda@physics.by

Поступила в Редакцию 20 августа 2025 г.

В окончательной редакции 20 августа 2025 г.

Принята к публикации 14 октября 2025 г.

Проведена отработка режимов получения однофазных пленок Sr2Fe1−xMo1+xO6−δ , полученных методом

ионно-лучевого напыления и исследованы их магнитные характеристики. Обнаружено, что зависимость

намагниченности от температуры M(T ), измеренная в магнитном поле 0.1 T, не подчиняется закону Блоха

ни для одной из изученных пленок. Для ее описания потребовалось применение поправок Дайсона,

учитывающих вклад магнонов с большими волновыми векторами. Установлено, что как для состава пленок

с избытком железа, так и с его недостатком, с увеличением сверхструктурного упорядочения катионов

Fe/Mo (P) величина B (коэффициент Блоха) растет. При этом, в пленках состава Sr2Fe1.2Mo0.8O6−δ с

ростом P термостабильность ниже, чем в пленках состава Sr2Fe0.9Mo1.1O6−δ , тогда как с понижением

P — наоборот. Показано, что, контролируя состав и режимы синтеза пленок составов Sr2Fe1.2Mo0.8O6−δ

и Sr2Fe0.9Mo1.1O6−δ , можно управлять значением B , а значит, и термостабильностью спиновой поляризации

всей системы.
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1. Введение

Современная спинтроника нуждается в материалах

со стабильной спиновой поляризацией при комнатной

температуре, для создания устройств энергонезависимой

памяти, сенсоров, элементов нейроморфных вычислений

и логических элементов. Перспективным кандидатом

является двойной перовскит Sr2FeMoO6, который обла-

дает полуметаллическими свойствами, высокой темпе-

ратурой Кюри (TC ∼ 420−450K) и теоретически 100%

спиновой поляризацией [1–6].

Ключевым фактором, определяющим свойства

Sr2FeMoO6, является степень сверхструктурного

упорядочения катионов Fe и Mo. Антиструктурные

дефекты [FeMo]/[MoFe] и различные степени окисления

катионов (Fe2+/Fe3+/Fe4+) и (Mo4+/Mo5+/Mo6+) разру-

шают дальнее магнитное упорядочение, что приводит

к снижению спиновой поляризации и ухудшению

магнитных характеристик.

В тонких пленках [7,8] чувствительность к дефектам

усиливается из-за кислородных вакансий, межфазных

напряжений и катионной нестехиометрии. Одним из

методов управления свойствами является варьирование

состава в системе Sr2Fe1−xMo1+xO6, что позволяет регу-

лировать магнитный порядок и подавлять антиструктур-

ные дефекты [8].

Одним из путей управления свойствами является

варьирование состава в системе Sr2Fe1−xMo1+xO6. Изме-

нение параметра x позволяет регулировать магнитный

порядок, зарядовые состояния катионов (соотношение

Fe3+/Fe2+ и Mo5+/Mo6+), коэрцитивную силу и темпе-

ратуру Кюри [3,4], а также подавлять антиструктурные

нарушения. Однако для предотвращения образования

примесных фаз необходим точный контроль состава при

росте пленок [7].

Особый практический интерес представляют

пленки составов Sr2Fe1.2Mo0.8O6−δ (SF1.2M0.8O) и

Sr2Fe0.9Mo1.1O6−δ (SF0.9M1.1O). Состав с избытком Fe

демонстрирует повышенное намагничивание насыщения,

а с избытком Mo — лучшую катионную упорядочен-

ность. Однако синтез таких пленок требует преци-

зионного контроля из-за склонности к образованию

примесных фаз (например, SrMoO4, SrFeO3 или оксидов

железа), которые радикально ухудшают функциональные

свойства материала [7,8]. Таким образом, достижение

высоких функциональных характеристик в пленках

Sr2Fe1−xMo1+xO6 требует точного управления составом,

оптимизации режимов роста и всестороннего анализа

дефектной структуры.
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Промышленное применение материалов в устрой-

ствах спинтроники требует высокой воспроизводимости

их физико-химических характеристик, которая напря-

мую зависит от степени спиновой поляризации носите-

лей заряда, которой можно целенаправленно управлять,

контролируя параметры сверхструктурного упорядоче-

ния катионов Fe/Mo в двойных перовскитах и величину

коэффициента Блоха. Этот параметр служит важным

инструментом для моделирования и прогнозирования

функциональности перспективных устройств — от эле-

ментов магнитной памяти с произвольным доступом

(MRAM) в смартфонах и высокоэффективных спин-

вольтаических элементов для солнечных батарей до

кубитов и интерфейсов в квантовых компьютерах [9].

На основании вышесказанного, целью данной работы

является исследование влияния сверхструктурного упо-

рядочения катионов на магнитные свойства и параметры

закона Блоха в нестехиометрических тонких пленках

Sr2Fe1−xMo1+xO6 для управления их спиновой поля-

ризацией и получения воспроизводимых характеристик,

необходимых в приложениях спинтроники.

2. Методики приготовления
и исследования образцов

Пленки составов Sr2Fe1.2Mo0.8O6−δ (SF1.2M0.8O)
и Sr2Fe0.9Mo1.1O6−δ (SF0.9M1.1O). толщиной порядка

∼ 1µm наносились методом ионно-плазменного напыле-

ния на вакуумной установке Z-400 (
”
Leybold-Heraeus“),

оснащенной безмасляной системой откачки на базе

турбомолекулярного насоса. В качестве распыляемого

материала использовались мишени составов SF1.2M0.8O

и SF0.9M1.1O, диаметром 50mm и толщиной 5mm. Каме-

ра вакуумной установки была оборудована фланцевым

двухлучевым ионным источником с замкнутым дрейфом

электронов на основе ускорителя с анодным слоем и

магнетронной распылительной системой. Особенностью

ионного источника является возможность генерирова-

ния двух независимых ионных пучков, один из которых

служит для распыления материала мишени, а второй —

для очистки подложек. Предварительно производилась

очистка подложек ионным пучком. Для этого камера

вакуумной установки откачивалась до остаточного дав-

ления 10−3 Pa. В ионный источник подавался Ar до

рабочего давления 2.0 · 10−2 Pa. Время очистки, энергия

ионов и ток разряда во всех экспериментах были по-

стоянными и составляли, соответственно, 3min, 700 eV,

40mA. Расход газов контролировался автоматическими

регуляторами расхода газа РРГ-1. Распыление мишеней

осуществлялось аргоном (энергия ионов 1250 eV, ток

65mA) на подложки поликора (Al2O3), обеспечивающие

химическую инертность и высокую адгезию к пленкам

системы Sr2Fe1−xMo1+xO6−δ . Остаточное давление арго-

на в газовой камере соответствовало 5 · 10−2 Pa. Темпе-

ратура подложки, согласно техническим возможностям

установки, была 670K. Толщина нанесенных пленок из-

мерялась на различных участках пленок-свидетелей при

помощи интерферометра МИИ-4 и корректировалась

изменением времени нанесения слоев.

Дополнительный отжиг пленок в потоке смеси газов

(Аr, 1%H2/Аr, 3%H2/Аr и 5%H2/Аr) осуществлялся

в термоустановках, температура в которых поддержи-

валась с помощью регулятора температуры РИФ-101 и

контролировалась Pt−Pt/Rh(10%) термопарой с точно-

стью ±0.5K.

Фазовый состав пленок и степень сверхструктурного

упорядочения катионов железа и молибдена (P, %)
определялись на основании анализа дифракционных

данных, полученных на установке ДРОН-3 в СuKα-

излучении с использованием базы данных
”
ICSD-PDF2“

(Release 2000), программ
”
POWDERCELL“ и

”
FULLPROF“ [10,11].
Микроструктура и морфология зерен изучались на

металлографическом микроскопе
”
OLYMPUS GX-41“,

а также методом сканирующей электронной микро-

скопии на установке
”
Hitachi S-4800“. Температурные

зависимости намагниченности пленок исследовались на

универсальной установке фирмы
”
Cryogenic Limited“ в

диапазоне 4.2−300K, в магнитном поле 0.1 Т, с точно-

стью не более 2%.

3. Экспериментальные результаты
и их обсуждение

Достижение структурного совершенства тонких пле-

нок Sr2Fe1−xMo1+xO6−δ , синтезируемых методом ионно-

лучевого напыления (ИЛН), требует тщательной оп-

тимизации ряда взаимосвязанных технологических па-

раметров, включая скорость осаждения, температуру

послеростового отжига пленок и парциальное давле-

ние кислорода. Преимуществом метода ИЛН является

возможность формирования плотной пленки при отно-

сительно низких температурах, что способствует сни-

жению количества дефектов [7,8]. Скорость напыления

играет ключевую роль в формировании микроструктуры

пленки. Оптимальная скорость обеспечивает равномер-

ное распределение мелких зерен в пленках, что поло-

жительно сказывается на их магнитных свойствах [8].
Эффективной представляется двухступенчатая страте-

гия: начальная пониженная скорость способствует фор-

мированию буферного слоя между пленкой и подложкой

для увеличения адгезии и уменьшению напряжения на

границе
”
пленка-подложка“. Последующая повышенная

скорость напыления уменьшает временные затраты на

напыление и увеличивает однородность основной части

пленки [7]. Скорость осаждения при толщине пленки до

20 nm составляла 2 nm/min; при дальнейшем увеличе-

нии толщины пленки до 1µm скорость увеличивалась

до 18 nm/min.

При изучении структуры и микроструктуры пленок

SF1.2M0.8O и SF0.9M1.1O, не обнаружено образования
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Рис. 1. Рентгеновские дифрактограммы пленок SF1.2M0.8O (a) и SF0.9M1.1O (b), напыленных в два этапа. Скорость осаждения при

толщине пленки до 20 nm составляла 2 nm/min; при дальнейшем увеличении толщины пленки до 1 µm скорость увеличивалась до

18 nm/min. На вкладках изображена микроструктура пленок, полученная с помощью оптической микроскопии.

15.0 kV  60.0k  SE(M)+ 500 nm 15.0 kV  10.0k  SE(M)+ 5 µm

a b

Рис. 2. Изображения, полученные с помощью сканирующей микроскопии, микроструктуры пленок SF1.2M0.8O (a) и SF0.9M1.1O (b),
напыленных в два этапа. Пленки осаждались на втором этапе со 12 nm/min с последующим отжигом при 1173K в течение 1 h в

потоке аргона.

структуры двойного перовскита и других фаз, то есть

пленки являются аморфными, имеют зеркальную чер-

ную поверхность при отсутствии в них зернистости

(рис. 1).

Высокая скорость напыления на втором этапе приво-

дит к тому, что атомы/молекулы осаждаются слишком

быстро. У них не хватает времени и энергии (получае-
мой от подложки или в ходе вторичных процессов) для

эффективной поверхностной диффузии, поиска энерге-

тически выгодных позиций (точек роста) и формирова-

ния крупных кристаллитов. В результате, преобладает

процесс случайного
”
замораживания“. Данный механизм

эффективно подавляет сегрегацию компонентов сложно-

го соединения, поскольку разнотипные атомы, осаждаясь

почти одновременно,
”
замораживаются“ на месте без

возможности диффузии и образования областей, обога-

щенных тем или иным элементом. Быстрое осаждение

фиксирует неравновесные состояния и структурные де-

фекты. Указанные факторы способствуют формированию

метастабильных твердых растворов или аморфных фаз,

характеризующихся хорошей наноразмерной гомоген-

ностью, но термодинамически неравновесных. В итоге,

высокая скорость напыления существенно увеличивает

плотность дефектов в осаждаемом материале.

Для структурирования пленок и уменьшения количе-

ства дефектов была проведена их послеростовая тер-

мообработка в инертной среде и снижение скорости

напыления на втором этапе до 12 nm/min. Серия экспе-

риментов показала, что оптимальным режимом является

отжиг при T = 1173K в течение 1 h, в потоке аргона.

По данным сканирующей электронной микроскопии,

пленки SF1.2M0.8O и SF0.9M1.1O были пористыми, с

Физика твердого тела, 2025, том 67, вып. 10
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Рис. 3. Рентгеновские дифрактограммы пленок SF1.2M0.8O (a) и SF0.9M1.1O (b), напыленных в два этапа. Пленки осаждались на

втором этапе со скоростью 12 nm/min с последующим отжигом при 1173K в течение 1 h в потоке аргона. На вкладках изображена

микроструктура пленок.
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Рис. 4. Рентгеновские дифрактограммы пленок SF1.2M0.8O (a) и SF0.9M1.1O (b), напыленных в два этапа. Пленки осаждались

на втором этапе со скоростью 8 nm/min с последующим отжигом при T = 1173K в течение 1 h в потоке смеси инертных газов

1%Н2/Аr.

развитым рельефом поверхности и слабой адгезии к

подложке (рис. 2). Согласно полученным рентгенов-

ским дифракционным данным пленки являлись фазово-

неоднородными: в образце SF1.2M0.8O дополнительно

выявлены фазы SrFeO3 и SrMoO4 (рис. 3, a), а в об-

разце SF0.9M1.1O наряду с основной фазой двойного

перовскита обнаружена примесь SrMoO4 (рис. 3, b).
Основной фазой в пленках обоих составов являлся двой-

ной перовскит, имеющий тетрагональную симметрию

(пространственная группа I4/m).

Kоэффициент сверхструктурного упорядочения кати-

онов Fe и Mo оказался низким. Для пленки SF0.9M1.1O

он составил P ≈ 58%, что свидетельствует о высокой

концентрации антиструктурных дефектов типа [FeMo]
и [MoFe] на уровне n ≈ 21%. В пленке SF1.2M0.8O

сверхструктурное упорядочение полностью отсутству-

ет (P ≈ 0%) и n ≈ 25%. Эти особенности микро-

структуры, а именно, фазовая неоднородность пле-

нок и высокая концентрация антиструктурных дефек-

тов, могут негативно влиять на их магнитные свой-

ства, что требует дальнейшей оптимизации условий их

получения.

Снижение скорости напыления на втором этапе до

8 nm/min и увеличение толщины пленки до 3µm, с

последующим отжигом при T = 1173K в течение 1 h в

потоке смеси инертных газов 1%Н2/Аr привело к од-

нофазности пленок SF0.9M1.1O, уменьшению концентра-

ции антиструктурных дефектов n ≈ 18% при P ≈ 64%.

В то же время, в пленках состава SF1.2M0.8O также

наблюдается однофазность, тогда как сверхструктурное
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Рис. 5. Изображения сканирующей электронной микроскопии микроструктуры пленок SF1.2M0.8O (a) и SF0.9M1.1O (b),
напыленных в два этапа. Пленки осаждались на втором этапе со скоростью 8 nm/min, с последующим отжигом при T = 1173K в

течение 1 h в потоке смеси инертных газов 1%Н2/Аr.
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Рис. 6. Полевые зависимости намагниченности пленок

SF0.9M1.1O (a) и SF1.2M0.8O (b), которые осаждались на

втором этапе со скоростью 8 nm/min, с последующим отжигом

при T = 1173K в течение 1 h в потоке смеси инертных

газов 1%Н2/Аr.

упорядочение отсутствует (P ≈ 0%), рис. 4. При изу-

чении микроструктуры пленок наблюдается увеличение

их плотности, адгезии и уменьшения шероховатости

рельефа поверхности (рис. 5).

При проведении сравнительного анализа магнитных

свойств полученных пленок было обнаружено, что плен-

ки SF1.2M0.8O и SF0.9M1.1O характеризуются различны-

ми величинами намагниченности насыщения Ms (рис. 6).

При температуре 10K и магнитном поле, приложенном

вдоль плоскости пленки, намагниченность насыщения

составила Ms ∼ 1.8µB/f.u. для пленки SF1.2M0.8O и

Ms ∼ 2.47µB/f.u. для SF1.1M0.9O.

Эти значения значительно ниже теоретически пред-

сказанной величины M theory = 4µB/f.u. [4]. При этом, ко-

эрцитивная сила составляет µ0Hc = 0.031 Т для пленки

SF1.2M0.8O и µ0Hc = 0.018 Т для пленки SF0.9M1.1O.

Меньшее значение намагниченности насыщения плен-

ки SF1.2M0.8O обусловлено более высокой концен-

трацией антиструктурных дефектов ([FeMo] и [MoFe]),
чем в пленках SF0.9M1.1O. Данные дефекты наруша-

ют катионное упорядочение Fe/Mo, изменяют ориен-

тацию сильно гибридизированных 4d t2g — орбиталей

катионов Mo5+ (S = 1/2) и 3d (t32ge2g) — орбита-

лей катионов Fe3+ (S = 5/2), что подавляет ферри-

магнитное упорядочение между подрешетками Fe и

Mo [3–5]. Кроме того, в условиях кислородного дефи-

цита (δ > 0) часть катионов Fe3+ (3d5) может восста-

навливаться до Fe2+ (3d6), которые в октаэдрическом

кристаллическом поле Fe2+, как правило, находятся

в высокоспиновом состоянии (t42g e2g , S = 2). Появле-

ние ионов Fe2+ способствует образованию кластеров

типа Fe2+−O2−
−Fe2+, в которых сверхобменное вза-

имодействие является антиферромагнитным, согласно

правилам Гуденафа−Канамори−Андерсена [12]. Таким

образом, в структуре пленки SF1.2M0.8O могут при-

сутствовать как антиструктурные дефекты, так и ан-

тиферромагнитные кластеры на основе Fe2+, что в

совокупности способствует формированию магнитно-

неоднородной структуры, которая увеличивает коэрци-

тивную силу [7,8]. Пленки SF0.9M1.1O характеризуются

более однородной магнитной структурой по сравне-

нию с SF1.2M0.8O, что подтверждается бóльшими зна-

чениями намагниченности насыщения Ms и меньшими

величинами µ0Hc для составов с избытком молибде-

на по сравнению с пленками, содержащими избыток

железа (рис. 6). Для увеличения сверхструктурного

упорядочения катионов Fe/Mo в пленках SF1.2M0.8O

и SF0.9M1.1O проводились послеростовые отжиги при

T = 1173K в течение 1 h в потоке смеси инертных

газов 3%Н2/Аr и 5%Н2/Аr. Согласно данным РФА
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Рис. 7. Температурные зависимости намагниченности для

пленок SF1.2M0.8O (a), со сверхструктурным упорядочением

катионов Fe/Mo P = 0%, P = 62% и P = 74% для кривых (3),
(2) и (1), соответственно, и для пленок SF0.9Mo1.1O (b) с

P = 64%, P = 72% и P = 80% для кривых (3), (2) и (1),
соответственно, измеренные во внешнем магнитном поле 0.1 T.

Черные линии — экспериментальные данные; красные ли-

нии аппроксимация экспериментальных данных функцией (1);
синие линии — аппроксимация экспериментальных данных

функцией (2).

пленки SF1.2M0.8O после отжига в смеси инертных

газов 3%Н2/Аr имели P = 62%, а после отжига

в смеси инертных газов 5%Н2/Аr имели P = 74%.

При этом пленки SF0.9M1.1O после отжига в сме-

си инертных газов 3%Н2/Аr имели P = 72%, а по-

сле отжига в смеси инертных газов 5%Н2/Аr имели

P = 80%.

Так как закон Блоха является физической осно-

вой для моделирования, прогнозирования и реализа-

ции функциональности современных устройств, рас-

смотрим зависимость его параметров от состава и сверх-

структурного упорядочения катионов Fe/Mo в пленках

Sr2Fe1−xMo1+xO6−δ как с избытком железа (x > 0), так
и с его недостатком (x < 0). Температурная зависимость

намагниченности в пленках SF1.2M0.8O и SF0.9M1.1O,

описывается законом Блоха. Ее поведение с ростом

температуры определяется сложным взаимодействием

магнитных подрешеток, дефектов структуры и тепловых

флуктуаций. К основным закономерностям относится

следующее: в низкотемпературной области с ростом

температуры происходит нарушение магнитного упоря-

дочения из-за возбуждения магнонов (спиновых волн).
Для акустических магнонов с дисперсией E(k) ∼ k2, их

число растет пропорционально T 3/2, что приводит к

уменьшению намагниченности. В этом случае темпера-

турная зависимость намагниченности, согласно закону

Блоха, имеет вид:

M(T ) = M(0)(1 − BT 3/2), (1)

где M(0) — максимальная намагниченность пленок,

B — постоянная Блоха, являющаяся подгоночным па-

раметром, который характеризует вклад магнонных воз-

буждений в уменьшение намагниченности.

Обнаружено, что лучшая аппроксимация по закону

Блоха зависимости M(T ), измеренной во внешнем маг-

нитном поле 0.01 T, была реализована в интервале тем-

ператур 4.2 < T < 110K (рис. 7). Величины подгоноч-

ных коэффициентов представлены в таблице 1. В плен-

ках SF1.2M0.8O и SF0.9M1.1O наличие антиструктурных

дефектов ([FeMo] и [MoFe]) нарушает идеальное упоря-

дочение подрешеток Fe3+ (S = 5/2) и Mo5+ (S = 1/2).
Это усиливает рассеяние спиновых волн, увеличивая B и

ускоряя уменьшение намагниченности.

Повышение температуры выше 150K приводит к

возбуждению магнонов с большими волновыми век-

торами k, для которых закон дисперсии отклоняется

от квадратичного, а также к усилению взаимодействия

между магнонами.

Для учета этих эффектов в закон Блоха необходимо

вводить поправки. В модели Дайсона [13] это отклонение

описывается добавлением слагаемого Ct5/2 :

M(T ) = M0(1− BT 3/2
−CT 5/2), (2)

где B и C — положительные константы. Слагаемое

CT 5/2 связано с учетом неквадратичности закона дис-

персии и взаимодействий магнонов. Полученные резуль-

таты по аппроксимации функциями (1) и (2) пленок

SF1.2M0.8O и SF0.9Mo1.1O представлены в таблицах 1 и 2.

Рассчитанные для пленок SF1.2M0.8O значения

постоянной Блоха с учетом поправки Дайсона

B = (3.11−0.786) · 10−5 K−3/2 и для пленок SF0.9Mo1.1O

B = (2.04−0.902) · 10−5 K−3/2 практически соответству-

ют значениям, обнаруженным другими авторами

(например, 7.03 · 10−5 K−3/2 для Sr2FeMoO5.5S0.5 [14];
5.9 · 10−5 K−3/2 для Fe29Hi49P14B6Si2 [15]). Близкие

значения полученных результатов с другими авторами

можно связать с помощью хорошей подгонки, согласно

выражению (2) при коэффициенте детерминации

(R2 > 0.98) (см. таблицы 1, 2).
При рассмотрении зависимости постоянной Блоха от

параметра P замечено, что как для состава пленок с

избытком железа, так и с его недостатком с увеличе-

нием сверхструктурного упорядочения катионов Fe/Mo
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Таблица 1. Подгоночные коэфициенты, полученные при

аппроксимации температурной зависимости намагниченности

пленок SF1.2M0.8O различными функциями

Значение Погрешность

Аппроксимация температурной зависимости

намагниченности с помощью функции

M(T ) = M(0)(1− BT 3/2)

P ∼ 74%

M(0) 2.04492 4.48746 · 10−4

B 2.66253 · 10−5 2.56302 · 10−7

R2 0.9374

P ∼ 62%

M(0) 1.52008 3.11629 · 10−4

B 2.48737 · 10−5 2.39733 · 10−7

R2 0.9422

P ∼ 0%

M(0) 0.86803 1.24652 · 10−4

B 1.74234 · 10−5 1.68798 · 10−7

R2 0.9371

Аппроксимация температурной зависимости

намагниченности с помощью функции

M(T ) = M(0)(1− BT 3/2
−CT 5/2)

P ∼ 74%

M(T ) = M(0)(1− BT 3/2
−CT 5/2)

P ∼ 74%

M(0) 2.04191 0.09548

B 3.11 · 10−5 2.14 · 10−7

C 2.71 · 10−7 1.24 · 10−8

R2 0.9907

Р 62%

M(0) 1.52296 0.05829

B 2.42 · 10−5 7.52 · 10−8

C 2.19 · 10−7 1.02 · 10−8

R2 0.9943

P ∼ 0%

M(0) 0.87661 0.01359

B 7.86 · 10−6 4.21 · 10−8

C 1.19 · 10−7 6.42 · 10−9

R2 0.9981

Таблица 2. Подгоночные коэфициенты, полученные при

аппроксимации температурной зависимости намагниченности

пленок SF0.9Mo1.1O различными функциями

Значение Погрешность

Аппроксимация температурной зависимости

намагниченности c помощью функции

M(T ) = M(0)(1− BT 3/2

P ∼ 80%

M(0) 2.83249 3.21 · 10−4

B 8.09 · 10−5 2.51 · 10−7

R2 0.9687

P ∼ 72%

M(0) 2.49409 2.86 · 10−4

B 77 · 10−5 2.54 · 10−7

R2 0.9711

P ∼ 64%

M(0) 1.4643 2.42 · 10−4

B 5.25 · 10−5 1.14 · 10−7

R2 9.9721

Аппроксимация температурной зависимости

намагниченности с помощью функции

M(T ) = M(0)(1− BT 3/2
−Ct5/2)

P ∼ 80%

M(0) 2.83249 3.21 · 10−4

B 2.04 · 10−5 1.04 · 10−4

C 2.44 · 10−7 1.22 · 10−8

R2 0.9877

P ∼ 72%

M(0) 2.54613 2.92 · 10−4

B 1.33 · 10−5 8.69 · 10−8

C 2.24 · 10−7 1.17 · 10−8

R2 0.9843

P ∼ 64%

M(0) 1.43937 1.17 · 10−4

B 9.02 · 10−6 5.91 · 10−8

C 1.65 · 10−7 8.21 · 10−9

R2 0.9889
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величина B растет. Увеличение B означает, что материал

более легко теряет свою намагниченность (и, следо-

вательно, спиновую поляризацию) при нагревании, что

плохо для термостабильности электронных устройств.

Причем в пленках SF1.2M0.8O с ростом P, согласно

данным таблиц 1 и 2, термостабильность ниже, чем

в пленках SF0.9Mo1.1O, тогда как с понижением P —

наоборот. Таким образом, контролируя состав и режимы

синтеза пленок SF1.2M0.8O и SF0.9Mo1.1O, можно управ-

лять значением B , а значит, и стабильностью спиновой

поляризации.

4. Заключение

На основании полученных выше результатов, можно

сделать следующие выводы:

− оптимизация режимов осаждения позволила

синтезировать однофазные пленки Sr2Fe1.2Mo0.8O6−δ

(SF1.2M0.8O) и Sr2Fe0.9Mo1.1O6−δ (SF0.9M1.1O) с

улучшенными структурными характеристиками и

различным сверхструктурным упорядочением катионов

Fe/Mo. Для этого применялось двухэтапное напыление,

со снижением скорости на втором этапе с 18 до

8 nm/min и последующий отжиг при 1173K в течение

1 h в различных смесях инертных газов;

− исследование магнитных свойств выявило неоднород-

ную магнитную структуру всех пленок. Данное поведе-

ние объясняется двумя основными факторами: наличием

антиструктурных дефектов, которые разрушают упоря-

дочение по узлам кристаллической решетки и подавляют

ферримагнитное упорядочение, а также в условиях кис-

лородного дефицита (δ > 0) часть катионов Fe2+(3d5)
может восстанавливаться до Fe2+(3d6), которые в ок-

таэдрическом кристаллическом поле Fe2+, как правило,

находятся в высокоспиновом состоянии (t42g e2g , S = 2).

Появление ионов Fe2+ способствует образованию кла-

стеров типа Fe2+−O2−
−Fe2+, в которых сверхобмен-

ное взаимодействие является антиферромагнитным, со-

гласно правилам Гуденафа−Канамори−Андерсена. Та-

ким образом, в структуре пленки SF1.2M0.8O могут

присутствовать как антиструктурные дефекты, так и

антиферромагнитные кластеры на основе Fe2+, что в

совокупности способствует формированию магнитно-

неоднородной структуры, которая увеличивает коэрци-

тивную силу пленок;

− обнаружено, что зависимость намагниченности от

температуры M(T ), измеренная в магнитном поле 0.1 T,

не подчиняется закону Блоха (не аппроксимируется

с R2
→ 100%) ни для одной из изученных пленок.

Для ее описания потребовалось применение поправок

Дайсона, учитывающих вклад магнонов с большими

волновыми векторами. Установлено, что как для состава

пленок с избытком железа, так и с его недостатком, с

увеличением сверхструктурного упорядочения катионов

Fe/Mo величина B растет. Причем в пленках SF1.2M0.8O,

с ростом P, термостабильность ниже, чем в пленках

SF0.9Mo1.1O, тогда как с понижением P, наоборот. Та-

ким образом, контролируя состав и режимы синтеза

пленок SF1.2M0.8O и SF0.9Mo1.1O, можно управлять

значением B , а значит, и термостабильностью спиновой

поляризации.
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”
Физика

конденсированного состояния и создание новых функци-

ональных материалов и технологий их получения“(
”
Фи-

зика и техника материалов“), проекта БРФФИ № Ф24В-

005, а также в рамках гранта РНФ № 24-19-00729,

https://rscf.ru/project/24-19-00729.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.
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