05,07

Особенности структур и магнитные свойства нестехиометрических твердых растворов (1-x)BiFeO₃-xPbFeO₃

© Д.И. Рудский¹, И.А. Вербенко¹, А.О. Галатова¹, С.П. Кубрин¹, А.В. Новиковский¹, А.В. Назаренко², Ю.В. Кабиров³, А.Р. Лебединская⁴, А.Г. Рудская³

Ростов-на-Дону, Россия

Ростов-на-Дону, Россия

Ростов-на-Дону, Россия

E-mail: agrudskaya@sfedu.ru

Поступила в Редакцию 7 августа 2025 г. В окончательной редакции 7 августа 2025 г. Принята к публикации 20 октября 2025 г.

Приведены результаты исследований структур и магнитных свойств составов системы твердых растворов (1-x)Ві FeO_3-x Рb FeO_3 с x=0.05; 0.10; 0.15; 0.20; 0.25; 0.30; 0.50. Установлено, что при комнатной температуре в составах x=0.05 и 0.10 существует ромбоэдрическая фаза R3c, в составах с x=0.15-0.30 — кубическая фаза Pm-3m, и в составе с x=0.50 — ромбоэдрическая фаза R-3c. С помощью метода γ -резонанса установлено, что во всех составах присутствуют ионы Fe^{3+} , чему соответствует нестехиометрия по ионам кислорода.

Ключевые слова: (1-x)Ві FeO_3-x Рb FeO_3 , твердофазный синтез, рентгеновская дифракция, метод γ -резонанса, микроструктура.

DOI: 10.61011/FTT.2025.10.61969.224-25

Введение

Считается надежно установленным, что такие физические свойства, как перенос заряда, магнитные и сегнетоэлектрические свойства в кислородно-октаэдрических структурах определяются наличием в октаэдрическом кислородном окружении d-элементов. В то же время роль катионов, занимающих кубоктаэдрические позиции в кислородно-октаэдрических структурах, менее определена в проявляемых физических свойствах. Такие катионы, как правило, характеризуются s-состояниями (Ca, Sr, Ba). Катионы с sp-состояними (Pb, Bi) определяют sp-гибридизацию состояний в системах катионкислород.

В работе [1] сегнетоэлектрические свойства свинецсодержащих оксидов со структурой перовскита объясняются образованием ассиметричных электронных конфигураций, описываемых комбинацией s- и p-атомных состояний, характерных для атома Pb $(6s^26p^2)$; отмечается, что аналогичные возможности имеются и у атомов Bi $(6s^26p^3)$ и Tl $(6s^26p)$.

В ионах Pb^{2+} и Bi^{3+} 6s-орбитали являются более стабильными, чем 6p-орбитали. Внешняя электронная орбиталь $6s^2$ имеет относительно большую радиальную протяженность, что делает ионный радиус большим, и

это уменьшает степень перекрытия бр-орбиталей орбиталями ближайших соседних анионов. Такое уменьшение перекрытия приводит к снижению прочности связи A-B. Гибридизация 6s- и бр-орбиталей, которая заключается в энергетическом расщеплении этих орбиталей, приводит к поляризации электронов внешних орбиталей, так что эффективный ионный радиус значительно меньше по одну сторону от катионов, чем по другую. Это позволяет формироваться гораздо более прочной связи на одной стороне катиона, и энергия, возникающая за счет этой связи, может быть больше энергии гибридизации. Именно по этой причине ионы Pb^{2+} и Bi^{3+} стабилизируются в большинстве кристаллов с ассиметричной анионной координацией.

Инертная неподеленная электронная пара 6s у ионов ${\rm Bi^{3+}}$ (в частности, в ${\rm BiFeO_3}$) является основной причиной возникновения сегнетоэлектричества. Таким парам свойственна высокая поляризуемость. Наглядно появление поляризации можно представить как процесс упорядочения таких электронных пар в одном направлении. Наличие в таких структурах ряда магнитных ионов [2,3], таких как ${\rm Cr^{3+}}$, ${\rm Mn^{2+}}$, ${\rm Mn^{3+}}$, ${\rm Mn^{4+}}$, ${\rm Fe^{3+}}$, ${\rm Fe^{2+}}$, ${\rm Co^{3+}}$, ${\rm Ni^{2+}}$, может дополнительно приводить к существованию магнитных свойств. В таких случаях соединения и твердые растворы являются мультиферроиками.

 $^{^{1}}$ Научно-исследовательский институт физики Южного федерального университета, Ростов-на-Дону, Россия

² ФГБУН Федеральный исследовательский центр Южный научный центр РАН Южный научный центр Российской академии наук (ЮНЦ РАН),

³ ФГАОУ ВО Южный федеральный университет, физический факультет,

⁴ Академия архитектуры и искусств Южного федерального университета,

Эффекты сочетания в структуре типа перовскита ABO_3 ионов Bi^{3+} и Pb^{2+} в позициях A и ионов Fe^{3+}/Fe^{4+} в позициях B можно обнаружить в составах твердых растворов $(1-x)BiFeO_3-xPbFeO_3$ [4,5]. Формально баланс валентностей в $PbFeO_3$ требует либо четырехвалентности ионов железа Fe^{4+} [2,6,7], либо нестехиометрии по содержанию кислорода [8–11].

Рассмотрение анион-дефицитных перовскитов с кристаллографическим сдвигом плоскостей на вакансиях по кислороду показывает, что в случаях свинец-содержащих соединений (например, $Pb_2Fe_2O_5$) ионы Pb могут смещаться из центров кубоктаэдрических позиций структуры перовскита, приводя к сегнетоэлектрической спонтанной поляризации, которая взаимодействует с упорядочением магнитных моментов переходных катионов, таких как ионы Fe [12]. Такие материалы являются потенциальными мультиферроиками.

В настоящей работе приведены результаты исследований химического состава, микроструктур, структур и магнитных свойств твердых растворов (1-x)Ві FeO_3-x Pb FeO_3 с x=0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.50.

1. Эксперимент

1.1. Твердофазный синтез

Составы твердых растворов (1-x)ВіFеO₃—xPbFeO₃ с $0.05 \le x \le 0.30$ и шагом $\Delta x = 0.05$ и x = 0.50 приготовлялись методом твердофазного синтеза. В качестве исходных реактивов использовались оксиды Bi_2O_3 , Fe_2O_3 и PbO с химической чистотой не менее 99.9 %. Перед приготовлением исследуемых образцов реактивы дополнительно проверялись методом рентгеноструктурного анализа. Синтез образцов системы (1-x)ВіFeO₃—xPbFeO₃ после перемешивания в этиловом спирте стехиометрических смесей в течение одного часа проводился обжигами при температурах $T_1 = 700\,^{\circ}\text{C}$ (3 h) и $T_2 = 750\,^{\circ}\text{C}$ (3 h).

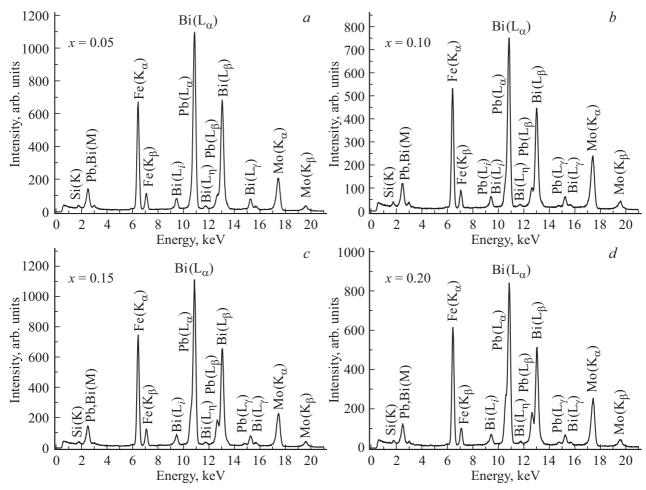
1.2. Микроструктура

Исследования микроструктуры образцов системы (1-x)Ві FeO_3-x Рb FeO_3 проведены методом сканирующей лазерной микроскопии на сканирующем лазерном микроскопе КЕYENCE VK-9700 (фиолетовый, 408 nm). Изображения строятся методом конфокальной микроскопии. При этом происходит последовательная съемка изображений, находящихся в фокусе на разной глубине образца. Все, что находится выше или ниже фокуса, отсекается конфокальной щелью, оставляя четким только ту поверхность, которая находится на данной глубине. Сканирование происходит вглубь образца с шагом $0.2\,\mu$ m, после чего все полученные изображения на разных глубинах "сшиваются", образуя четкую двумерную картину. Измерения образцов проведены при увеличении $\times 1000$ и $\times 3000$.

1.3. Рентгеноспектральный анализ

Химический состав образцов проверялся на рентгенфлуоресцентном ТХRF-спектрометре РФС-001 (Мо $K\alpha$ -излучение) с детектором Amptek с энергетическим разрешением приблизительно 180 eV. Регистрация и обработка спектров рентгеновской флуоресценции осуществлялась в программе UniverRS. Уточнение со-держания PbFeO $_3$ для составов твердых растворов (1-x)ВіFeO $_3$ —xPbFeO $_3$ проводилось по экспериментальным данным рентгеновской флуоресценции ионов Ві и Pb [13].

1.4. Рентгеноструктурный анализ


Все образцы изучались при комнатной температуре методом рентгеноструктурного анализа на дифрактометре ДРОН-3М (Си $K\alpha$ -излучение, Ni-фильтр) с фокусировкой по Бреггу–Брентано $(\theta-2\theta)$. Регистрация дифракционных профилей проводилась в интервале углов $20^{\circ} \le 2\theta \le 60^{\circ}$ в режиме пошагового сканирования образец-детектор с шагом 0.02° и временем набора импульсов в каждой точке $\tau=2\,\mathrm{s}$. Выбор данного интервала углов 2θ обусловлен тем, что в нем присутствуют наиболее интенсивные дифракционные максимумы. Расширение интервала в сторону углов $2\theta \ge 60^\circ$ приводит к возможности учета при уточнении слабых максимумов более высоких порядков отражений. Вместе с тем, при этом наблюдается сильное перекрытие этих максимумов, что, конечно, не улучшает результаты уточнения структурных параметров. Уточнение структурных параметров проводилось с помощью компьютерной программы PowderCell 2.4.

1.5. Мёссбауэровская спектроскопия

Мёссбауэровские спектры измерены с помощью спектрометра MS1104Em. В качестве источника γ -квантов использовался 57 Co в матрице Cr. Модельная расшифровка осуществлялась в программе SpecrRelax [14]. Изомерные сдвиги приведены относительно α -Fe.

2. Результаты и обсуждение

Химический состав образцов, отожженных при $T_1=700$ и $T_2=750^{\circ}\mathrm{C}$, показал (рис. 1), что они характеризуются соотношением содержания ионов Ві и Рb, которое было заложено в исходные смеси оксидов. На рис. 2 приведены фотографии микроструктур образцов составов (1-x)Ві $\mathrm{FeO_3}$ —xPb $\mathrm{FeO_3}$ после синтеза при $T_1=700^{\circ}\mathrm{C}$ (x=0.50) и после синтеза при $T_2=750^{\circ}\mathrm{C}$ (x=0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.50). Микроструктура образцов на сколах представляет собой, в основном, смесь "наноразмерных" кристаллитов $(0.5-1\,\mu\mathrm{m})$. В некоторых образцах есть крупные кристаллиты размером $4-5\,\mu\mathrm{m}$. В составах с x=0.05, 0.30 и 0.50 с повышением температуры отжига наблюдается

Рис. 1. Рентгенфлуоресцентные спектры составов системы (1-x)Ві FeO_3-x Рь FeO_3 , приготовленных при $T_2=750^{\circ}$ С: a) x=0.05; b) x=0.10; c) x=0.15; d) x=0.20; e) x=0.25; f) x=0.30; g) x=0.50.

довольно заметное увеличение количества "крупных" кристаллитов. Для других составов с x=0.10 и 0.20 увеличение температуры отжига не приводит к заметным изменениям размеров кристаллитов.

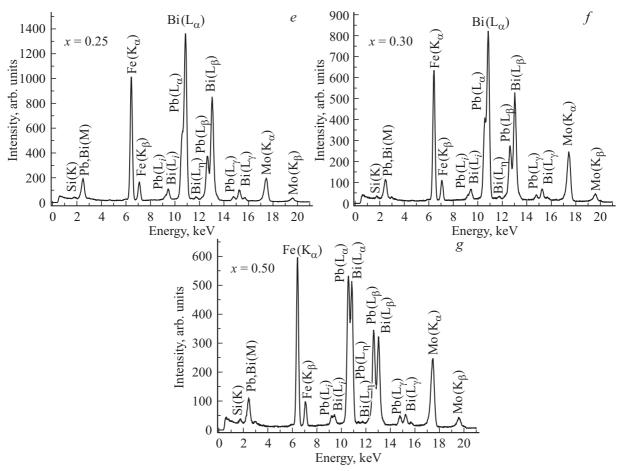
Фрагменты рентгендифракционных профилей составов системы (1-x)Ві FeO_3-x Рb FeO_3 после синтеза при $T_2=750^{\circ}$ С представлены на рис. 3. На дифрактограммах присутствуют все брегговские максимумы, характерные для структур типа перовскита. Помимо пиков, соответствующих основным фазам (1-x)Ві FeO_3-x Рb FeO_3 , на дифрактограммах имеются пики примесных фаз. В табл. 1 приведены концентрации перовскитовых (C_1) и примесных фаз $Bi_2Fe_4O_9$ (C_2) , $Bi_2_5FeO_40$ (C_3) и Pb_2BiO_4 (C_4) .

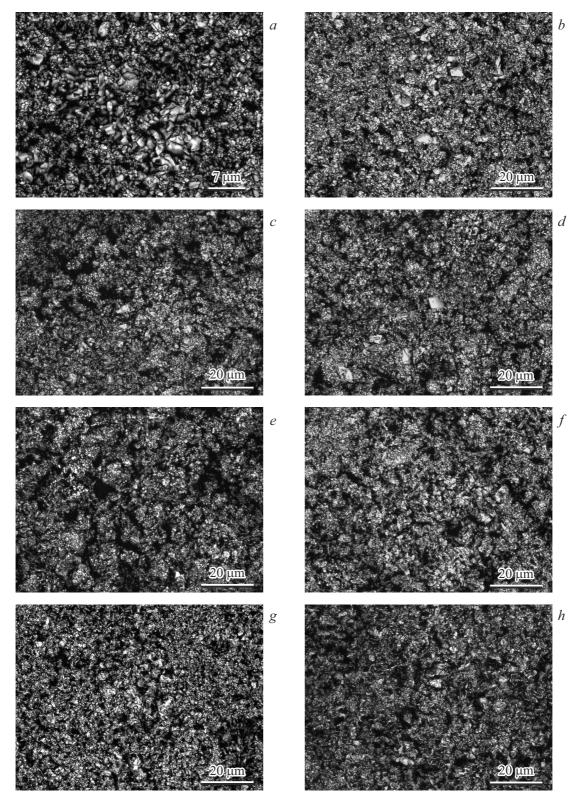
Обращает внимание то, что после повторного синтеза при $T_2=750^{\circ}\mathrm{C}$ в составах с x=0.05-0.20 присутствуют примесные фазы $\mathrm{Bi}_{25}\mathrm{FeO}_{40}$ и $\mathrm{Bi}_2\mathrm{Fe}_4\mathrm{O}_9$, в количестве от 2.4 (x=0.15) до 25% (x=0.05,0.10 и 0.20). Состав с x=0.50 характеризуется смесью фаз $\mathrm{Bi}_2\mathrm{Fe}_4\mathrm{O}_9$ (C=5.2%), $\mathrm{Pb}_2\mathrm{FeO}_4$ (C=49.8%) и перовскитовой ромбоэдрической R-3c фазой $\mathrm{Bi}_{0.5}\mathrm{Pb}_{0.5}\mathrm{FeO}_{3-\delta}$ (C=45%).

Таблица 1. Фазовый состав образцов системы (1-x)Ві FeO_3-x Рь FeO_3 при комнатной температуре после последовательного синтеза при $T_1=700$ и $T_2=750\,^{\circ}\mathrm{C}$

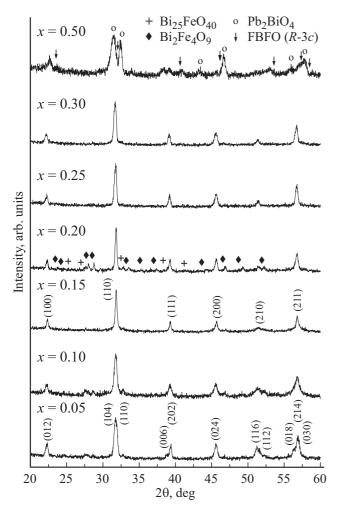
T, °C	х	$(1-x)$ BFO $-x$ PFO C_1 , %	Bi ₂ Fe ₄ O ₉ C ₂ , %	Bi ₂₅ FeO ₄₀ C ₃ , %	Pb ₂ BiO ₄ C ₄ , %
700	0.05	60.0	27.2	12.8	_
	0.10	55.2	30.9	13.9	_
	0.15	76.1	17.3	6.6	_
	0.20	84.8	12.8	2.5	_
	0.25	100.0	_	_	_
	0.30	100.0	_	_	_
	0.50	43.6	_	_	56.4
750	0.05	94.2	1.8	4.0	_
	0.10	75.8	17.6	6.6	_
	0.15	97.6	_	2.4	_
	0.20	74.9	20.1	5.0	_
	0.25	100.0	_	_	_
	0.30	100.0	_	_	_
	0.50	45.0	5.2	_	49.8

П р и м е ч а н и е. C_i $(i=1,\ldots,4)$ — концентрации фаз, определенных с точностью ± 0.5 %.




Рис. 1 (продолжение).

В табл. 2 приведены структурные параметры составов системы (1-x)Ві FeO_3-x Рb FeO_3 с x=0.10, 0.15 и 0.50 после их синтеза при $T_2=750^{\circ}$ С и результаты уточнения атомных параметров для этих составов: параметры элементарных ячеек $(a_{\rm H}, c_{\rm H}$ и $a_p)$, позиционные (x, y, z) и изотропные параметры фактора Дебая–Валлера (B), профильный фактор недостоверности структур (R_p) , а также параметры, соответствующие параметрам ромбоэдрических $(a_{\rm R}, \alpha_{\rm R})$ перовскитовых подъячеек, рассчитанных по формулам, приведенным в работе [15].


В пространственной группе R3c (№ 161) атомов типа A находятся в фиксированных положениях $A(\mathrm{Bi/Pb})$ — 6a (0;0;1). Для атомов типа B координата z является свободным (уточняемым) параметром: $B(\mathrm{Fe})$ — 6a (0;0;z), и атомы кислорода занимают в ячейке позицию 18e (x;0;1/4). Атомные позиции для пространственной группы R-3c (№ 167) следующие: $A(\mathrm{Bi/Pb})$ — 6a (0;0;1/4), $B(\mathrm{Fe})$ — 6b (0;0;0), O — 18e (x;0;1/4). Атомные позиции для пространственной группы Pm-3m (№ 221) следующие: $A(\mathrm{Bi/Pb})$ — 1a (0;0;0), $B(\mathrm{Fe})$ — 1b (0.5;0.5;0.5), O — 3c (0;0.5;0.5).

На рис. 4 показаны зависимости объемов элементарных ячеек V_{ABO3} , приходящихся на одну формульную единицу ABO_3 , и области существования при комнат-

ной температуре ромбоэдрических фаз R3c и R-3c и кубических фаз Рт-3т. На вставке рис. 4 показаны отношения параметров $c_{\rm H}/a_{\rm H}$, где $a_{\rm H}$ и $c_{\rm H}$ — параметры элементарных ячеек перовскитовой структуры в гексагональных установках. Параметры $\mathbf{a}_{\mathrm{H}} = \mathbf{a}_{\mathrm{p}} + \mathbf{b}_{\mathrm{p}}$ и $\mathbf{c}_{\mathrm{H}} = 2(\mathbf{a}_p + \mathbf{b}_p + \mathbf{c}_p)$, где \mathbf{a}_p , \mathbf{b}_p и \mathbf{c}_p — трансляции перовскитовой структуры. Можно видеть, что после синтеза при $T_2 = 750$ °C составы с x = 0.05 и 0.10 характеризуются ромбоэдрической фазой R3c и уменьшением величины $c_{\rm H}/a_{\rm H}$ с увеличением x за счет уменьшения периода $c_{\rm H}$, что соответствует уменьшению спонтанной поляризации. Отметим, что область существования фазы R3c сужается после синтеза при $T_2 = 750$ °C по сравнению с областью данной фазы после первоначального синтеза при $T_1 = 700$ °C. Составы с x = 0.15 - 0.30характеризуются кубическими фазами Рт-3т. Состав с x = 0.50 характеризуется ромбоэдрической фазой R-3c с отношением $c_{\rm H}/a_{\rm H}$, равным 2.46. Обращает на себя внимание отличие фазы R-3c от фазы R3c, состоящее в том, что в этой фазе перовскитовая ромбоэдрическая ячейка сжата по оси третьего порядка в отличие от растяжения ячейки вдоль полярной оси третьего порядка в фазе R3c, которое связано с наличием сегнетоэлектрической спонтанной поляризации.

Рис. 2. Микроструктуры составов системы (1-x)ВiFeO₃ –xРbFeO₃ после синтеза при $T_1=700^{\circ}$ С (x=0.50) и после синтеза при $T_2=750^{\circ}$ С с x=0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.50. a) x=0.05 ($T_2=750^{\circ}$ С), b) x=0.10 ($T_2=750^{\circ}$ С), c) x=0.15 ($T_2=750^{\circ}$ С), t) x=0.20 (t) t) x=0.20 (t) x=0.25 (t)

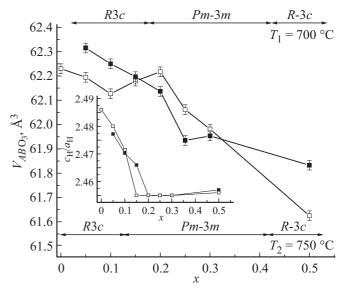
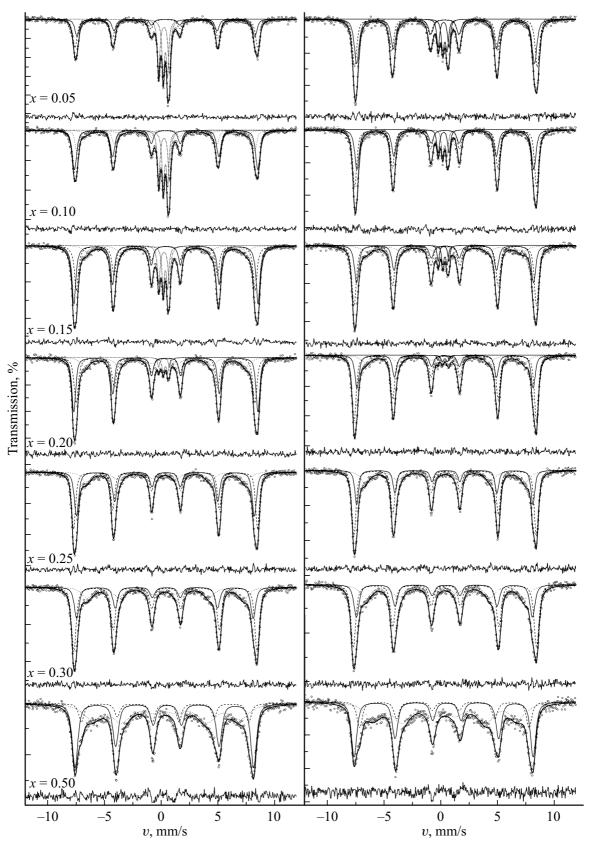
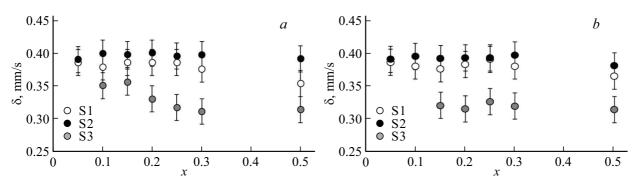


Рис. 3. Рентгендифракционные профили при комнатной температуре составов системы (1-x)Ві FeO_3-x Рb FeO_3 с $x=0.05,\ 0.10,\ 0.15,\ 0.20,\ 0.25,\ 0.30,\ 0.50$ после синтеза при $T_2=750^{\circ}$ С. Индексы Миллера приведены для ромбоэдрической фазы R3c (x=0.05) и кубической фазы Pn-3m (x=0.20). Символами (+), (\spadesuit) и (\circ) обозначены рентгендифракционные отражения примесных фаз $Bi_{25}FeO_{40}$, $Bi_2Fe_4O_9$ и Pb_2BiO_4 соответственно; символом (\downarrow) обозначена перовскитовая ромбоэдрическая R-3c фаза (x=0.50).


Мёссбауэровские спектры образцов керамики твердых растворов (1-x)Ві FeO_3-x Рb FeO_3 , синтезированные при температурах $T_1=700$ и $T_2=750$ °C, представлены на рис. 5. Параметры компонент данных спектров приведены в виде графиков концентрационных зависимостей на рис. 6-8. На спектрах образцов с $x \le 0.20$ наблюдается два парамагнитных дублета, с параметрами, близкими к наблюдаемым для соединения $Bi_2Fe_4O_9$ [16], являющегося характерной примесью для твердых растворов на основе $BiFeO_3$ [17,18]. На рис. 9 представлена концентрационная зависимость суммарной площади дублетных компонент, соответствующих примеси $Bi_2Fe_4O_9$. Видно, что площадь данных компонент, а, следовательно, и концентрация примесной фазы $Bi_2Fe_4O_9$, линейно убывает с ростом x. При этом для

образцов с $T_2 = 750^{\circ}\mathrm{C}$ концентрация примеси примерно в 2.5 раза ниже, чем для образцов с $T_1 = 700^{\circ}\mathrm{C}$.


Спектр образца с $x \le 0.05$, полученный $T_1 = 700^{\circ}$ С, помимо дублетов примесной фазы, содержат два зеемановских секстета. Изомерные сдвиги секстетов (0.39 mm/s) соответствуют ионам Fe^{3+} в октаэдрическом окружении [19], характерным для соединений со структурой перовскита [20]. Секстет S1 обладает меньшим значением напряженности эффективного магнитного поля, чем S2. Кроме того, отношение величин квадрупольных смещений ε_{S2} к ε_{S1} примерно равно 2, что указывает на наличие пространственной спин-модулированной структуры (ПСМС), как в ВіFeO₃ [21,22]. То есть, секстет с меньшим значением поля соответствует ионам Fe³⁺, магнитные моменты которых ориентированы перпендикулярно оси симметрии третьего порядка, а секстет с большим значением поля — ионам Fe³⁺ с ориентацией моментов вдоль этой оси. При $x \ge 0.1$ на мёссбауэровских спектрах наблюдается еще один секстет S3, с изомерным сдвигом $\sim 0.31 - 0.35 \, \text{mm/s}$ и значениями эффективных магнитных полей ниже, чем у S1 и S2. Изомерный сдвиг секстета S3 соответствует ионам Fe³⁺ с координационным числом 5. Таким образом, секстет S3 связан с образованием кислородных вакансий в результате зарядовой компенсация при замещении ионов Ві³⁺ на ионы Pb²⁺, как и для других систем на основе BiFeO₃ с гетеровалентным замещением [23,24]. При этом уже при x = 0.1 происходит разрушение ПСМС и спектры имеют форму однородной спиновой структуры, что видно по изменению параметров S1 и S2. Итак, для $x \ge 0.1$

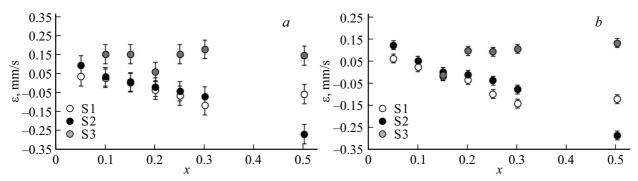

Рис. 4. Зависимости объемов элементарных ячеек, приходящихся на одну формульную единицу ABO_3 , и области существования при комнатной температуре ромбоэдрических фаз R3c и R-3c и кубической фазы Pm-3m для твёрдых растворов (1-x)Ві FeO_3-x Pb FeO_3 . На вставке показано отношение параметров c_H/a_H ($\blacksquare - T_1 = 700^{\circ}$ C; $\Box - T_2 = 750^{\circ}$ C).

Рис. 5. Мёссбауэровские спектры образцов твердых растворов (1-x)Ві FeO_3-x Рb FeO_3 , синтезированные при a) $T_1=700^{\circ}$ С и b) $T_2=750^{\circ}$ С, измеренные при комнатной температуре.

Рис. 6. Концентрационные зависимости величины изомерных сдвигов компонент мёссбауэровских спектров образцов твердых растворов (1-x)Ві FeO_3-x Рь FeO_3 , синтезированных при a) $T_1=700^{\circ}$ С и b) $T_2=750^{\circ}$ С.

Рис. 7. Концентрационные зависимости величины квадрупольных смещений компонент мёссбауэровских спектров образцов твердых растворов (1-x)Ві FeO_3-x Рь FeO_3 , синтезированных при a) $T_1=700$ °C и b) $T_2=750$ °C.

Рис. 8. Концентрационные зависимости величины напряженности эффективных магнитных полей на ядрах 57 Fe компонент мёсс-бауэровских спектров образцов твердых растворов (1-x)BiFeO₃-xPbFeO₃, синтезированных при a) $T_1 = 700^{\circ}$ C и b) $T_2 = 750^{\circ}$ C.

системы (1-x)ВіFеO₃—xРbFeO₃ с $T_1=700^{\circ}$ С секстеты S1 и S2 соответствуют ионам Fe³⁺ в октаэрическом кислородном окружении. Величина изомерного сдвига и магнитного поля секстета S2 меньше, чем у S1, и с ростом x значения этих параметры S1 убывают (рис. 6, a и 8, a). По-видимому, секстет S1 соответствует ионам Fe³⁺ в октаэдрах, которые непосредственно граничат с кислородными полиэдрами, соответствующими секстету S3. Увеличение абсолютных значений квадрупольных смещений всех секстетов, а также уширение их линий свидетельствуют об увеличение степени симметрийных искажений ближайшего окружения ионов Fe³⁺ и возрастании кристаллографических неоднородностей.

Похожая картина наблюдается для спектров составов твердых растворов (1-x)Ві FeO_3-x Рь FeO_3 , полученных при $T_2=750^{\circ}$ С. Однако на спектре состава с x=0.1 еще наблюдается ПСМС, разрушение которой происходит при x=0.15. Секстет, соответствующий ионам Fe^{3+} с координационным числом 5, также проявляется при более высоком значении x=0.15. В остальном поведение параметров мёссбауэровских спектров с ростом x (рис. 6, b и 8, b) повторяется.

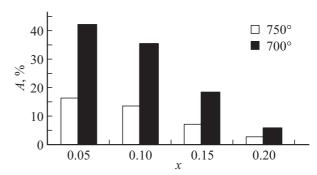
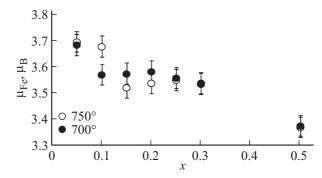

Сверхтонкие магнитные поля на ядрах 57 Fe всех трех зеемановских секстетов слабо изменяются в концентрационном диапазоне $0.10 \le x \le 0.25$ для обеих систем с $T_1 = 700$ и $T_2 = 750^{\circ}$ C. При $x \ge 0.3$ значения напря-

Таблица 2. Структурные параметры (1-x)Ві FeO_3-x Рb FeO_3 при комнатной температуре, для составов с $x=0.10,\,0.15$ и 0.50, синтезированных при $T_2=750^{\circ}\mathrm{C}$


x	0.10	0.15	0.50
Пространственная группа	R3c	Pm-3m	R-3c
ан, с _н , Å	5.587(3);		5.506(3);
	13.807(4)		13.438(4)
a_p , Å	_	3.963(3)	_
a_R , Å	3.962(3)	_	3.889(3)
α_R , deg	89.66(2)	90.00	90.14(2)
V_{ABO3} , Å ³	62.20(2)	62.22(2)	58.81(2)
$c_{ m H}/a_{ m H}$	2.47(1)	2.46(1)	2.46(1)
C_p , %	75.8(4)	97.6(5)	45.0(2)
Bi/Pb - x; y; z	0; 0; 1	0; 0; 0	0; 0; 0.25
$B(Bi/Pb), Å^2$	0.1	0.15	0.15
Fe — $x; y; z$	0; 0; 0.25	0.5; 0.5; 0.5	0; 0; 0
$B(Fe), Å^2$	0.1	0.15	0.15
O - x; y; z	0.475; 0.015;	0; 0.5; 0.5	0.446; 0; 0.25
	0.955		
$B(O), A^2$	0.1	0.05	0.1
R_p , %	5.4	5.7	6.7
R_{wp} , %	6.8	7.3	8.4
$R_{\rm exp}$, %	0.4	0.5	0.2
$l_{ m Bi/Pb-O},~{ m \AA}$	2.287(3)	2.807(3)	2.458(3)
$l_{ m Bi/Pb-O},~{ m \AA}$	2.686(3)	_	3.049(3)
$l_{ m Bi/Pb-O},~{ m \AA}$	3.040(3)	_	2.762(3)
$l_{\mathrm{Fe-O}}$, Å	1.776(2)	1.985(2)	1.967(2)
$l_{ m Fe-O},{ m \AA}$	2.355(2)	_	_
l _{O−O} , Å	2.686(3)	2.807(3)	2.801(3)
$l_{\mathrm{O-O}}$, Å	2.827(3)	_	2.762(3)
$l_{\mathrm{O-O}}$, Å	2.811(3)	_	2.801(3)
$l_{\mathrm{O-O}}$, Å	2.936(3)	_	_

Примечание. $l_{\text{A-O}},\,l_{\text{B-O}},\,l_{\text{O-O}}$ — длины межатомных связей.

женности магнитных полей начинают убывать. Средние значения сверхтонких полей при этом убывают, а значит, должны снижаться значения магнитных моментов ионов Fe³⁺. Сверхтонкое эффективное магнитное поле на ядрах ⁵⁷ Fe связано с магнитным моментом иона ${\rm Fe}^{3+}$ ($\mu_{\rm Fe}$) следующим выражением [25]: $H_{\rm eff} = -\alpha \cdot \mu_{\rm Fe}$, где α — постоянная сверхтонкой связи. В работе [21] была проведена оценка величины $\alpha = -133.5\,\mathrm{kOe}$. Используя данное значение α и приняв в качестве H_{eff} усредненные значения сверхтонких магнитных полей секстетов S1-S3, проведена оценка μ_{Fe} и построена её концентрационная зависимость (рис. 10). Характеры зависимостей образцов с $T_1 = 700$ и $T_2 = 750$ °C примерно совпадат. В обоих случаях величины μ_{Fe} убывают до значения $\approx 3.55 \,\mu_{\rm B}$, которое остается неизменным в диапазоне $0.15 \le x \le 0.25$, а с дальнейшим ростом x убывает. При этом к значению $\mu_{\mathrm{Fe}} \approx 3.55\,\mu_{\mathrm{B}}$ система с $T_1 = 700^{\circ}$ С приходит быстрее, вследствие более раннего проявления кислородного дефицита. Плато в области $0.15 \le x \le 0.25$, по-видимому, связано с частичной компенсацией μ_{Fe} вследствие структурных изменений.

Рис. 9. Концентрационные зависимости суммарной площади дублетных компонент соответствующих примеси $Bi_2Fe_4O_9$ в образцах твердых растворов $(1-x)BiFeO_3-xPbFeO_3$, синтезированных при $T_1=700^{\circ}\mathrm{C}$ (черные столбцы) и $T_2=750^{\circ}\mathrm{C}$ (белые столбцы).

Рис. 10. Концентрационные зависимости магнитных моментов ионов $\mathrm{Fe^{3+}}$ в образцах твердых растворов $(1-x)\mathrm{BiFeO_3}{-}x\mathrm{PbFeO_3},$ синтезированных при $T_1=700^{\circ}\mathrm{C}$ (черные кружки) и $T_2=750^{\circ}\mathrm{C}$ (белые кружки).

3. Заключение

Основной особенностью структур составов системы (1-x)Ві FeO_3-x Рь FeO_3 является то, что между фазами R3c (x=0,0.05 и 0.10) и R-3c (x=0.50) при комнатной температуре наблюдается кубическая фаза Pm-3m (x=0.15,0.20,0.25,0.30). Наличие кубической фазы при комнатной температуре свидетельствует о том, что фазовые переходы в соответствующих составах происходит при более низких температурах.

Таким образом, мёссбауэровское исследование составов твердых растворов системы (1-x)Ві FeO_3-x Рb FeO_3 с $T_1=700$ и $T_2=750^{\circ}$ С показало, что все ионы железа в исследуемых составах твердого раствора находятся в состоянии Fe^{3+} . В составах с x=0.10 ($T_1=700^{\circ}$ С) и x=0.15 ($T_2=750^{\circ}$ С) происходит разрушение пространственной спин-модулированной структуры. Повышение концентрации ионов Pb^{2+} приводит к возникновению кислородных вакансий при Fe^{3+} , а не к образованию смешанного валентного состояния $Fe^{3+} \leftrightarrow Fe^{4+}$. Дефицит кислорода приводит к уменьшению μ_{Fe} , что ослабляет магнитные свойства данной системы.

Финансирование работы

Исследование выполнено при финансовой поддержке Министерства науки и высшего образования РФ (Государственное задание в сфере научной деятельности. Проект № FENW-2023-0010/Г30110/23-11-ИФ).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- J.B. Goodenough, J.M. Longo. Group III, v. 4a. / Ed. K.-H. Hellwege. Springer-Verlag, Berlin-Heidelberg-N.Y. (1970). Pp. 207–262.
- [2] J.B. Goodenough, J. Zhou. Sci. Technol. Adv. Mater. 16, 3, 036003 (2015).
- [3] R. Asih, M. Gufron, Darminto. AIP Conf. Proceed. **1554**, *1*, 50 (2013). http://dx.doi.org/10.1063/1.4820281
- [4] И.О. Троянчук, О.С. Мантыцкая, А.Н. Чобот, Н.В. Терешко. ФТТ **51**, *10*, 1984 (2009). [I.O. Troyanchuk, O.S. Mantytskaya, A.N. Chobot, N.V. Tereshko. Phys. Solid State **51**, *10*, 2105 (2009).]
- [5] I.O. Troyanchuk, M.V. Bushinsky, D.V. Karpinsky, V. Sirenko, V. Sikolenko, V. Efimov. Eur. Phys. J. B 73, 3, 375 (2010).
- [6] T. Tsuchiya, H. Saito, M. Yoshida, T. Katsumata, T. Ohba, Y. Inaguma, T. Tsurui, M. Shikano. MRS Online Proceed. Library 988, 9880916 (2006). https://doi.org/10.1557/PROC-988-0988-QQ09-16
- [7] A. Erkişi, E.K. Yı́ldı́rı́m, G. Gökoğlu. Int. J. Mod. Phys. B 28, 29, 1450205 (2014).
- [8] J. Hadermann, A.M. Abakumov, I.V. Nikolaev, E.V. Antipov, G. Van Tendeloo. Solid State Sci. 10, 4, 382 (2008).
- [9] M. Wang, G. Tan. Mater. Res. Bull. 46, 3, 438 (2011).
- [10] A.M. Abakumov, J. Hadermann, S. Bals, I.V. Nikolaev, E.V. Antipov, G. Van Tendeloo. Angew. Chemie Int. Ed. 45, 40, 6697 (2006).
- [11] I.V. Nikolaev, H. D'Hondt, A.M. Abakumov, J. Hadermann, A.M. Balagurov, I.A. Bobrikov, D.V. Sheptyakov, V.Yu. Pomjakushin, K.V. Pokholok, D.S. Filimonov, G. Van Tendeloo, E.V. Antipov. Phys. Rev. B 78, 2, 024426 (2008).
- [12] A.M. Abakumov, J. Hadermann, G. Van Tendeloo, E.V. Antipov. J. Am. Ceram. Soc. 91, 6, 1807 (2008).
- [13] А.С. Голофастова, Н.М. Новиковский, В.М. Разномазов, А.В. Павленко, И.А. Вербенко, Д.А. Сарычев, Л.А. Резниченко, А.В. Махиборода. УПФ 4, 1, 32 (2016).
- [14] M.E. Matsnev, V.S. Rusakov. AIP Conf. Proc. **1489**, *1*, 178 (2012).
- [15] K.A. Googlev, A.T. Kozakov, A.G. Kochur, A.V. Nikolskii, A.G. Rudskaya, S.I. Shevtsova. Physica Scripta 99, 6, 0659a6 (2024).
- [16] G.C. Papaefthymiou, A.J. Viescas, J.-M. Le Breton, H. Chiron, J. Juraszek, T.-J. Park, S.S. Wong. Current Appl. Phys. 15, 3, 417 (2015).
- [17] В.М. Денисов, Н.В. Волков, Л.А. Иртюго, Г.С. Патрин, Л.Т. Денисова. ФТТ **54**, *6*, 1234 (2012). [V.M. Denisov, N.V. Volkov, L.A. Irtyugo, G.S. Patrin, L.T. Denisova. Phys. Solid State **54**, *6*, 1312 (2012).]

- [18] И.А. Вербенко, Ю.М. Гуфан, С.П. Кубрин, А.А. Амиров, А.А. Павелко, В.А. Алёшин, Л.А. Шилкина, О.Н. Разумовская, Л.А. Резниченко, И.А. Осипенко, Д.А. Сарычев, А.Б. Батдалов. Изв. РАН. Сер. Физ. 74, 8, 1192 (2010). [I.A. Verbenko, Yu.M. Gufan, S.P. Kubrin, A.A. Amirov, A.A. Pavelko, V.A. Aleshin, L.A. Shilkina, O.N. Razumovskaya, L.A. Reznichenko, I.A. Osipenko, D.A. Sarychev, A.B. Batdalov. Bull. RAS: Phys. 74, 8, 1141 (2010).]
- [19] F. Menil. J. Phys. Chem. Solids 46, 7, 763 (1985).
- [20] I.P. Raevski, S.P. Kubrin, S.I. Raevskaya, D.A. Sarychev, S.A. Prosandeev, M.A. Malitskaya. Phys. Rev. B 85, 22, 224412 (2012).
- [21] В.С. Покатилов, В.В. Покатилов, А.С. Сигов. ФТТ 51, 3, 518 (2009). [V.S. Pokatilov, V.V. Pokatilov, A.S. Sigov. Phys. Solid State 51, 3, 552 (2009).]
- [22] В.С. Русаков, В.С. Покатилов, А.С. Сигов, М.Е. Мацнев, Т.В. Губайдуллина. Письма в ЖЭТФ **100**, 7, 518 (2014). [V.S. Rusakov, V.S. Pokatilov, A.S. Sigov, M.E. Matsnev, T.V. Gubaidulina. JETP Lett. **100**, 7, 463 (2014).]
- [23] A.T. Kozakov, A.G. Kochur, V.I. Torgashev, A.A. Bush, V.Ya. Shkuratov, S.P. Kubrin, A.V. Nikolskii, K.A. Googlev. J. Electron Spectrosc. & Related Phenomena 189, 106 (2013).
- [24] A.T. Kozakov, A.G. Kochur, V.I. Torgashev, K.A. Googlev, S.P. Kubrin, V.G. Trotsenko, A.A. Bush, A.V. Nikolskii. J. Alloys. Compd. 664, 392 (2016).
- [25] M.B. Stearns. Phys. Rev. B 4, 11, 4081 (1971).

Редактор Е.В. Толстякова