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Метод акустической эмиссии (АЭ) применен для исследования генерации и накопления энергии

образования микротрещин при сочетании нагрева и локализованного удара по поверхности цементного

камня ЦК М400 естественного твердения. Эксперименты проведены при температурах 20 ◦C, 200 ◦C

и 400 ◦C. Последняя температура является предельной для восстановления ЦК механических свойств после

цикла нагревания. Развертки АЭ после удара были проанализированы и сопоставлены с последовательно

протекающими процессами трансформации материала: пластической деформации, разрушения межпоровых

перегородок нагретым паром, накопления микротрещин при превышении ударной прочности материала.
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1. Введение

Современные исследования цементов на прочность

учитывают только статические характеристики, которые

не изменяются быстротечно во времени [1,2]. Однако
вибрация и даже одиночные ударные нагрузки цемент-

ного камня (ЦК) могут привести к появлению тре-

щин. Ударопрочность бетона значительно снижается при

повышении температуры и при нагреве выше 400 ◦C

бетон начинает резко терять прочность и возникает рост

пластических деформаций [3] с отходом от номинальных

технических характеристик [4].
При естественной климатической температуре ме-

ханическое воздействие вызывает в ЦК упругую де-

формацию, которая при достижении предела упругости

приводит к появлению микротрещин [5] и при некоторой

достаточной нагрузке — макроскопическую деградацию

структуры материала. В порах бетона, нагретого выше

температуры кипения воды, имеет место дополнитель-

ный эффект: давление пара нарастает до критического

предела и происходят разрывы стенок пор — формиру-

ются микротрещины.

Традиционным неразрушающим методом регистрации

образования микротрещин в ЦК является метод акусти-

ческой эмиссии (АЭ) [6–8], причем в самое последние

время наблюдается появление новейших эксперимен-

тальных техник его реализации [9–12]. В настоящей

работе метод АЭ применен для наблюдения генерации и

накопления микротрещин при сочетании нагрева и лока-

лизованного удара по поверхности ЦК при температурах

20 ◦C, 200 ◦C и 400 ◦C.

2. Образцы и оборудование

Образцы ЦК М400 размером 10× 10× 40mm по-

мещались на массивную металлическую подставку с

нанесенным слоем консистентной смазки. Ударное воз-

действие проводилось заостренным бойком из закален-

ной стали, на который с высоты 70 cm падал груз ве-

сом 100 g. Ударный эксперимент производился по 3 раза

(каждый раз по неповрежденной поверхности на дистан-

ции 8−10mm друг от друга) при каждой температуре

образца. При ударе на поверхности образца возникало

локализованное повреждение материала в пятне диамет-

ром ∼ 1mm2 с хорошо воспроизводимой морфологией.

Система регистрации сигнала АЭ запускалась в мо-

мент касания грузом бойка. Пьезодатчиком из высоко-

чувствительной керамики PZT, установленном на бо-

ковой поверхности образца, в диапазоне 80−900 kHz

регистрировались временные развертки АЭ, вызванной

образованием микротрещин в материале ЦК. Генера-

ция АЭ записывалась в течение 4ms с временным

разрешением 40 ns. Сигналы АЭ поступали на вход ана-

логоцифрового преобразователя АСК-3106 и в цифровой

форме сохранялись в компьютере.

3. Результаты и обсуждение

На рис. 1−3 показаны временные развертки инду-

цированных ударом акустических сигналов. Приведе-

ны величины квадратов амплитуды A
2, пропорциональ-

ные выделенной энергии (E ∝ A
2). Отсчет времени
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Рис. 1. Развертка серии импульсов АЭ (a) и кривая накопления энергий импульсов (b) при температуре образца 20 ◦C.
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Рис. 2. Развертка серии импульсов АЭ (a) и кривая накопления энергий импульсов (b) при температуре образца 200 ◦C.

велся от момента касания бойка поверхности образ-

ца. При комнатной температуре (рис. 1, a) активность

АЭ в течение первых ∼ 1.8ms не зарегистрирована,

поскольку в поверхностном слое бетона происходят

микропластические деформации, которые предшеству-

ют появлению трещин. При исчерпании пластическо-

го течения появляются микротрещины, возбуждающие

генерацию АЭ в течение примерно 2ms и затухаю-

щую к 4ms. Соответственно, выход энергии импуль-

сов АЭ (рис. 1, b) был зарегистрирован только после

достижения критической деформации ЦК. При двух

повторных ударах картина эмиссии воспроизводилась

(не показана).
При температуре образца 200 ◦C (рис. 2, a) удар по

поверхности вызывал незначительный всплеск эмиссии,

связанный с разрушением перегородок между порами

из-за повышенного давления пара. В этом случае, от-

мечено некоторое накопление энергии импульсов АЭ в

течение ∼ 1ms, выделенной до достижения критической

деформации с образованием трещин (рис. 2, b). При

последовательных ударах по ЦК, нагретом до 200 ◦C,

картина эмиссии АЭ также воспроизводилась.

Наконец, при температуре 400 ◦C (рис. 3, a) связан-

ный с объединением пор в нагретом образце слабый

сигнал АЭ после 1-го удара продолжался вплоть до мас-

сового выхода микротрещин, причем при 2-ом (рис. 3, c)
и, в особенности, 3-ем (рис. 3, d) повторных ударах

генерация АЭ на стадии деформирования заметно воз-

росла. Это указывает на эффективное распространение

ударных волн в объеме образца в масштабе нескольких

миллиметров при температуре 400 ◦C. Каждый после-

дующий удар ослаблял сопротивление деформированию

структуры ЦК в области, ближайшей к локализации

очага разрушения.
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Рис. 3. Развертки серии импульсов АЭ при температуре образца 20 ◦C после первого (a), второго (b) и третьего (с) ударов и

кривые накопления энергий импульсов первого (d), второго (e) и третьего (f ) ударов.

4. Заключение

Применение метода акустической эмиссии для ана-

лиза структурной деградации ЦК при сочетании удар-

ной нагрузки и нагрева до
”
критической“ температуры

400 ◦C позволило дифференцировать разделенные во

времени процессы: упругую пластическую деформацию,

разрушение межпоровых перегородок и накопление мик-

ротрещин при глобальном разрушении структуры при

превышении ударной прочности материала. Для ЦК
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при 400 ◦C показано увеличение суммарной энергии

выделения микротрещин при разрушении межпоровых

перегородок при повторном ударном воздействии на

образцы, то есть наличие памяти о предшествующем

снижении сплошности материала.
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