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В работе представлены результаты рентгеноструктурного анализа, исследования микроструктуры и

диэлектрических характеристик твердых растворов системы Li1−xNaxNi0.5Mn1.5O4. Рентгеноструктурный

анализ показал, что твердые растворы системы Li1−xNaxNi0.5Mn1.5O4 имеют неупорядоченную структуру

типа шпинели Fd3m. Введение в систему Na+ приводит к образованию примесных фаз NiO и LiMnO2,

концентрация которых возрастает при увеличении концентрации Na+. Показано, что введение в систему Na+

приводит к уменьшению параметра ячейки, что свидетельствует о его невключении или ограниченном

включении в кристаллическую решетку LiNi0.5Mn1.5O4 . Анализ зависимостей диэлектрических спектров

показал, что в твердых растворах Li1−xNaxNi0.5Mn1.5O4 отсутствует переход в сегнетоэлектрическую фазу.

Увеличение электропроводности выше 150K обусловлено прыжковой проводимостью.
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1. Введение

Мультиферроики, которые одновременно проявляют

сегнетоэлектрическое и ферромагнитное упорядочения,

в настоящее время привлекают большое внимание

исследователей [1–2]. Для коммерческих применений

важно добиться сильного взаимодействия между се-

гнетоэлектрической поляризацией и магнетизмом, что-

бы обеспечить взаимный контроль магнитных спинов

и электрических диполей небольшими внешними воз-

действиями (напряжением или магнитным полем) с

низкими потерями энергии, особенно при комнатной

температуре [3–5]. Таким образом, понимание основного

механизма взаимодействия сегнетоэлектричества и маг-

нетизма является ключевым фактором при разработке

новых мультиферроиков для магнитоэлектрических при-

менений.

Одним из перспективных классов мультиферроиков

являются химические соединения со структурой типа

шпинели, обладающие широким спектром магнитных и

электрических свойств [6–9]. Разнообразие магнитных

свойств и типов возникающих магнитных порядков в

шпинелях делает этот класс материалов перспективным

для поиска мультиферроиков. Структура шпинели может

вмещать переходные металлы, что во многих случаях

приводит к различным типам магнитного упорядочения

при высоких температурах. Несмотря на разнообразие

магнитных шпинелей, к настоящему времени среди них

обнаружено сравнительно небольшое количество муль-

тиферроиков или магнитоэлектриков [10]. Необходимым
условием возникновения магнитоэлектрической связи

является подавление центра инверсии кристаллической

структуры. В шпинелях наличие разных видов ато-

мов в катионных подрешетках приводит к возможно-

сти атомного упорядочения, которое может подавлять

центр инверсии. Однако, в отличие от перовскитных

сегнетоэлектриков, собственное сегнетоэлектричество в

шпинелях экспериментально не наблюдалось, за исклю-

чением предположения о нецентрированном положении

B-катиона вдоль кристаллографического направления

〈111〉 [11] и релаксорном сегнетоэлектричестве в шпи-

нели CdCr2S4 [12]. С другой стороны, разнообразные

магнитные свойства делают шпинели потенциально пер-

спективными для наблюдения новых эффектов в магни-

тоэлектрических и мультиферроидных соединениях.

Например, LiFe5O8 может существовать в неупорядо-

ченной форме со случайным распределением катионов,

а также в упорядоченной форме, которая может быть
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достигнута путем отжига при подходящих темпера-

турах. LiFe5O8 имеет магнитный порядок при очень

высокой температуре (Tc = 905K), но при этом точ-

ная магнитная структура неизвестна [13]. Упорядочен-
ная структура LiFe5O8 описывается пространственными

группами P4132 или P4332 (т. е. магнитоэлектрические
взаимодействия формы PM2 запрещены). Несмотря на

это, магнитоэлектрический эффект был недавно под-

твержден в этой шпинели ниже комнатной температу-

ры [14], что можно объяснить тем, что в нем возмож-

на магнитоэлектрическая связь более высокого поряд-

ка (PM4). Другие шпинели, например, Mn4+ — содержа-

щие AM0.5Mn1.5O4 (A=Li, Cu; M=Ni, Mg), которые
проявляют ферро- или ферримагнетизм также могут

быть получены в катионно-упорядоченной структуре

P4332 и могут демонстрировать магнитоэлектрические

свойства [15], аналогичные LiFe5O8. Например, шпинель

состава LiNi0.5Mn1.5O4 представляет собой нормальную

шпинель, где Ni2+ и Mn4+ находятся в октаэдрических

позициях, а Li+ в тетраэдрических позициях, т. е. Li+

выступает в качестве А-катиона, а Ni2+ и Mn4+ в

качестве В-катиона. В зависимости от расположения

катионов Ni2+ и Mn4+ структура шпинели может быть

упорядоченная (P4332) и неупорядоченная (Fd3m). Для
упорядоченной шпинели наблюдаются небольшие сверх-

структурные отражения (110) и (320), в случае неупоря-

доченной шпинели эти отражения отсутствуют [16].
LiNi0.5Mn1.5O4 в основном рассматривается в ли-

тературе в контексте электрохимических примене-

ний. Сообщается, что материалы на основе шпинели

LiNi0.5Mn1.5O4 хорошо удерживают высокое напряжение

при зарядке/разрядке на уровне около 4.7V. Это перспек-

тивный катодный материал для литий-ионных аккумуля-

торов нового поколения с высоким напряжением [17].
Также сообщается, что легирование LiNi0.5Mn1.5O4 ка-

тионами Na+ влияет как на размер кристаллических

доменов, так и на параметры кристаллической решетки,

не изменяя при этом основной структуры шпинели.

Легирование Na+ не только способствует увеличению

беспорядка в распределении катионов никеля и марганца

в структуре шпинели, но и добавляет два дополнитель-

ных пути перескока электронов, которые способствуют

улучшению переноса заряда, уменьшают омическую и

электрохимическую поляризацию материалов и улучша-

ют коэффициент диффузии ионов лития [18].
LiNi0.5Mn1.5O4 также проявляет ферримагнитное упо-

рядочение при температурах ниже TN = 129K [19].
Магнитный порядок в этом случае представляет собой

коллинеарный ферримагнитный порядок, при котором

как подрешетка Ni, так и подрешетка Mn являются

ферромагнитными и спин-поляризованы в противопо-

ложном друг другу направлении. Ферромагнетизм под-

решетки Ni обусловлен ее антиферромагнитной связью с

подрешеткой Mn, в то время как взаимодействия Ni−Ni

незначительны [20].
Несмотря на имеющиеся в литературе данные о струк-

туре и электрохимических свойствах LiNi0.5Mn1.5O4,

диэлектрические и магнитные свойства этих материалов

изучены слабо.

В связи с вышесказанным целью данной работы явля-

ется установление закономерностей формирования фа-

зового состава, структуры и диэлектрических характери-

стик твердых растворов (ТР) на основе LiNi0.5Mn1.5O4,

модифицированного Na+.

2. Объекты и методы исследований

Объектами исследования стали ТР системы

Li1−xNaxNi0.5Mn1.5O4, с 0.00 ≤ x ≤ 0.20, 1x = 0.05.

В качестве исходных компонентов для синтеза ТР

использовались следующие прекурсоры, предварительно

проверенные методом рентгенофазового анализа:

NaHCO3 (х.ч.), NiO (ч.), Mn2O3 (о.с.ч.) и Li2CO3 (х.ч.).
Образцы были изготовлены путем двухстадийно-

го твердофазного синтеза при 1170K ≤ Tsynt 1 ≤ 1220K

(в течении 5 h), и 1220K ≤ Tsynt 2 ≤ 1270K. Спекание

проводили по обычной керамической технологии при

1270K ≤ Tsint ≤ 1320K в зависимости от состава в те-

чение 2 h.

Исследование фазового состава образцов проводилось

на станции рентгеноструктурного анализа (РСА) Курча-

товского источника синхротронного излучения [21], обо-
рудованной двумерным CCD-детектором Rayonix SX165

(λ = 0.75�A, Si монохроматор). Измерения проводились

при комнатной температуре в геометрии пропускания,

детектор располагался на расстоянии 150mm от образца

при угле отклонения 29.5◦ от оси прямого пучка для

максимизации угловой шкалы. Время съемки одного

образца составляло 5min. Дифрактограммы переведены

к одномерному виду I(2θ) с использованием азимуталь-

ного интегрирования в программе Dionis [22], аппарат-
ное уширение дифракционных линий учтено за счет

измерения сертифицированного стандарта LaB6 (NIST
SRM 660a).
Содержание примесных фаз оценивали по относи-

тельной интенсивности их сильной линии: I/I1 · 100%,

где I — интенсивность сильной линии примесной фазы,

I1 — интенсивность сильной линии основной фазы.

Определение экспериментальной (ρexp) плотности

образцов осуществлялось методом гидростатического

взвешивания в n-октане.

Расчет рентгеновской плотности (ρXR) производился

по формуле:

ρХR = Z
M

NA

V, (1)

где Z — число формульных единиц, M —-молекулярная

масса, приходящаяся на одну формульную единицу,

NA — число Авагадро, V — объем элементарной ячейки.

Относительную плотность (ρrel) рассчитывали по фор-

муле:

ρrel = (ρexp/ρXR) · 100%. (2)

Точность определения параметров элементарной ячей-

ки составляет: 1a = ±(0.002−0.004)�A.
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Исследование микроструктуры поперечных сколов

керамики проводилось с помощью цветного лазерно-

го сканирующего 3D-микроскопа KEYENCE VK-9700

(в ЦКП
”
Объединенный центр научно-технологического

оборудования ЮНЦ РАН (исследование, разработка,

апробация)“ (№ 501994)).

Диэлектрические измерения проводились с исполь-

зованием испытательного стенда, оснащенного анали-

затором импеданса Wayne Kerr 6500B (в диапазоне

температур 10−325K). Частота измерительного элек-

трического поля варьировалась от 100Hz до 1MHz.

Охлаждение образцов производилось в камере гелиевого

рефрижератора замкнутого цикла CCS-150.

3. Экспериментальные результаты

Анализ дифрактограмм ТР системы

Li1−xNaxNi0.5Mn1.5O4, полученных при температуре спе-

кания 1273K, показал, что чистый LiNi0.5Mn1.5O4 явля-

ется беспримесным (рис. 1). Li1−xNaxNi0.5Mn1.5O4 мож-

но охарактеризовать с помощью кубической структуры

шпинельного каркаса с пространственной группой Fd3m.

При введении 5mol.%Na+ остается некоторое коли-

чество NiO не вошедшего в реакцию. При увеличении

концентрации Na+ до 10mol.% помимо NiO [23] форми-
руется также примесная фаза LiMnO2 [24]. При дальней-

шем увеличении концентрации Na+ доля примесных фаз

возрастает. Согласно дифрактограммам структура ТР

является неупорядоченной, о чем свидетельствует отсут-

ствие дифракционных отражений, соответствующих упо-

рядочению [16]. Изменения параметров элементарной

ячейки, a , относительных плотностей, ρrel, и среднего

размер зерен, D в ТР системы Li1−xNaxNi0.5Mn1.5O4 от

концентрации x представлены на рис. 2.

При введении в систему катионов Na+ параметр

ячейки уменьшается. Это может свидетельствовать о
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Рис. 1. Дифрактограммы ТР системы Li1−xNaxNi0.5Mn1.5O4.
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Рис. 2. Зависимости параметров элементарной ячейки, a ,

относительных плотностей, ρrel, среднего размер зерен, D ТР

системы Li1−xNaxNi0.5Mn1.5O4 от концентрации x .

том, что Na+ практически не встраивается в структуру

LiNi0.5Mn1.5O4, так как ионный радиус Na+ больше,

чем Li+ (R(Na+) = 0.98 и R(Li+) = 0.68) [25]. Умень-
шение параметра ячейки может быть связано, с уходом

из структуры части В-катионов, образующих примесные

фазы NiO и LiMnO2. Степень заполнения замещающих

ионов в литиевых позициях 8a может быть представле-

на интегральными отношениями интенсивностей пиков

(400)/(311) [19,26]. Отношение интенсивностей пиков

(400)/(311) для полученного нами LiNi0.5Mn1.5O4 прак-

тически не изменяется при введении в систему Na+

(таблица), что также является доказательством того,

что Na+ не встраивается в решетку LiNi0.5Mn1.5O4.

Анализ фотографий микроструктуры ТР системы

(рис. 3, а) показал, что средний размер зерен варьирует-

ся от 4.9 до 6.3µm (рис. 2) в зависимости от значения x .

Во всех ТР зерна имеют форму многогранников.

При увеличении концентрации Na+ выше 10mol.%

появляются зерна игольчатой формы (выделены

на рис. 3 штриховой линией), что характерно для фазы

LiMnO2 [27]. При x = 0.15 наблюдается снижение

размера зерна, при этом происходит рост параметра

элементарной ячейки и увеличение отношения

I(400)/I(311), что вызвано внутренними перестройками

в системе.

Параметры решетки (a) для всех образцов после спекания

и отношения/интегральных интенсивностей I(400)/I(311)

x a (�A) I(400)/I(311)

0.00 8.301 0.98

0.05 8.205 0.97

0.10 8.198 0.99

0.15 8.210 1.01

0.20 8.225 1.00

Физика твердого тела, 2025, том 67, вып. 10
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Зависимости ε′/ε0 и ε′′/ε0 от температуры в

ТР Li1−xNaxNi0.5Mn1.5O4 представлены на рис. 4, a

и рис. 4, b. Характер зависимостей свидетельствует

об отсутствии сегнетоэлектрического перехода в ис-

следуемом интервале температур, что является под-

тверждением того, что неупорядоченная шпинель

Li1−xNaxNi0.5Mn1.5O4 не является мультиферроиком

II рода. На зависимостях видно, что в интервале тем-
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Рис. 3. Фотографии микроструктуры ТР системы

Li1−xNaxNi0.5Mn1.5O4.
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Рис. 4. Зависимости диэлектрических характеристик ε′/ε0 (a)
и ε′′/ε0 (b) от температуры в интервале частот 100Hz−1MHz

в ТР системы Li1−xNaxNi0.5Mn1.5O4.

ператур от 15K до 125K составы имеют низкие зна-

чения диэлектрической проницаемости (ниже 60). При

увеличении содержания Na+ интервал стабильности

ε′/ε0 и ε′′/ε0 сохраняется. Выше температуры 125K на

зависимостях наблюдается резкий рост значений ε′/ε0
и ε′′/ε0. По-видимому, основным механизмом роста

электропроводности в этих объектах является дыроч-

ная прыжковая проводимость между катионами Mn4+

и Mn3+ [28,29].

В исследуемой системе твердых растворов этот ме-

ханизм может иметь место благодаря тому, что при

высокотемпературном спекании вакансии кислорода со-
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здаются за счет освобождения электронов:

O ↔ V
o + 1/2O2,

V
o ↔ V

oo

O + 2e
′.

Увеличение числа вакансий кислорода может вызывать

изменение валентного состояния Mn4+. Если освобож-

денные электроны связываются с Mn4+ в системе,

произойдет преобразование заряда Mn (4+↔3+), как по-

казано далее: Mn4+ + e
′ ↔ Mn3+.

4. Заключение

Методом двухстадийного твердофазного синтеза и

последующего спекания по обычной керамической тех-

нологии получены ТР системы Li1−xNaxNi0.5Mn1.5O4, с

0.00 ≤ x ≤ 0.20, 1x = 0.05. ТР имеют структуру типа

неупорядоченной шпинели Fd3m. Показано, что в систе-

ме формируются примесные фазы NiO и LiMnO2, кон-

центрация которых увеличивается при увеличении кон-

центрации Na+. Рентгенофазовый анализ показал, что ка-

тионы Na+ не встраивается в структуру LiNi0.5Mn1.5O4.

В интервале температур от 15 до 125K на зависимостях

ε′/ε0 и ε′′/ε0 наблюдается плато со значениями не пре-

вышающими 60K. Рост диэлектрической проницаемости

выше 150K обусловлен прыжковой проводимостью меж-

ду катионами Mn3+ и Mn4+.

Финансирование работы

Исследование выполнено при финансовой поддержке

Министерства науки и высшего образования РФ (Го-
сударственное задание в сфере научной деятельности.

Проект № FENW-2023-0010/ГЗ0110/23-11-ИФ), исполь-
зовано оборудование Центра коллективного пользова-

ния НИИ физики Южного федерального университета

”
Электромагнитные, электромеханические и тепловые

свойства твердых тел НИИ физики ЮФУ“.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

[1] N.A. Spaldin Proceedings of the Royal Society A:

Mathematical, Physical and Engineering Sciences 476, 2233,

20190542 (2020).
[2] З.В. Гареева, Э.И. Бадертдинова. Известия Уфимского

Научного Центра РАН. 1, 44 (2021).
[3] Z. Hu, G.B.G. Stenning, H. Zhang, Y. Shi, V. Koval, W. Hu,

Z. Zhou, C. Jia, Is. Abrahams, H. Yan. Journal of Materiomics

11, 100857 (2025).
[4] J. Cao, B. Yang, G. Smith, A. Mahajan, H. Zhang, Y. Lin,

C. Yu, V. Koval. Materials & Design 248, 113498 (2024).
[5] X. Wang, J. Shi, X. Wang, Y. Li. Ceramics International 46,

11, 18707 (2020).

[6] A. Datar, B. Ray, S. Datar, V. Mathe. Journal of Magnetism

and Magnetic Materials 489, 165373 (2019).
[7] J. Finley, L. Liu. Appl. Phys. Lett. 116, 110501 (2020).
[8] X. Ren, Y. Han, X. Chen, Y. Fu, F. Wang, K. Hu,

Z. Sun, K. Zhang. Journal of Alloys and Compounds 920,

165918 (2022).
[9] Sushanta Mandal, Jyoti Sharma, Tirthankar Chakraborty,

Sanjoy Kr. Mahatha, Sourav Marik. Journal of Alloys and

Compounds 1010, 177993 (2025).
[10] A. Sundaresan, N.V. Ter-Oganessian. J. Appl. Phys. 129,

060901 (2021).
[11] N.W. Grimes Philos. Mag. 26, 1217 (1972).
[12] J. Hemberger, P. Lunkenheimer, R. Fichtl, H.-A. Krug

von Nidda, V. Tsurkan, A. Loidl. Nature 434, 364 (2005).
[13] A.I. Smolentsev, A.B. Meshalkin, N.V. Podberezskaya,

A.B. Kaplun. J. Struct. Chem. 49, 953 (2008).
[14] Run Liu, Linlin Pan, Silu Peng, Lili Qin, Jian Bi, Jiangtao Wu,

Hua Wu, Zuo-Guang Ye. J. Mater. Chem. C. 7, 1999 (2019).
[15] W. Branford, M.A. Green, D.A. Neumann. Chem. Mater. 14,

1649 (2002).
[16] R. Santhanam, B. Rambabu. Journal of Power Sources 195,

5442 (2010).
[17] I. Ganesh. International Materials Reviews 58, 63 (2013).
[18] G. Liu, L. Wen, Y. Liu. Journal of Solid State Electrochemistry

14, 2191 (2010).
[19] J. Wang, W. Lin, B. Wu, J. Zhao. Electrochimica Acta. 145,

245 (2014).
[20] N. Amdouni, K. Zaghib, F. Gendron. Journal of Magnetism

and Magnetic Materials. 309, 1, 100 (2007).
[21] R. Svetogorov, P. Dorovatovskii, V. Lazarenko. Cryst. Res.

Technol, 55, 5, 1900184 (2020).
[22] Р.Д. Светогоров

”
Dionis — Diffraction Open Integration

Software“. Cвидетельство о государственной регистрации

программы для ЭВМ № 2018660965 (2018).
[23] Powder Diffraction File. Data Card. Inorganic Section. Set 1,

card 1239. JCPDS. Swarthmore, Pennsylvania, USA (1948).
[24] Powder Diffraction File. Data Card. Inorganic Section. Set 9,

card 109. JCPDS. Swarthmore, Pennsylvania, USA (1948).
[25] Г.Б. Бокий. Введение в кристаллохимию. Издательство

Московского университета. М. (1954). 120 с.

[26] T. Ohzuku, K. Ariyoshi, S. Takeda, Y. Sakai. Electrochim.

Acta. 46, 2327 (2001).
[27] C. Liu, J. Nan, X. Zuo, X. Xiao, D. Shu. International Journal

of Electrochemical Science. 7, 8, 7152 (2012).
[28] Д.В. Волков, А.В. Назаренко, Л.А. Шилкина, И.А. Вербен-

ко. Известия РАН. Серия физическая, 87, 9, 1248 (2023).
[29] T. Li, K. Chang, A.M. Hashem, A.E. Abdel-Ghany, R.S. El-

Tawil, H. Wang, H. El-Mounayri, A. Tovar, L. Zhu,

C.M. Julien. Electrochem. 2, 95 (2021).

Редактор Т.Н. Василевская

Физика твердого тела, 2025, том 67, вып. 10


