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Теоретически исследован вклад кулоновского межэлектронного взаимодействия в проводимость двумерной

системы электронов с двумя различными эффективными массами. Показано, что в отличие от процессов

рассеяния на примесях, в которых различие эффективных масс проявляется слабо, поправка к проводимости

со стороны электрон-электронного рассеяния оказывается крайне чувствительной к параметрам нанострук-

туры. При значительном различии эффективных масс электронов низкотемпературная асимптотика вклада

электрон-электронного взаимодействия в проводимость имеет вид ∝ T 2 lnT , при этом знак данного вклада

определяется положением уровня Ферми и характеристиками беспорядка в системе.
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1. Введение

В физике полупроводников и твердотельных нано-

структур распространены системы, в которых проводи-

мость обеспечивается несколькими типами носителей

заряда. Включение дополнительных каналов рассеяния

между частицами разного типа кардинально меняет

характер экспериментального проявления внутренних

взаимодействий в системе. Например, в структурах

с параболическим электронным спектром кулоновское

взаимодействие между электронами не дает вклада в

проводимость по причине сохранения полного импульса

электронного газа и, как следствие, его дрейфовой

скорости. Однако в многозонных структурах инвари-

антность системы относительно преобразований Гали-

лея оказывается нарушенной, вследствие чего роль

электрон-электронного взаимодействия в отклике систе-

мы на внешние возмущения становится существенной.

Различные аспекты транспортных явлений в системах,

содержащих носители электрического заряда разных

типов, изучаются в течение уже многих лет. В частности,

ряд работ посвящен исследованию роли электронно-

дырочного рассеяния в полуметаллах [1–6], а в ра-

боте [7] теоретически и экспериментально анализиро-

валось рассеяние дырок спин-расщепленных подзон в

гетероструктурах на основе GaAs. Различие эффектив-

ных масс электронов особенно ярко начинает прояв-

лять себя под воздействием высокочастотного электро-

магнитного поля большой интенсивности. В условиях

засветки циркулярно поляризованным полем электроны

с разными эффективными массами образуют связанные

состояния [8]. Как следствие, в системе формируется

экзотическая смесь газов, подчиняющихся статистике

Бозе-Эйнштейна и Ферми-Дирака, с уникальными свой-

ствами [9].

Галилеевская инвариантность оказывается нарушен-

ной в любой системе, в которой связь кинетической

энергии частиц с импульсом не является квадратичной,

что часто характерно для квазичастиц в кристалличе-

ских структурах. Так, в работах [10,11] изучено вли-

яние на проводимость специфической геометрии по-

верхностей Ферми, а недавно было исследовано вза-

имодействие частиц в системах с дираковским типом

энергетического спектра электронов [12,13]. Кроме того,
существует условие, при котором электрон-электронное

взаимодействие дает вклад в проводимость даже в одно-

компонентных электронных системах с параболическим

спектром, а именно, зависимость времени релаксации

электронов на дефектах кристаллической решетки и

примесных центрах от импульса (или энергии) [14].
Как правило, при описании двухкомпонентных систем

ограничиваются использованием постоянных времен ре-

лаксации электронов на примесном беспорядке, одна-

ко, предпринимаются и более точные подходы, вклю-

чающие в рассмотрение экранированные кулоновские

примеси [15]. Встает интересный вопрос, поиску от-

вета на который и посвящена данная работа: какими

свойствами обладает система, удовлетворяющая двум

условиям ненулевого вклада межэлектронного рассея-

ния в проводимость: наличие двух типов электронов с
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параболическим энергетическим спектром и зависимое

от энергии время их релаксации. При этом, чтобы

получить максимально возможный эффект от сочетания

этих условий, мы будем полагать экранировку потен-

циала кулоновских примесей и электрон-электронного

взаимодействия полностью подавленной. Обсуждение

следствий учета экранировки приведено в конце статьи.

2. Модель

Рассмотрим двумерный вырожденный газ электронов

с разными эффективными массами и параболическим

энергетическим спектром (рис. 1):

εi
p =

p2

2mi

(1)

где mi — эффективная масса i-го электрона, а ин-

декс i = (a, b) различает электроны с разными эффек-

тивными массами. Для определенности будем считать

ma < mb . В природе такой тип энергетического спектра

реализуется, например, в валентных зонах графана [16]
и арсенида галлия [15].

В данной работе нас интересует статическая проводи-

мость σ двухкомпонентной системы, определяемая как

коэффициент пропорциональности между плотностью

электрического тока и напряженностью электрического

поля в законе Ома:

j = σE, (2)

где j = ja + jb — плотность суммарного электрического

тока, E — напряженность тянущего электрического

поля. С микроскопической точки зрения, плотность элек-

трического тока в двумерной системе по определению

записывается в виде:

j = 2e

∫

dp

(2π)2

∑

i

vi
pni

p, (3)

где ni
p — неравновесная функция распределения элек-

тронов, vi
p — скорость электронов, e — заряд электрона

(здесь и далее по тексту статьи мы полагаем ~ = kB = 1,

~ и kB — постоянные Планка и Больцмана соответствен-

но). Из сравнения выражений (2) и (3) будет получено

искомое выражение для проводимости.

Как видно из выражения (3), задача сводится к на-

хождению неравновесных функций распределения ni
p в

каждой зоне. В рамках квазиклассического приближения

данные функции удовлетворяют системе кинетических

уравнений Больцмана:

eE
∂ni

p

∂p
=
∑

j=(a,b)

(

Iδi j{ni
p} + Ic

i j{ni
p} + Qi j{ni

p}
)

, (4)

где символами Iδi j и Ic
i j обозначены интегралы столкно-

вений электронов с короткодействующими дефектами и

p

µ

ε

ma

mb

T

Рис. 1. Энергетический спектр двумерной системы, содер-

жащей электроны с различающимися массами ma (штрих-
пунктирная кривая) и mb (сплошная кривая). Горизонтальной
пунктирной линией обозначен уровень Ферми, µ.

кулоновскими примесями, соответственно, а Qi j харак-

теризуют рассеяние электронов друг на друге. Матрич-

ная структура интегралов столкновений связана с необ-

ходимостью учета как внутризонного, так и межзонного

рассеяния электронов. Поиск решения системы урав-

нений (4) будем проводить методом последовательных

приближений. В рамках этого подхода предполагается,

что неравновесные поправки слабо меняют фермиевское

распределение электронов по состояниям в обеих зонах:

ni
p ≈ nF(ξp) + f i

p + δ f i
p, (5)

δ f i
p ≪ f i

p ≪ nF(ξp), (6)

где nF(ξp) = (eξp/T + 1)−1 — распределение Ферми-

Дирака, ξp = εp − µ — энергия электрона, отсчитыва-

емая от уровня Ферми µ. В настоящей работе мы

ограничимся диапазоном достаточно низких температур,

в котором процессы рассеяния электронов на примесях

и дефектах кристаллической решетки вносят основной

вклад в удельное сопротивление системы. Соответствен-

но, в выражении (5) слагаемое f i
p обусловлено примес-

ным рассеянием электронов, а δ f i
p ≪ f i

p — электрон-

электронным взаимодействием. Согласно предположе-

нию (6), между интегралами столкновений справедливы

отношения I{ f } ≫ Q{ f } и I{δ f } ∼ Q{ f }, которые поз-

воляют решать систему уравнений (4) в два этапа. На

первом этапе из уравнений

eEp

mi

∂nF(ξ
i
p)

∂ξ i
p

=
∑

j=(a,b)

(

Iδi j{ f p} + Ic
i j{ f p}

)

, (7)

определяются функции f i
p. Затем уже известные нерав-

новесные поправки f i
p подставляются в систему уравне-

ний:
∑

j=(a,b)

(

Iδi j{δ f p} + Ic
i j{δ f p} + Qi j{ f p}

)

= 0, (8)

решением которой выступают функции δ f i
p.
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2.1. Примесный вклад в проводимость

В уравнениях (7) интегралы столкновений электронов

с примесями имеют стандартный вид:

Iδ,ci j { f p} =
Nδ,c

2π

∫

dq|V δ,c
q |2δ(εi

p − ε
j
q+p)( f

j
q+p − f i

p),

(9)
где Nδ и Nc — концентрации короткодействующих

дефектов и кулоновских примесей, V δ
q = V δ = const и

V c
q = 2πe2/ǫq — фурье-образы соответствующих потен-

циалов, ǫ — диэлектрическая проницаемость окружаю-

щей среды.

Будем искать решение системы уравнений (7) в виде:

f i
p = −eEp

mi

∂nF(ξ
i
p)

∂ξ i
p

φi (p), (10)

где неизвестные функции φi(p) полагаются не зависящи-

ми от ориентации вектора импульса p. Подставляя (10)
в (9) и производя в (9) интегрирование по импульсу q,

получаем

∑

j

Iδi j{ f p} =
eEp

mi

∂nF

∂ξ i
p

φi(p)

τ
, (11)

Ic
ii{ f p} =

eEp

mi

∂nF

∂ξ i
p

φi(p)

τεi
p

, (12)

Ic
ab{ f p} =

eEp

ma

∂nF

∂ξa
p

2m̃

τεa
p

[

φa(p)

ma

− φb
(√

mb/ma p
)

mb

]

,

(13)

Ic
ba{ f p} =

eEp

mb

∂nF

∂ξb
p

2m̃

mbτεa
p

[

φb(p) − φa
(

√

ma/mb p
)]

,

(14)
где 1/m̃ = 1/ma − 1/mb, 1/τ = NδV

2
δ (ma + mb) — время

релаксации электронов на короткодействующих дефек-

тах, 1/τεa
p

= (πe2/ǫ)2Nc/ε
a
p — время релаксации элек-

тронов на кулоновских примесях. Используя далее в

уравнениях (7) явные выражения для примесных инте-

гралов столкновений (11)−(14), приходим к алгебраиче-

ской системе уравнений на функции φ:

M̂

(

φa(p)
φb (p′)

)

=

(

1

1

)

, (15)

M̂ =











1

τ
+

1

τεa
p

3mb − ma

mb − ma

− 1

τεa
p

2ma

mb − ma

− 1

τεa
p

2ma

mb − ma

1

τ
+

1

τεa
p

mb + ma

mb − ma











, (16)

где p′ =
√

mb/ma p. В условиях низкой температуры,

T ≪ µ, электронный газ является вырожденным, что

позволяет, пренебрегая членами ∼ T/µ ≪ 1, считать

время релаксации на кулоновских примесях функцией

y
0 0.2 0.4 0.6 0.8

0.2

0.6

0.4

0.8

0

σ
/σ
0

1.0

0.05

0.95

x = 

Рис. 2. Зависимость примесного вклада в проводимость двух-

компонентной системы (18) от энергии Ферми, y = µ/µ0, при

двух различных отношениях эффективных масс электронов,

x = ma/mb .

энергии Ферми, τεa
p
≈ τµ . Введем для краткости без-

размерные величины: φ̃ = φ/τ , x = ma/mb и y = τµ/τ .

Тогда решение системы уравнений (15) принимает вид:

φ̃a,b(x , y)=
y(1− x)[(y ∓ 1)(1− x) + 2(1 + x)]

[(y +1)(1−x)+2][(y−1)(1−x)+2]−4x2
,

(17)
где знаки

”
−“ и

”
+“ в числителе относятся к зонам

a и b, соответственно. Собирая вместе выражения (3),
(10) и (17), запишем ответ для примесного вклада в

проводимость двухкомпонентной системы:

σ = σ0
µ

µ0

[

φ̃a

(

ma

mb

,
µ

µ0

)

+ φ̃b

(

ma

mb

,
µ

µ0

)]

, (18)

где σ0 = e2τ µ0/π, а µ0 — это значение энергии Ферми,

при котором времена рассеяния электронов на двух

типах примесных центров, τ и τµ , совпадают, то есть

µ = yµ0.

В выражении (18) нас прежде всего интересует за-

висимость проводимости от энергии Ферми, так как

именно этот параметр можно контролируемо изменять

в эксперименте (рис. 2). Из анализа выражения (18) в

предельных случаях следует, что с точки зрения отклика

на электрическое поле, двухкомпонентный двумерный

электронный газ практически не отличается от систем с

двумерным газом электронов одной массы. Действитель-

но, проводимости как одно-, так и двухкомпонентного

электронных газов (18) ведут себя похожим образом

в зависимости от положения уровня Ферми: в области

µ ≪ µ0 основную роль играют кулоновские примеси и

σ ∝ µ2; в обратном предельном случае, µ ≫ µ0, доми-

нирует короткодействующий беспорядок и σ ∝ µ. Как

видно из рис. 2, отношение эффективных масс электро-

нов в двух зонах оказывает слабое влияние на величину

Физика твердого тела, 2025, том 67, вып. 10
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примесного вклада в проводимость системы. При фик-

сированном значении ma + mb максимальное различие

достигается при доминировании процессов рассеяния на

кулоновских центрах, 1/τµ ≫ 1/τ , и не превышает од-

ной трети: σ (ma ≪ mb)/σ (ma = mb) < 4/3. В обратном

предельном случае, 1/τµ ≪ 1/τ , различие эффективных

масс электронов вовсе не сказывается на величине

проводимости: σ (ma ≪ mb) = σ (ma = mb). Подчеркнем,

однако, что, опуская индекс зоны у матричных эле-

ментов V δ,c
q , мы сводим все различия между двумя

типами электронов лишь к огибающим волновым функ-

циям, описывающим свободное движение в плоскости.

В общем случае, конечно, прочие компоненты волно-

вых функций электронов не обязаны совпадать, а учет

этих дополнительных различий привел бы к разным

скоростям релаксации двух типов электронов даже на

короткодействующем беспорядке. Так, например, в ста-

тье [17] изучена система, включающая две отстоящие

друг от друга параболические подзоны для электронов с

одинаковой эффективной массой. В данной работе было

показано, что электрон-электронное рассеяние косвенно

проявляет себя путем перераспределения электронов

между зонами, но лишь в том случае, когда темпы

релаксации электронов в каждой подзоне различны. В

настоящей же работе нас в первую очередь интересует

роль различия эффективных масс электронов, а введение

дополнительных времен релаксации на примесях зна-

чительно усложнило бы изучение свойств релаксации

электронов, обусловленной процессами их столкнове-

ний друг с другом.

2.2. Вклад межэлектронного рассеяния

в проводимость

Приступим к вычислению вклада электрон-электрон-

ного взаимодействия в проводимость двухкомпонентной

системы. Используя выражения для примесных инте-

гралов столкновений (11)−(14) и краткие обозначения

x = ma/mb и y = τµ/τ , запишем формальное решение

системы уравнений (8):

(

δ f a
p

δ f b
p′

)

= τ y(1 − x)M̆−1
∑

j

(

Qa j{ f p}
Qb j{ f p′}

)

(19)

M̆ =

(

y(1 − x) + 3− x −2x1/2

−2x3/2 y(1 − x) + 1 + x

)

(20)

В правой части выражения (19) интеграл межэлектрон-

ных столкновений, линеаризованный по неравновесной

добавке к функции распределения электронов, имеет

вид:

Qi j{ f p} = − 2

(2π)3T

∫

dkdq|V c
k |2

∞
∫

−∞

dω δ(εi
p−εi

p−k−ω)

× δ(ε j
q − ε

j

q+k + ω)nF(ξ
i
p)[1− nF(ξ

i
p−k)]nF(ξ

j
q )

× [1− nF(ξ
j

q+k)]eE

{

p

mi

φi(p) +
q

m j

φ j(q)

− p− k

mi

φi(|p− k|) − q + k

m j

φ j(|q + k|)
}

.

(21)
В качестве матричного элемента взаимодействия элек-

тронов друг с другом используется фурье-образ потенци-

альной энергии кулоновского отталкивания электронов,

V c
k = 2πe2/ǫk . Воспользовавшись фильтрующим свой-

ством дельта-функций, произведем интегрирование по

угловым переменным ϕk и ϕq:

Qaa{ f p} = −eE p cosϕ

π3Tma

∞
∫

0

kdkqdq|V c
k |2

×
∞
∫

−∞

dω nF(ξ
a
p )[1− nF(ξ

a
p − ω)]nF(ξ

a
q )[1− nF(ξ

a
q + ω)]

×
{

φa(ε
a
p )−φa(ε

a
p−ω)+

εa,2
k −ω2

4εa
p ε

a
k

[φa(ε
a
q )−φa(ε

a
q + ω)]

+
εa
k + ω

2εa
p

[

φa(ε
a
p − ω) − φa(ε

a
q + ω)

]

}

×
2[4εa

pε
a
k − (εa

k + ω)2]2[4εa
qε

a
k − (εa

k − ω)2]
√

4εa
p ε

a
k − (εa

k + ω)2
√

4εa
q ε

a
k − (εa

k − ω)2
, (22)

Qab{ f p} = −eE p cosϕ

π3T

∞
∫

0

kdkqdq|V c
k |2

×
∞
∫

−∞

dωnF(ξ
a
p )[1−nF(ξ

a
p −ω)]nF(ξ

b
q )[1−nF(ξ

b
q +ω)]

×
{

φa(ε
a
p ) − φa(ε

a
p − ω)

ma

+
(εa

k + ω)(εb
k − ω)

4mbεa
pε

b
k

× [φb(ε
b
q) − φb(ε

b
q + ω)]

+
εa
k + ω

2εa
p

[

φa(ε
a
p − ω)

ma

−
φb(ε

b
q + ω)

mb

]}

×
2[4εa

pε
a
k − (εa

k + ω)2]2[4εb
qε

b
k − (εb

k − ω)2]
√

4εa
p ε

a
k − (εa

k + ω)2
√

4εb
qε

b
k − (εb

k − ω)2
,

(23)
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где угол ϕ задает направление вектора p, вектор напря-

женности электрического поля полагается направлен-

ным по оси x , E = (E, 0, 0). Выражения для интегралов

столкновений Qba и Qbb имеют вид аналогичный форму-

лам (22) и (23).

Точное аналитическое вычисление оставшихся инте-

гралов не представляется возможным, поэтому необхо-

димо сделать ряд упрощений в подынтегральных выра-

жениях. Прежде всего отметим, что экспоненциальное

поведение фермиевских функций распределения обеспе-

чивает сходимость интеграла по переменной интегри-

рования ω на верхнем и нижнем пределах. При этом

основная часть этого интеграла набирается в интервале

значений порядка температуры, ω ∼ T ≪ µ. Это позво-

ляет нам выполнить разложение функций, заключенных

в фигурные скобки, по малому отношению ω/µ ≪ 1.

Чтобы избежать превышения точности и учесть все

вклады одного порядка величины, разложение функций

φ необходимо произвести до третьего члена:

φ(µ ± ω) ≈ φ(µ) ± ωφ′(µ) +
ω2

2
φ′′(µ), (24)

где мы полагаем начальные энергии электронов в под-

зонах равными энергии Ферми, εa
p , ε

b
q ≈ µ. Радикалы

в знаменателях выражений (22) и (23) также следует

упростить. Принимая во внимание, что нули знамена-

теля, как функции εa
k , в обоих интегралах разделены

промежутком порядка 4µ, получаем для межподзонного

рассеяния электронов (23):

1
√

(4µεa
k − (εa

k + ω)2)(4µεb
k − (εb

k − ω)2)

≈ 1

4µ
√

x

{

1
√

x [4µ − εa
k ][4µ/x − εa

k ]

+
1

√

[εa
k − ω2/(4µ)][εa

k − ω2/(4µx)]

}

. (25)

Для внутриподзонного интеграла столкновений Qaa по-

добные действия дают

1
√

(4µεa
k − (εa

k + ω)2)(4µεa
k − (εa

k − ω)2)

≈ 1

4µ

{

1
√

[4µa− − εa
k ][4µa+ − εa

k ]

+
1

√

[εa
k − ω2a+/(4µ)][εa

k − ω2a−/(4µ)]

}

, (26)

где a± = 1± ω/(2µ).

Принятых допущений достаточно для аналитического

взятия интегралов по переменным k и q. Результат ин-

тегрирования, однако, сводится к довольно громоздким

выражениям, поэтому представим ответ в следующем

виде:

Qi j(p) =
eE p cosϕ

2π3T

Ki j

Ncµ

×
∞
∫

−∞

dωnF(ξ
i
p)[1− nF(ξ

i
p − ω)]ωeω/T nB(ω), (27)

где nB(ω) = (eω/T − 1)−1 — распределение Бозе-Эйн-

штейна, а функции Ki j приведены в приложении (51),
(52), (53). Отметим, что в выражении (27) мы для

краткости опустили вклады с четными степенями ω

перед экспонентой, так как при последующем вычис-

лении проводимости системы данные вклады окажутся

нечетными функциями энергии ω и, таким образом,

занулятся при интегрировании.

После подстановки неравновесных добавок (19) и

интегралов межэлектронных столкновений (27) в опре-

деление плотности тока (3) и последующего интегриро-

вания по импульсу p приходим к выражению для поправ-

ки к проводимости системы, обусловленной электрон-

электронного взаимодействием:

δσ =
σ0πe4

3ǫ2NδV
2
δ

(

T

µ0

)2
ma

ma + mb

F

(

ma

mb

,
µ

µ0
,

T

µ0

)

, (28)

где безразмерная функция F приведена в явном виде в

Приложении (см. выражение (54)). Несмотря на то, что

в принятых приближениях интегрирование удалось про-

вести до конца, итоговые выражения, (28) и (54), весьма
сложны для восприятия, и мы приведем качественное

описание полученных результатов.

3. Обсуждение результатов
и заключение

Итак, в отличие от примесного вклада в проводи-

мость, поправка к проводимости со стороны электрон-

электронного взаимодействия оказалась крайне чувстви-

тельной к отношению эффективных масс электронов

в двух зонах (рис. 3). Помимо немонотонной зависи-

мости от химического потенциала, данный вклад де-

монстрирует возможность принимать как положитель-

ные, так и отрицательные значения. Чтобы сформу-

лировать физическую интерпретацию такого поведения

проводимости (28), вернемся к определению интеграла

столкновений (21). В данном выражении слагаемые в

фигурной скобке имеют размерность длины, в частности,

lip = pφi/mi — длина свободного пробега i-го электрона

с импульсом p, а всю скобку целиком

1lip = vi
pφi(p) + v j

qφ j(q) − vi
p−kφi(|p− k|)

− v
j

q+kφ j(|q + k|) (29)

можно интерпретировать, как вектор изменения дли-

ны свободного пробега за счет электрон-электронных
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Рис. 3. Зависимость вклада межэлектронных столкновений

в проводимость двухкомпонентной системы (28) от энер-

гии Ферми, y = µ/µ0, при температуре T/µ0 = 1/100 и раз-

личных значениях отношения эффективных масс электронов

x = ma/mb .

столкновений. Вектор 1lip может быть направлен как

по, так и против вектора импульса p, и именно эта

взаимная ориентация векторов p и 1lip определяет знак

соответствующей неравновесной поправки к функции

распределения.

Рассмотрим предельные случаи. Пусть в системе

доминируют кулоновские примеси (µ ≪ µ0) и имеется

один тип электронов, тогда φ(µ) = τµ ∝ µ и в фигурной

скобке выражения (22) каждая разность функций φ даст

множитель ∝ ω. Как показывает дальнейший анализ,

при вычислении проводимости из всех слагаемых в

фигурной скобке мы должны оставить только четные

по переменной ω. Этому условию удовлетворяет лишь

последнее слагаемое, которое, однако, меняет общий

знак интеграла столкновений (22) с (−) на (+), и

соответствующая неравновесная добавка к функции рас-

пределения δ f p увеличивает проводимость системы.

В рассмотренном случае положительную поправку к

проводимости нужно понимать как следствие общего

увеличения скорости движения электронов при неупру-

гих столкновениях друг с другом. Это происходит в

силу того, что релаксация электронов на кулоновских

примесях в состояниях с большей кинетической энер-

гией протекает дольше. При наличии в системе двух

типов электронов данные рассуждения не теряют силу,

так как в отсутствие короткодействующих дефектов за-

висимость функций φi(µ) ∝ τµ ∝ µ от энергии остается

линейной.

В обратной предельной ситуации, при наличии

в системе только короткодействующего беспорядка

(µ ≫ µ0), время релаксации электронов не зависит от

их энергии, φi(µ) ∝ τ = const, и интеграл внутризонных

электрон-электронных столкновений (22) тождественно

обращается в ноль. На языке классической физики,

рассеяние электронов друг на друге, будучи проявле-

нием внутренних сил, не изменяет полного импульса

электронного газа, что для систем с параболической

энергетической дисперсией электронов означает сохра-

нение дрейфовой скорости. Таким образом проводимость

оказывается не подверженной влиянию межэлектрон-

ного взаимодействия. Данные рассуждения, однако, не

применимы для межзонного рассеяния электронов. Как

видно из (29), пара электронов из разных зон после

обмена импульсом k получают различное приращение

скорости, и, следовательно, △lip ∝ vi
k − v

j

k 6= 0 даже при

φi = φ j = const. Расчет показал, что данный тип ре-

лаксации оказывает тормозящее воздействие на смесь

двух электронных газов и соответствующая поправка

к проводимости является отрицательной. Необходимым

условием для реализации межзонного механизма ре-

лаксации выступает различие эффективных масс элек-

тронов, поэтому в отсутствие кулоновских примесей

(y ≫ 1) и в пределе ma → mb данный вклад исчезает,

что подтверждается соответствующим предельным вы-

ражением для функции (B1):

F ∝ ln (1− x)
(1− x)2

x3/2
−−−→
x→1

0, (29)

где, напоминаем, x = ma/mb .

Описанные выше случаи качественно объясняют ход

кривых на рис. 3. Если разность эффективных масс элек-

тронов невелика (рис. 3, зеленая кривая, короткие штри-

хи), то отрицательная поправка к проводимости от меж-

зонного рассеяния подавлена и электрон-электронное

взаимодействие в целом увеличивает проводимость. При

этом с ростом y , то есть с переходом к доминирова-

нию короткодействующего беспорядка, поправка плавно

стремится к нулю. Отметим, что стремление δσ к нулю

в пределе y = τµ/τ → 0 объясняется отсутствием носи-

телей заряда при µ = 0. Стоит, однако, иметь в виду, что

область применимости развитой теории ограничивает

допустимые значения y снизу: y ≫ T/µ0.

Большое различие в эффективных массах электронов

усиливает роль межзонного рассеяния электронов. Так

как в рассматриваемых условиях внутри- и межзонные

столкновения электронов работают противоположно, су-

ществует такое значение энергии Ферми µc , при котором

оба механизма полностью компенсируют друг друга.

Например, как следует из рис. 3 (черная сплошная

кривая), при десятикратном отличии масс электронов,

ma/mb = 1/10, компенсация происходит при приблизи-

тельно трехкратном расхождении во временах релакса-

ции на короткодействующем беспорядке и кулоновских

примесях, τµ ≈ 3τ .

Перейдем далее к описанию температурной зави-

симости эффекта. Наибольший интерес представля-

ют системы с существенным различием эффектив-

ных масс электронов, поэтому в качестве примера

примем ma/mb = 1/10 (рис. 4). Как видно на гра-

фике, изменение температуры сказывается лишь на
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Рис. 4. Зависимость вклада межэлектронных столкновений

в проводимость двухкомпонентной системы (28) от энергии

Ферми, y = µ/µ0, при отношении эффективных масс электро-

нов x = ma/mb = 1/10 и различных температурах.
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Рис. 5. Зависимость вклада межэлектронных столкнове-

ний в проводимость двухкомпонентной системы (28) от

температуры при отношении эффективных масс электронов

x = ma/mb = 1/10 и различных положениях уровня Ферми,

y = µ/µ0 .

вертикальном масштабе кривых, при этом характер-

ная точка зануления вклада межэлектронных столк-

новений y c остается неподвижной на оси y . Это

связано с тем, что, в пределе x ≪ 1 в уравнении

F(x , y c , T/µ0) = C1(x , y c) + C2(x , y c) lnT = 0, опреде-

ляющем величину µc , доминирует слагаемое с ло-

гарифмом температуры. Таким образом, асимптотика

поправки к проводимости δσ ∝ T 2 lnT и все кривые

на рис. 4 пересекают ось абсцисс приблизительно в

одной точке y c .

Экспериментальное обнаружение вклада электрон-

электронного взаимодействия в проводимость можно

осуществить путем измерения температурной зависимо-

сти эффекта. Рис. 5 демонстрирует, что при различных

положениях уровня Ферми, нагрев системы может как

повышать, так и уменьшать проводимость двухкомпо-

нентного электронного газа. Напомним, что разрабо-

танная теория справедлива только в области низких

температур, поэтому вне зависимости от положения

уровня Ферми, начиная с некоторого значения тем-

пературы, удельное сопротивление электронного газа

будет расти. Подчеркнем, что описанные нетривиальные

свойства смеси двух электронных газов не имеют под

собой каких-либо экзотических оснований. В частности,

изученная система не полагалась сильно коррелирован-

ной или обладающей особенностями в энергетическом

спектре.

В заключение обсудим роль экранировки кулонов-

ского потенциала электронным газом в рассмотрен-

ной системе. Как было упомянуто в начале статьи,

в разработанной теории используется голый куло-

новский потенциал электрон-электронного взаимодей-

ствия, чтобы непротиворечивым образом учесть на-

личие в системе кулоновских примесных центров и

таким образом сделать время релаксации электронов

зависимым от их энергии. Экранировка кулоновского

потенциала электронным газом будет, с одной сто-

роны, эффективно ослаблять зависимость примесного

времени релаксации электронов от энергии за счет

уменьшения эффективного радиуса действия кулонов-

ских центров (что эквивалентно смещению в сторо-

ну больших y на графиках рис. 3 и рис. 4), а с

другой, изменит температурную зависимость эффекта.

Рассмотрим в качестве примера предельный случай

сильной экранировки, когда все дефекты кристалличе-

ской решетки и примесные центры являются коротко-

действующими. В этой ситуации потенциал электрон-

электронного взаимодействия в рамках модели случай-

ных фаз (RPA) в двухкомпонентной системе описы-

вается диэлектрической проницаемостью следующего

вида:

ǫee
k = (1−V aa

k 5a
k)
(

1−V bb
k 5b

k

)

− (V ab
k )25a

k5
b
k, (31)

где функции 5a,b
k характеризуют поляризуемости элек-

тронных газов в соответствующих энергетических зо-

нах и при квазибаллистическом режиме транспорта

электронов имеют простой вид: 5a,b
k ≈ −ma,b/π. Элек-

троны обоих типов имеют одинаковый электрический

заряд и лежат в одном слое, поэтому голые куло-

новские потенциалы равны, V aa
k = V bb

k = V ab
k = 2πe2/ǫk ,

и в длинноволновом пределе взаимодействие элек-

тронов друг с другом приобретает контактный ха-

рактер:
V c
k

ǫee
k

→ π

ma + mb

, (32)

Используя в интегралах межзонных электрон-элект-

ронных столкновений решение уравнений (7), включаю-
щих только точечные примесные центры, φa = φb = τi , и
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экранированный кулоновский потенциал (32) приходим

к выражению:

δσ = − σD

πτi T
2

3µ

(

1− x

1 + x

)2

×
[

1− x√
x

+
1 + x

2x
ln

(

1 +
√

x

1−√
x

)]

, (33)

где σD = e2τiµ/π — друдевская проводимость. Поправка

к проводимости (33), как и ожидалось, стремится к

нулю при восстановлении галилеевской инвариантности

системы, то есть при x → 1. Кроме того, выражение (33)
строго отрицательно, что означает исключительно рост

удельного сопротивления системы с увеличением тем-

пературы в условиях сильной экранировки кулоновского

взаимодействия. Формальная корневая расходимость по-

правки (33) в пределе ma ≪ mb не имеет какого-либо

Приложение I. Функции Ki j

Kii = 4 ln

(

2µ

T

)

∂φ̃i

∂y
+ 2(1− ln 2)y

∂2φ̃i

∂y2
, (П1)

Kab =
1

x

{

arcth
√

x

[

4
∂

∂y

(

y
∂φ̃a

∂y

)

+ 2(3x − 1)
∂φ̃b

∂y
− φ̃a − x φ̃b

y
− 2y(1 + x)

∂2φ̃b

∂y2

]

− φ̃a − x φ̃b

2y
√

x
ln

[

(

4µ

T

)2
4x

1− x

]

+ 2
√

xy
∂2φ̃b

∂y2

}

, (П2)

Kba = x

{

arcth
√

x

[

4
∂

∂y

(

y
∂φ̃b

∂y

)

+ 2

(

3

x
− 1

)

∂φ̃a

∂y
− φ̃b − φ̃a/x

y
− 2y

(

1 +
1

x

)

∂2φ̃b

∂y2

]

−
√

x
φ̃b − φ̃a/x

2y
ln

[

(

4µ

T

)2
4x

1− x

]

+
2y√

x

∂2φ̃a

∂y2

}

. (П3)

Приложение II. Функция F

F(x , y, T ) = 4 ln

(

2µ

T

)

(

φ̃a

∂φ̃a

∂y
+

1

x
φ̃b

∂φ̃b

∂y

)

+ 2(1 − ln 2)y

(

φ̃a

∂2φ̃a

∂y2
+

1

x
φ̃b

∂2φ̃b

∂y2

)

+
1

x
arcth

√
x

{

4φ̃a

∂

∂y

(

y
∂φ̃a

∂y

)

+ 4x φ̃b

∂

∂y

(

y
∂φ̃b

∂y

)

+ 2(3x − 1)φ̃a

∂φ̃b

∂y
+ 2(3− x)φ̃b

∂φ̃a

∂y

− (φ̃a − x φ̃b)(φ̃a − φ̃b)

y
− 2y(1 + x)

(

φ̃a∂
2φ̃b

∂y2
+

φ̃b∂
2φ̃a

∂y2

)}

− ln

[

(

4µ

T

)2
4x

1− x

]

(φ̃a − x φ̃b)
2

2yx3/2
+

2y√
x

(

φ̃a

∂2φ̃b

∂y2
+ φ̃b

∂2φ̃a

∂y2

)

(П4)

физического смысла и означает выход за пределы при-

менимости полученных выражений: ma/mb ≫ T/µ.
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