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Рассмотрена модельная задача, решения которой предполагают некоторые ограничения на возможные

граничные условия в методе плавных огибающих волновых функций. Результаты данной работы могут

быть важны для исследования структур с гетеропереходами II типа, которые в настоящее время широко

используются в полупроводниковой электронике. Согласно нашим модельным результатам, для получения

наименьших значений энергий уровней размерного квантования в таких структурах следует использовать

различные граничные условия для электронов и для дырок. Проведенные расчеты энергий уровней раз-

мерного квантования показывают значительное различие результатов при использовании разных граничных

условий. Это дает возможность для экспериментальной проверки результатов использования предложенной

модельной задачи.
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1. Введение

В соответствии с правилами квантовой механики на

резкой гетерогранице должны выполняться непрерыв-

ность полной волновой функции и ее производной.

При этом полная волновая функция представляет собой

произведение блоховской амплитуды на плавную оги-

бающую [1]. Так как в различных полупроводниковых

соединениях блоховские амплитуды оказываются раз-

ными, то никаких общих правил для сшивки плавных

огибающих при строгом решении задачи, вообще говоря,

получить нельзя.

Однако для описания спектра уровней размерного

квантования, вероятностей межзонных и внутризонных

переходов, подвижности носителей и многих других

свойств часто оказывается удобным использовать поня-

тие эффективной массы. При этом достаточно часто для

огибающей волновой функции 9(z ) на гетерогранице

(z = 0) используются граничные условия Бастарда [2–4].

91(z − 0) = 92(z + 0), (1)

1

m1

d91(z − 0)

dz
=

1

m2

d92(z + 0)

dz
. (2)

Эти уравнения (1) и (2) удовлетворяют условию со-

хранения потока частиц через гетерограницу. Несмотря

на многолетнее использование, область их применения

остается неопределенной.

2. Модель косвенного определения
граничных условий

При отсутствии строгого решения задачи о граничных

условиях для плавных огибающих волновых функций

определенный интерес представляют подходы, позволя-

ющие получить эти условия из модельных соображений.

В настоящей работе рассмотрена модельная задача, при

решении которой возникают ограничения на возможную

область применимости уравнений (1) и (2). Также наша

методика предсказывает необходимость использования

для ряда соединений иных граничных условий. Получен-

ные ниже результаты могут быть важны для описания

структур с гетеропереходами II типа, которые в настоя-

щее время широко используются в полупроводниковой

электронике, например, при создании квантовых ям и

сверхрешеток, в которых необходимо точное управление

уровнями электронов и дырок, понимания механизмов

переноса заряда в подобных гетеропереходах и достиже-

ния дальнейших успехов в области фотокатализа [5,6].
Также композиты с гетеропереходами II типа, такие как,

CdS/AgI, исследованные в работе [7], или CdS NP−ZnO

NF из работы [8], могут использоваться для восстанов-

ления окружающей среды благодаря простоте синтеза и

превосходной фотокаталитической эффективности.

Наш подход относится к гетероструктурам, в которых

возникают уровни размерного квантования. Возмож-

ность его применения к одиночным гетеропереходам

будет обсуждаться далее. Основное модельное предпо-

ложение, сделанное в работе, состоит в том, что гра-

ничные условия для плавных огибающих соответствуют
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реализации в квантовой яме электронных состояний с

наименьшими значениями энергии. Это условие не име-

ет физического обоснования, так как граничные условия

являются характеристикой гетерограницы и не должны

подчиняться никаким требованиям, налагаемым на энер-

гетический спектр. Тем не менее можно отметить, что

требование минимальной энергии широко используется

в различных разделах физики, а полученные ниже ре-

зультаты не противоречат имеющимся данным о свой-

ствах гетероструктур. Как будет видно из дальнейшего,

наличие второй гетерограницы никак не сказывается на

полученных качественных результатах. В этом смысле

можно считать, что они относятся именно к свойствам

отдельного гетероперехода. В то же время, предложен-

ный подход позволяет получить количественные соотно-

шения, которые предполагают возможность сравнения

экспериментальных результатов с результатами расче-

тов в рамках данной модельной задачи. Именно экспери-

мент может подтвердить или опровергнуть возможность

использования полученных ниже модельных результатов

для описания свойств реальных гетероструктур.

Будем считать, что граничные условия для плавных

огибающих в общем случае имеют следующий вид:

1

mα
b

9b =
1

mα
w

d9w

dz
, (3)

1

m1−α
b

d9b

dz
=

1

m1−α
w

d9w

dz
. (4)

Условия (3) и (4) выполняются на гетерогранице. 9i , mi ,

где i = b, w — волновая функция и эффективная масса

в области барьера и ямы, соответственно. Уравнения (2)
и (3) соответствуют непрерывности потока частиц через

гетероструктуру. Разумно предположить, что параметр α

меняется в пределах от нуля до единицы, то есть

0 ≤ α ≤ 1. (5)

За пределами этого интервала и волновая функция,

и ее производная испытывают
”
скачки“ в противо-

положных направлениях. В рамках рассматриваемой

модели это выглядит неестественно. Более подробное

обсуждение данного предположения приведено в разде-

ле
”
Обсуждение результатов“. Рассмотрим применение

граничных условий (3) и (4) для решения классической

задачи квантовой механики о симметричной квантовой

яме ширины a и высотой потенциального барьера u0 [9].
Для выбранных граничных условий получим следующие

уравнения для спектра

tg
ka

2
=

q

k

(

mw

mb

)1−2α

, (6)

tg
ka

2
= − k

q

(

mw

mb

)2α−1

, (7)

для симметричных и антисимметричных состояний, со-

ответственно. Здесь k=
√
2mwE/~a , q=

√

2mb(u0−E)/~a .

Из уравнений (6), (7) следует, что минимальное значе-

ние энергии уровня основного состояния получается при

α = 0, если mb > mw , и при α = 1 в противоположном

случае. Более того, для рассмотренной структуры те же

условия выполняются для получения наименьших зна-

чений энергии и для всех возбужденных уровней раз-

мерного квантования носителей в потенциальной яме.

Таким образом, при mb > mw наименьшим значениям

энергий соответствуют граничные условия Бастарда [3],
а при mw > mb — другой вид граничных условий —

непрерывность производной и скачок волновой функции

на границе:
1

mb

9b =
1

mw

9w , (8)

d9b

dz
=

d9w

dz
. (9)

Подобный вид граничных условий также неоднократно

обсуждался в литературе. Но критерий перехода от од-

ного вида граничных условий к другому для нахождения

наименьших значений энергии размерного квантования,

насколько нам известно, ранее получен не был. При

mw = mb вопрос о виде граничных условий для плавных

огибающих не возникает. При различных значениях эф-

фективных масс в рамках предложенной модели возмож-

ны лишь два варианта граничных условий — (1) и (2)
или (8) и (9). Никаких промежуточных значений для

параметра α в нашей модели не возникает.

Данный результат получен при решении задачи о кон-

кретной форме потенциальной энергии в области кван-

товой ямы. Однако мы считаем, что он имеет значитель-

но более широкую область применения. Действительно,

уравнение для спектра состояний, локализованных в

квантовой яме, в рамках нашей модели имеет вид:

d(ln9b)

dz
= γ1−2α d(ln9w)

dz
, (10)

где параметр γ = mw/mb . Оптимальное значение пара-

метра α определяется из условия, чтобы зависящий

от отношения масс коэффициент γ в правой части

уравнения (10) был максимальным. Именно это условие

соответствует минимальному значению энергии уров-

ня в квантовой яме. В этом можно убедиться в тех

случаях, когда зависимость волновой функции в яме

или барьере известна. Так, в случае прямоугольных

барьеров с потенциальной ямой произвольной формы,

левая часть уравнения (10) сводится просто к величине

q =
√

2mb(u0−E)/~. Таким образом, при любой задан-

ной величине волновой функции носителя в квантовой

яме минимальному значению энергии соответствует

именно максимальное значение коэффициента γ1−2α

в правой части уравнения (10). Аналогичный результат

получается также для ямы прямоугольной формы при

любой форме барьеров. В целом можно утверждать,

что выбор максимально возможного коэффициента в

правой части уравнения (10) эквивалентен эффективно-

му увеличению высоты барьеров. При этом значение
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Примеры гетеропереходов, в которых следует использовать

разные граничные условия

Гетеропереход c-зона v-зона

InP−GaAs (8), (9) (1), (2)

InP−AlAs (1), (2) (8), (9)

InP−GaSb (8), (9) (1), (2)

InAs−GaSb (1), (2) (8), (9)

энергии уровней размерного квантования оказывается

наименьшим.

В полупроводниках, как правило, наблюдается кор-

реляция между шириной запрещенной зоны и вели-

чиной эффективной массы носителей. В соединениях

с большей шириной запрещенной зоны эффективные

массы носителей оказываются больше. Это означает, что

в гетероструктурах с переходами I типа, как правило,

оказывается, что mb > mw , то есть коэффициент γ < 1,

что приводит к граничным условиям Бастарда [2].
Иначе обстоит дело в гетероструктурах с переходами

II типа [10]. Как правило, для них реализуется ситу-

ация, когда соотношение между массами электронов

и дырок в квантовой яме и в барьерах оказывается

различным. В рамках нашей модели это означает, что

для нахождения наименьших энергий уровней следует

использовать разные граничные условия для электронов

и для дырок. В таблице приведены некоторые структу-

ры с гетеропереходами II типа и отмечено, для каких

носителей следует использовать граничные условия (1)
и (2), а для каких применяются граничные условия,

соответствующие уравнениям (8) и (9), если квантовая

яма расположена в зоне проводимости (c) или в валент-

ной зоне (v). Анализ применимости граничных условий

проведен по данным из [11].
Использование различных граничных условий есте-

ственно приводит к значительным изменениям при

расчете энергии уровней размерного квантования. На

рис. 1 приведена зависимость положения уровня энергии

основного состояния электрона E от ширины квантовой

ямы a для структуры InP−GaSb.

Видно, что в достаточно узких квантовых ямах ши-

риной 20−100�A граничные условия для такой струк-

туры, полученные в нашей работе, дают выигрыш в

несколько десятков meV. Это означает, что детальные

экспериментальные исследования расположения энерге-

тических уровней в подобных структурах с гетеропе-

реходом II типа могут подтвердить или опровергнуть

применимость предложенной модели.

Если рассматривать идеальный одиночный гетеропе-

реход, то к нему наша модель напрямую неприменима.

Однако часто в гетероструктурах происходит перерас-

пределение электрических зарядов, появившихся благо-

даря наличию примесей. При этом потенциальная энер-

гия вблизи перехода искажается, что может привести
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Рис. 1. Зависимость положения уровня энергии E для элек-

трона в основном состоянии от ширины квантовой ямы a

при использовании разных граничных условий. Здесь сплошная

линия при γ−1 = mb/mw соответствует полученным в работе

граничным условиям (8) и (9), а пунктирная — γ = mw/mb —

соответствует условиям Бастарда (1) и (2).

к созданию условий, позволяющих использовать полу-

ченные выше результаты для реализации наименьших

значений уровней энергии.

Достаточно часто ход потенциальной энергии вблизи

границы можно аппроксимировать треугольной потен-

циальной ямой, высота потенциального барьера которой

определяется как

u = u0 при z < 0,

u = bz при z > 0, (11)

Величина u0 соответствует разрыву зон для данного

гетероперехода, а коэффициент b представляет собой

эффективное
”
электрическое поле“, возникающее вбли-

зи гетерограницы.

Уравнение (11) имеет известное решение — при z > 0

волновая функция выражается через функцию ЭйриФ.

Уравнение для определения уровней энергии можно

представить в безразмерном виде

√

1− γ−1k2
1 = βγ1−2α

8′
(

−(k2
1)/β

2
)

8
(

−(k2
1)/β

2
) , (12)

где безразмерный параметр β выражается через высоту

барьера u0 и эффективное
”
электрическое поле“ b сле-

дующим образом

β3 =
~√
2

mwb

(mbu0)3/2
. (13)

Величина k1 =
√
γE/u0. Также, как и в случае симмет-

ричной квантовой ямы, в уравнении (12) возникает та

же зависимость от параметра α. Поэтому и в данном

Физика твердого тела, 2025, том 67, вып. 10



1868 А.Ю. Маслов, О.В. Прошина

0.1 0.2 0.3 0.4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0
0

k
1

b

Рис. 2. Зависимость k1(β) для двух соотношений эффектив-

ных масс носителей в квантовой яме и барьерах. При этом

сплошная линия соответствует γ−1 = mb/mw и граничным

условиям (8) и (9), а пунктирная линия — γ = mw/mb —

условиям (1) и (2).

случае сохраняются все выводы из предыдущего раздела,

то есть при mw > mb, что соответствует γ > 1, наимень-

шее значение энергии в квантовой яме отвечает значе-

нию α = 0, а при mw < mb (γ < 1) — значению α = 1.

Отметим, что в данном случае уравнение (12) описы-

вает некоторую универсальную зависимость значений

энергии состояния от
”
электрического поля“ b. Для

каждого изучаемого гетероперехода в уравнение (12)
необходимо подставить конкретные значения зонных

параметров соответствующих материалов.

На рис. 2 представлено решение уравнения (12) для

α = 0 и α = 1. При этом видно, что имеется заметное

различие между значениями параметра k1 в этих слу-

чаях. Выражение (12) позволяет найти соответствующее

различие уровней энергии. Для определенности на рис. 2

использованы значения для u0, mw и mb для зоны

проводимости гетероперехода InP−GaSb [11].

Из рис. 2 видно, что за счет различия в величине

параметра k1 разница в положениях соответствующих

уровней энергии может достигать 10% от величины

разрыва зон u0. Это также дает возможность для экс-

периментальной проверки предложенной модели.

3. Обсуждение результатов

В работе рассмотрена модельная задача, решение

которой предполагает получение наименьших значений

уровней энергии носителей заряда, что приводит к

существенным ограничениям для определения возмож-

ных граничных условий на гетерогранице при описании

электронных состояний методом плавных огибающих

волновых функций. Область применимости полученных

результатов покажут дальнейшие экспериментальные

и теоретические исследования свойств гетероструктур.

В рамках рассмотренной задачи получено, что в за-

висимости от соотношения масс носителей возможны

два типа граничных условий для плавных огибающих

волновых функций. При выполнении ограничений на па-

раметр α из интервала (5) оба варианта граничных усло-

вий известны и неоднократно обсуждались в литературе.

Найден критерий перехода от одного типа граничных

условий к другому для получения наименьших значений

энергий, который, насколько нам известно, ранее не об-

суждался. Приведенные количественные расчеты пока-

зывают, что полученные в рамках предложенной модели

результаты могут быть проверены экспериментально.

Отметим, что использованные в работе ограничения

на параметр α из условия (5) никак не сказываются на

полученных качественных результатах. То есть, и при

α > 1, и при α < 0 сохраняются два различных типа

граничных условий и полученный выше критерий пере-

хода от одного типа условий к другому. Однако при этом

возникают достаточно экзотические граничные условия,

отличающиеся как от (1) и (2), так и от (9) и (10). Кроме
того, минимальной энергии уровней размерного кванто-

вания соответствуют максимально возможные значения

модуля параметра α. В пределе |α| → ∞ в квантовой яме

любой ширины возникает уровень с нулевой энергией.

Это противоречит известным свойствам гетероструктур.

Поэтому можно считать, что значения α вне пределов

интервала (5) противоречат современным эксперимен-

тальным данным, что может быть дополнительно прове-

рено при экспериментальном исследовании структур с

гетеропереходами II типа.

Отметим, что полученные качественные результаты

сохраняются при любой конечной ширине квантовой

ямы. При этом наличие второй гетерограницы необходи-

мо лишь для классификации электронных состояний, что

соответствует стандартному подходу к описанию элек-

тронных состояний в кристаллах конечных размеров [1].
Для структур с гетеропереходами II типа получено,

что для нахождения наименьших энергий размерного

квантования следует использовать различные граничные

условия для электронов и дырок. Это обстоятельство,

насколько нам известно, также ранее нигде не отмеча-

лось.

4. Заключение

В настоящей работе рассматривались невырожденные

энергетические зоны как для электронов, так и для ды-

рок. Для многих полупроводниковых соединений А2В6

и А3В5 валентная зона в объемных кристаллах является

вырожденной. Однако в квантовых ямах, выращенных

в направлении нормалей к высоко симметричным на-

правлениям, положения уровней энергии легких и тяже-

лых дырок можно рассматривать независимо. Свойства
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структур, в которых происходит перемешивание дыроч-

ных состояний, требуют отдельного рассмотрения.

Полученные результаты могут быть важны, преж-

де всего, для описания структур с гетеропереходами

II типа, которые в настоящее время широко исполь-

зуются в полупроводниковой электронике, например,

при создании квантовых ям и сверхрешеток, в которых

необходимо точное управление уровнями электронов и

дырок, а также для лучшего понимания механизмов пе-

реноса заряда в подобных гетеропереходах и достижения

дальнейших успехов в области фотокатализа.
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