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В рамках статистической физики были установлены функции распределения по энергиям для классических

(распределение Максвелла−Больцмана) и квантовых (распределения Ферми−Дирака и Бозе−Эйнштейна)
частиц. Развитие нанотехнологий привело к необходимости использовать функцию распределения по

энергиям Цаллиса для ансамбля фрактальных частиц. Отличительными чертами перечисленных объединений

частиц являются: различимость классических частиц; наличие спина (полуцелый — фермионы, целый —

бозоны) у квантовых частиц; геометрические отличия фрактальных частиц. С другой стороны взаимосвязь

организационных уровней вещества ставит вопрос о существовании объединенной функции распределения

по энергиям указанных объектов. Вид функции распределения находится при использовании метода ячеек

Больцмана, путем вычисления большой статистической суммы, использованием вариационного метода и т. д.

В данной работе представление известных функций распределения в виде решений соответствующих задач

Коши позволило установить вид объединенного выражения для описания средних чисел частиц в квантовых,

классических и фрактальных ансамблях. Показано, что при показателе
”
деформации“ q = 0.5 фрактальный

ансамбль описывается функцией, похожей на энергетический шум в системе. В системах с q < 0

фрактальные ансамбли зарождаются при определенном пороговом отрицательном значении (внутренняя
энергия фрактальной частицы меньше ее химического потенциала) безразмерной энергии.
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фрактальная размерность.

DOI: 10.61011/FTT.2025.10.61960.279-25

Создание наноструктурированных композитов приво-

дит к необходимости отыскания не только функции

распределения частиц по размерам [1,2], но и по энер-

гетическим состояниям. Это связано с изменениями

механических, электрических, магнитных, термодинами-

ческих и других свойств малых частиц по сравнению

с объектами квантовой и классической физики. Кроме

того, иерархическое строение уровней организации ве-

щества [3] указывает на существование объединенной

функции распределения по энергиям.

Поэтому целью данного краткого сообщения является

отыскание положительно определенной функции распре-

деления по энергиям f , описывающей в предельных

случаях при пороговых значениях параметров средние

числа квантовых, классических и фрактальных частиц.

Впервые такая задача была поставлена в работе [4].
Отметим, что основное внимание в данном сообщении

уделено математическому аспекту решаемой задачи, так

как физическая суть функций распределения подробно

изложена в учебниках по теоретической и статистиче-

ской физике, а также в научных статьях.

Рассмотрим при давлении P и температуре T макрока-

нонический ансамбль классических частиц с энергией ε.

Введем безразмерную энергию

x = β(ε − µ), (1)

здесь β = 1/θ, θ = kBT , kB — постоянная Больцмана,

химический потенциал µ [5]

µ = µ0(P, T ) + θ ln a, (2)

µ0(P, T ) — значение химического потенциала при атмо-

сферном давлении и комнатной температуре, a = γx —

активность, γ — коэффициент активности, x — концен-

трация частиц. Для ансамбля, состоящего из одинаковых

частиц активность a = 1, для n-компонентного ансамбля

идеальных элементов — γ = 1.

Классическая статистика. Решением задачи Коши [6]
вида

d f (x)/dx = − f (x), f (0) = 1 (3)

является функция

f (x) = exp(−x), (4)

соответствующая распределению Максвелла−Больцма-

на [7].

Фермионы и бозоны. В зависимости от значения спина

квантовые частицы разделяют на фермионы (полуцелый
спин), подчиняющихся статистике Ферми–Дирака [7,8]

f (x) = 1/
[

exp(x) + 1
]

, (5)
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и бозоны (целый спин) со статистикой Бозе–Эйнштей-

на [7,8]
f (x) = 1/

[

exp(x) − 1
]

. (6)

Функции (5) и (6) являются решениями задач Коши (7)
и (8) соответственно

d f (x)/dx = − f (x)
[

1− f (x)
]

, f (0) = 0.5, (7)

d f (x)/dx = − f (x)
[

1 + f (x)
]

, lim
x→0

f (x) = ∞. (8)

Уравнения (3), (7) и (8) в работе [4] были сведены к

задаче Коши

A d f (x)/dx = − f (x)
[

A + B f (x)
]

, f (0) = A/(1− B)
(9)

с решением

f (x) = A/
[

exp(x) − B
]

. (10)

Коэффициент A определяет вырожденность энергети-

ческого уровня, а параметр B — связан со спином

частицы. Классические различимые частицы образуют

невырожденный ансамбль (A = 1, B = 0) и распределе-

ние (10) преобразуется в (4). Квантовые тождественные

частицы объединяются в вырожденные ансамбли с раз-

ными спинами (A = 1, B = ±1), при этом равенство (10)
переходит в распределения (5) при B = −1 и (6) при

B = 1 соответственно. Если A = 1 и exp(x) достигает

величин, значительно превосходящих B , то (10) прини-

мает вид (4).
Фрактальные объекты. Распределение фрактальных

частиц можно описать уравнением (3) с деформирован-

ной правой частью

d f (x)/dx = − f q(x), f (0) = 1, (11)

где q 6= 1 — показатель
”
деформации“, учитывающий

влияние геометрического строения фрактальных частиц

на их среднее количество в энергетической ячейке и

порождающий не целочисленность числа частиц в не

экстенсивной системе. Решением дифференциального

уравнения (11) является функция

f (x) =
[

1 + (1− q)(−x)
]1/(1−q)

, (12)

асимптотикой которой при q → 1 служит функция (4).
Функция (12) задает распределение Цаллиса (Tsallis) [9],
она описывает масштабно-инвариантные объекты с

фрактальным строением фазового пространства [10,11].
Для монофракталов показатель

”
деформации“ q связан

с фрактальной размерностью D объекта формулой [3]

q = 1− D, (13)

а для мультифракталов он определяется минимальным

αmin и максимальным αmax индексами Гельдера–Липшица

(показателями гладкости функции распределения) [12]

(1− q)−1 = α−1
min − α−1

min. (14)

Объединенная функция распределения. Вышеизло-

женный материал позволяет получить объединенную

задачу Коши

A d f (x)/dx = − f q(x)
[

A + B f (x)
]

, (15)

решением которой является первообразная

F( f (x), q, A, B) + C

= A

∫

d f (x)/
{

f q(x)
[

A + B f (x)
]}

= −x , (16)

где C — постоянная интегрирования.

Рассмотрим частные случаи распределения (16).
При параметре

”
деформации“ q = 0.5, условии

f (0) = A/(1− B) и AB > 0, равенство (16) принимает

вид [13]

2 arctg
[

√

B f (x)/A
]

/
√

AB

− 2 arctg
[

√

B/(1− B)
]

/
√

AB = −x . (17)

Для параметров A = 1, B → +1 первообразная равна

f (x) = tg2
[

(π − x)/2
]

= ctg2(x/2). (18)

Из (18) видно, что в точках x = 2πn, n = 0,∓1,∓2, . . .

происходит
”
конденсация“ фрактальных частиц

( f (x) → +∞), при этом их энергия

ε = µ − 2πnkB T, n = 0,∓1,∓2, . . . . (19)

При AB < 0 решение (16) имеет вид [14]

ln
∣

∣

∣

(
√

A +
√

|B | f (x)
)

/
(
√

A −
√

|B | f (x)
)

∣

∣

∣
/

√

A|B | − ln
(
√

A +
√

|B |A/(1 + |B |)
)

/

(
√

A −
√

|B |A/(1 + |B |
)

∣

∣

∣
/
√

A|B | = −x . (20)

Для параметров A = 1, B = −1 равенство (20) прини-

мает вид

ln |
[

1 + f (x)
]

/3
[

1− f (x)
]

| = −x

или

f (x) =
[

3 exp(−x) − 1
]

/
[

3 exp(−x) + 1
]

0 ≤ f (x) < 1,

(21)
если x = 0, то f (x) = 1/2. Полученные результаты по-

казывают: при AB > 0 наличие у фрактальных частиц

свойств бозонов, а при AB < 0 — фермионов.

Для монофрактальных плоских объектов (по (13)
фрактальная размерность D = 2) параметр q = −1, а для

объемных объектов (по (13) D = 3) — q = −2. В этих

случаях решения (16) задаются формулами [13]

f (x)/B − (A/B2) ln
[

A + B f (x)
]

+ C = −x , (22)

Физика твердого тела, 2025, том 67, вып. 10



1846 С.В. Терехов

f 2(x)/(2B) − A f (x)/B2

+ (A2/B3) ln
[

A + B f (x)
]

+ C = −x (23)

соответственно. Компьютерные вычисления показыва-

ют образование фрактального ансамбля при пороговом

отрицательном значении (внутренняя энергия частицы

меньше ее химического потенциала) безразмерной энер-

гии (1).
Таким образом, частными случаями объединенной

функции распределения (16) являются распределения:

F( f (x), 1, A, 0) = −x — Максвелла–Больцмана;
F( f (x), 1, 1,−1) = −x — Ферми–Дирака;
F((x), 1, 1, 1) = −x — Бозе–Эйнштейна;

F( f (x), q, A, 0) = −x , q 6= 1 — Цаллиса.
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