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Проведено изучение магниевого сплава Mg-9Gd-4Y-1Zn-0.5Zr (mass.%), полученного методом прямого

литья под давлением с охлаждением и последующей гомогенизацией при 510 ◦C в течение 12 h и

закалкой в воде. Затем сплав экструдировали при 350 ◦C с коэффициентом экструзии 10 при скорости

плунжера 1mm/s. Статические испытания сплава выполнены на машине Instron с двумя скоростями

деформации: 10−3 и 10−1 s−1. Динамические исследования проводились методом Тейлора, а также методом

Гопкинсона. Выполнен анализ изменения характеристик и микроструктуры этого сплава в интервале

скоростей деформации, охватывающем как статические, так и динамические скорости нагружения. Выявлены

микромеханизмы деформирования и разрушения магниевого сплава.
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1. Введение

Магниевые сплавы привлекают исследователей бла-

годаря их малой плотности по сравнению с другими

металлами, что может быть использовано в автомо-

бильной и аэрокосмической области для снижения веса

устройств. Редкоземельные магниевые сплавы, легиро-

ванные гадолинием (Gd), иттрием (Y), цинком (Zn) и

цирконием (Zr), представляют особый интерес ввиду

их высокого потенциала в областях, требующих со-

четания высокой прочности и термической стабильно-

сти [1]. Один из представителей этой группы, сплав

Mg-9Gd-4Y-1Zn-0.5Zr (mass.%), относящийся к системе

Mg-RE-Zn-Zr, где RE — редкоземельный элемент, широ-

ко исследуется в качестве основы для конструкционных

материалов нового поколения. После горячей экстру-

зии структура сплава характеризуется преимуществен-

ным образованием пластинчатой фазы с долгопериодной

упорядоченной укладкой (long-period stacking ordered,

LPSO), формирующейся преимущественно вдоль на-

правления деформации. Эти фазы могут существовать

как в виде частиц, вытянутых в направлении экстру-

зии, так и в виде внутрикристаллических включений,

особенно в случае высоких концентраций Zn и редко-

земельных элементов. Наличие фаз LPSO способствует

армированию матрицы и повышению сопротивления

скольжению и сдвигу, что выражается в улучшении

прочностных характеристик. Например, в сплавах Mg-

10Gd-3Y-1.5Zn-0.5Zr внутри зерен обнаружен непрерыв-

ный комплекс пластинчатых LPSO и мелких дефектов

упаковки (stacking faults, SF), что обеспечивает высокую

прочность на растяжение даже при температурах до

300 ◦C [2].

Экструзия также способствует развитию динамиче-

ской рекристаллизации, приводящей к образованию рав-

ноосных зерен (∼ 1−5µm), размер которых варьируется

в зависимости от условий деформации и предваритель-

ной термической обработки. Zr играет дополнитель-

ную роль в рекристаллизации, обеспечивая зарождение

новых зерен и ограничивая их рост за счет своей

тенденции к неоднородному распределению по границам

зерен [3].

В связи со значительной зависимостью растворимо-

сти Gd и Y в твердом растворе матрицы α-Mg от

температуры, степень упрочнения при старении может

регулироваться выделением β′-фазы (метастабильного
выделения Mg-Gd/Y) [4]. Образование фаз LPSO и

выделений γ ′ (метастабильных выделений Mg-Gd/Y-Zn)
происходит в результате добавления атомов Zn к спла-

вам Mg-Gd-Y [5].

В настоящем исследовании изучался экструдирован-

ный сплав Mg-9Gd-4Y-1Zn-0.5Zr (mass.%), который был

получен методом прямого литья под давлением с охла-

ждением, за которым последовала гомогенизация при

510 ◦C в течение 12 h и закалка в воде [6]. Затем сплав

был экструдирован в прутки при 350 ◦C с коэффици-

ентом экструзии 10 при постоянной скорости плун-

жера 1mm/s. Испытания на растяжение, проведенные

авторами работы [6], дали значения предела текучести,
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предела прочности и удлинения до разрушения данного

сплава, составившие 323 и 381MPa и 15.1% соответ-

ственно.

2. Материал и методики исследования

Образцы сплава Mg-9Gd-4Y-1Zn-0.5Zr (mass.%) были

получены экструзией с постоянной скоростью плунжера

1mm/s и вырезаны в ее направлении.

2.1. Анализ микроструктуры

Микроструктуру исследовали на оптическом микро-

скопе Axio Observer Z1M в светлом поле, с помо-

щью дифференционно-интерференционного контраста с

круговой поляризацией (C_DIC); количество вязкой

составляющей на поверхности разрушения определяли

в темном поле по ASTM E436-03 с использованием

анализатора изображения Axio Vision, а также с ис-

пользованием сканирующего электронного микроскопа

Zeiss Merlin. Химический состав изучался методом энер-

годисперсионной спектроскопии (ЭДС, EDX), благода-
ря снабжению микроскопа дополнительной приставкой

для рентгеновского микроанализа Oxford Instruments

INCAx-act. Микротвердость замерялась на поперечных

шлифах на приборе SHIMADZU марки HMV-G при

нагрузке 100 g.

2.2. Способ нагружения

Образцы испытывались по трем схемам: статическое

сжатие, испытание на разрезном стержне Гопкинсона

и тест Тейлора. Все эксперименты проводились при

нагрузке на сжатие. Исследования по квазистатиче-

скому сжатию проводились с использованием испыта-

тельной машины Instron (скорости деформации 10−1

и 10−3 s−1). Динамические испытания осуществлялись

методом Гопкинсона–Кольского (скорости деформации

от 1300 до 5970 s−1) и тестом Тейлора.

Исходные цилиндрические образцы диаметром 8mm

были вырезаны на электроэрозионном станке ARTA

153 PRO. Таким образом, во всех испытаниях ось

нагружения совпадала с направлением выдавливания

исследуемого магниевого сплава. Для испытания Тей-

лора использовались цилиндры диаметром 8mm и дли-

ной 30mm, для испытания Гопкинсона — диаметром

D = 8mm и длиной L = 4mm (L/D = 1/2); для стати-

ческих испытаний — диаметром 8mm и длиной 8mm

(L/D = 1). Перед испытаниями торцы всех образцов

шлифовались.

2.2.1. Испытания на разрезном стержне
Гопкинсона

Была проведена серия экспериментов с использова-

нием разрезного стержня Гопкинсона (split Hopkinson

pressure bar, SHPB) для исследования характеристик

и механизмов разрушения испытуемого материала в

микромасштабе при динамическом сжатии.

Выбранная геометрия образца (D = 8mm, L = 4mm)
обеспечивала условия равномерного и плоского напря-

женного состояния, обеспечивая при этом достаточный

объем для определения микроструктурных характери-

стик после испытания.

Длина падающего и передающего стержней составля-

ла 2m, диаметр — 20mm. Все компоненты системы

были изготовлены из высокопрочной стали (модуль
Юнга E = 226GPa). Нагружающий импульс создавался

ударником длиной 60 cm. Ударник разгонялся с помо-

щью пневматической системы с регулировкой давления

в камере в диапазоне от 3 до 6 atm. Соответствующие

скорости удара, измеренные с помощью лазерного вело-

симетра, варьировались от 3.7 до 11m/s, что приводило

к скоростям деформации приблизительно от 800 до

6000 s−1.

В настоящем исследовании использование относи-

тельно длинного бойка (60 cm) эффективно увеличивало

длительность падающего импульса, способствуя боль-

шей пластической деформации во время нагружения.

По сравнению с традиционными установками SHPB,

использующими более короткие бойки (обычно менее

30 cm), удлиненный боек обеспечивал достаточное вре-

мя нагружения и развитие деформации без существен-

ного увеличения скорости деформации. Такая конфи-

гурация, в сочетании с результатами теста Тейлора,

оказалась особенно подходящей для изучения развития

повреждений в условиях умеренных и низких скоростей

деформации.

2.2.2. Испытание на удар на наковальне

Тейлора

Испытания на удар проводились с использованием

установки Тейлора, показанной на рис. 1. Снаряд раз-

гонялся сжатым воздухом из камеры высокого давления

(до 30 atm), отделенной от ствола разрывной мембраной.

При разрыве мембраны сжатый воздух проталкивал

поддон, изготовленный на 3D-принтере, с образцом в
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Рис. 1. Экспериментальная установка. 1 — микроконтроллер,

2 — датчик давления, 3 — клапан высокого давления, 4 — га-

зовый баллон, 5 — спусковой механизм, 6 — камера давления,

7 — ствол пушки, 8 — лазеры, 9 — жесткая наковальня, 10 —

датчики скорости, 11 — устройство обработки данных.
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a b

Рис. 2. Фотографии образцов после испытания на удар:

a) 219m/s, b) 243m/s).

ствол (внутренний диаметр: 34mm). Фланец на дульном

срезе отделял образец от поддона до удара.

Перед ударом о наковальню передняя кромка ци-

линдрического образца прерывала два лазерных луча,

расположенных на известном расстоянии (время от-

клика детектора на луч менее 1 µs). Наковальня была

изготовлена из стали Р6М5 (американский аналог —

T11302), закаленной в масле с последующим отпус-

ком, поверхность полировалась на шлифовальном станке

Buehler и смазывалась силиконовой смазкой. Размеры

образца после испытания измерялись штангенциркулем

и микрометром.

Для настоящего исследования были выбраны скорости

удара, вызывающие видимые дефекты: 220m/s — две

трещины под углом 45◦ к контактной поверхности,

243m/s — множественные радиальные трещины с круп-

ным макроскопическим сколом (рис. 2).

3. Результаты и их обсуждение

В таблице 1 приведены методы и скорости испытаний

образцов магниевого сплава, исследованные в работе.

3.1. Микроструктурные исследования сплава

Mg-9Gd-4Y-1Zn-0.5Zr

Микроструктура магниевого сплава в исходном состо-

янии представлена на рис. 3. В продольном сечении вид-

Таблица 1. Режимы испытаний сплава Mg

№ Метод испытаний
Скорость

деформации V , s−1

Исходное состояние (до деформации)

1 10−3

2
Instron

10−3

3 10−1

4 10−1

Испытание образца по методу Тейлора
8111.11(v=219m/s)

1 2400

2 1300

4
SHPB

2130

6 3330

9 5970

10 5500

на металлографическая текстура вдоль предварительной

деформации — экструзии.

3.1.1. Статические испытания

Микроструктура магниевого сплава после статиче-

ских испытаний при скорости деформации 10−3 s−1

(рис. 4) аналогична представленной на рис. 3 для

исходного состояния. В продольном сечении видна

анизотропия структуры вдоль деформации аналогично

металлографической текстуре в исходном состоянии.

Наблюдаются сохранившиеся исходные эвтектические

составляющие сплава Mg5(Gd,Y,Zn)+(Mg2Zr+ZrZn2),

раздробленные в результате экструзии (рис. 4, c). На-
блюдается разнозернистость — видны крупные эвтек-

тические исходные зерна и мелкие (рис. 4, d и e), об-
разовавшиеся при экструзии в результате динамической

рекристаллизации.

При увеличении скорости статической деформации

10−1 s−1 микроструктура магниевого сплава мало изме-

нилась. Картина похожая, как в исходном состоянии и

при скорости деформации 10−3 s−1.

3.1.2. Динамические испытания

3.1.2.1. Разрезной стержень Гопкинсона

С ростом скорости нагружения при испытаниях на

стержне Гопкинсона увеличивается количество трещин

(рис. 5, a−c), они становятся более разветвленными, и

происходит разрушение — разделение образца на части.

Физика твердого тела, 2025, том 67, вып. 10
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200 µm 200 µm

a b

c d

10 µm 10 µm

Рис. 3. Микроструктура магниевого сплава поперек и вдоль прутка в исходном состоянии: a) ×200 — поперек прутка, b) —

×200 — вдоль. СЭМ: c) поперек, d) вдоль.

Кроме того, при самой высокой скорости нагружения

наблюдается локальное оплавление с последующей кри-

сталлизацией (рис. 5, d и e). Около микротрещин часто

наблюдаются включения фаз циркония, что подтвержде-

но методом ЭДС (рис. 6).

В районе микротрещин неоднократно регистрируются

фазы, обогащенные цирконием, а также, в отдельных

случаях, фазы с высоким содержанием иттрия (до
47.91%) и гадолиния (до 29.31%). Эти области мо-

гут способствовать локальному охрупчиванию, особенно

при действии высоких скоростей деформации.

3.1.2.2. Тест Тейлора

После динамического нагружения наблюдаются тре-

щины в поперечном сечении (рис. 7, a). В продольном

сечении видна анизотропия (рис. 7, b, e и f) структу-

ры вдоль предварительной деформации — экструзии,

как в исходном состоянии, так и в образцах после

квазистатики. Присутствуют сохранившиеся исходные

эвтектические составляющие сплава (рис. 7, c), но почти

все они раздроблены.

Наблюдается разнозернистость (рис. 7, f) — видны

крупные зерна и мелкие, образовавшиеся при экструзии

в результате динамической рекристаллизации. В дефор-

мированных участках наблюдаются области с мелкими

зернами, что может быть связано как с динамической

рекристаллизацией, так и с последствиями экструзии.

3.1.3. Анализ поверхности разрушения

При разрушении в статике характер излома пре-

имущественно вязкий, чашечный: поверхность содержит

ямки, чашеобразные области, характерные для данного

Физика твердого тела, 2025, том 67, вып. 10
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100 µm 100 µm

a b c

d e

200 µm 200 µm 50 µm

Рис. 4. Структура магниевого сплава после статических испытаний при скорости деформации 10−3 s−1. ×200: a) поперек

деформации, b) вдоль деформации, c) вдоль, ×1000. СЭМ: d) поперек, e) вдоль.

типа разрушения. При скорости 2400 s−1 характерен

вязко-хрупкий механизм разрушения: наблюдаются как

чашечный излом, так и скол и квазискол.

При более высоких скоростях нагружения наблюда-

ется более хрупкое разрушение с участками скола и

квазискола, а также ручьистый излом (рис. 8, d) — на

этих образцах также обнаружены фазы с высоким содер-

жанием иттрия (до 33.95%) и гадолиния (до 19.68%).
С ростом скорости нагружения количество волокна в

изломе (вязкой составляющей) уменьшается от 91% в

статике до 77% при испытаниях на стержне Гопкинсона

и до 49% при тестах Тейлора.

3.2. Влияние скорости деформации на

характеристики магниевого сплава

На рис. 9 представлено изменение микротвердости и

размера зерна от скорости деформации.

Характер изменения находится в противофазе: до ско-

рости 2000 s−1 микротвердость растет, а размер зерна

снижается, затем твердость уменьшается, а размер зерна

растет, и только после 5000 и твердость, и размер зерна

возрастают. До 5000 s−1 поведение кривых подчиняется

закону Холла–Петча, и только при более высокой скоро-

сти деформации этот закон нарушается, как было ранее

показано С.А. Атрошенко для сталей [7].
Зависимость напряжения начала пластического тече-

ния или деформирующего напряжения от размера зерна

подчиняется соотношению Холла–Петча:

σ = σ0 + kd
−1/2, (1)

где d — средний размер зерна. Это соотношение спра-

ведливо для квазистатических режимов и для характе-

ристик, полученных на материалах после их динами-

ческого нагружения. Такие характеристики, как твер-

дость, предел прочности и текучести, а также предел
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20 µm

a b c

d e

200 µm 200 µm 200 µm

10 µm

Рис. 5. Структура магниевого сплава после динамических испытаний на стержне Гопкинсона: a) ×200 (V = 2400 s−1), b) ×200

(V = 3330 s−1); c) ×200 (V = 5970 s−1); d) ×1000 (V = 5970 s−1); e) СЭМ (V = 5970 s−1).

Таблица 2. Влияние размера зерна на откольную прочность стали

Марка стали
Скорость Откольная прочность Размер

нагружения v , m/s (скорость) W , m/s зерна d, µm

Сталь 45 210 109 150

253 88.5 180

Сталь 30ХН4М 320 200 8.1

361 215 10.3

Сталь СП-28 100 62 9.4

321 81.5 32

Сталь 12Х18Н10Т 400 102 46

447 84.5 26
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Рис. 6. Трещинообразование в магниевом сплаве и включение фазы Zr с содержанием 70%Zr: a) СЭМ (V = 3330 s−1),
b) многослойное изображение ЭДС, c) спектр 12 с изображения (b).

упругости в ударно-нагруженном никеле [8] тоже под-

чиняются этому соотношению. Однако указанные ха-

рактеристики материала были измерены после ударного

нагружения. Интересно получить данные о том, как

меняются прочностные характеристики материала от

размера зерна во время ударного нагружения. Такой

характеристикой может служить откольная прочность.

В работе [9] показано, что не существует зависимо-

сти откольной прочности от размера зерна для ста-

ли 1008. Авторы работы [10] исследовали влияние

размера зерна на упругий предел Гюгонио для никеля,

железа, алюминиевого сплава и меди при коротких

(107 s−1) импульсах нагружения. Было установлено, что

соотношение (1) не выполняется. Зависимость имеет

противоположный характер. В испытаниях на откол

образец подвергается плоскому удару, при этом обра-

зец и ударник изготавливаются из стали. При ударе

снаряда с мишенью ударная волна распространяется

в мишень и в ударник. Эти волны отражаются от

свободных поверхностей и возвращаются обратно в

образец. Когда эти две волны разгрузки встречаются,

образуется волна растяжения. Если ее амплитуда пре-

вышает динамическую прочность материала, происходит

откол в образце. В каждом опыте откольная прочность

определялась по временному профилю скорости свобод-

ной поверхности, полученному с помощью лазерного

интерферометра. Образцы-мишени представляли собой

плоские диски диаметром 52mm и толщиной 5−10mm.

Ударное нагружение осуществлялось с помощью легко-

газовой пушки калибра 37mm. Тыльный откол происхо-

дил в условиях одноосной деформации при нагружении

стальным ударником толщиной 1−3mm при скоростях

100−450m/s. Результаты экспериментов представлены в

таблице 2.

Как видно из таблицы 2, соотношение Холла.Петча

выполняется только для крупнозернистой стали 45, за-

каленной с перегревом. Для всех остальных сталей зави-

симость имеет противоположный характер. Это связано

с отсутствием двойникования в стали 45 и наличием

двойников во всех остальных сталях. Причем, чем они
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Рис. 7. Микроструктура магниевого сплава после испытаний на тест Тейлора (V = 219m/s). ×200: a) поперек экструзии, b) вдоль
экструзии. c) ×1000 C_DIC. СЭМ: d) поперек, e, f) вдоль.

тоньше и плотность их больше, тем выше откольная

прочность — в стали 30ХН4М.

4. Заключение

Проведено исследование магниевого сплава в широ-

ком интервале скоростей нагружения.

После квазистатических испытаний в продольном

сечении наблюдается направленность структуры вдоль

предварительной деформации — экструзии, а также

раздробленные эвтектические составляющие сплава. На-

блюдается разнозернистость: присутствуют как крупные

исходные зерна, так и мелкие, образовавшиеся при

экструзии в результате динамической рекристаллизации.

В деформированных участках наблюдаются области с

мелкими зернами — результат динамической рекристал-

лизации. С ростом скорости нагружения при испытаниях

на стержне Гопкинсона увеличивается количество тре-

щин, они становятся более разветвленными, и происхо-

дит разрушение — разделение образца на части, а также

локально наблюдается оплавление. Наличие микротре-

щин часто коррелирует с включениями фаз циркония.

В районе разрушения неоднократно регистрируются фа-

зы, обогащенные цирконием, а также, в отдельных слу-

чаях, фазы с высоким содержанием иттрия и гадолиния.

Они могут способствовать локальному охрупчиванию,

особенно при действии высоких скоростей деформации.

При разрушении в статике характер излома пре-

имущественно вязкий, чашечный; при более высоких

скоростях нагружения наблюдается более хрупкое раз-

рушение с участками скола и квазискола.

Характер изменения микротвердости и размера зерна

от скорости деформации находится в противофазе —

до скорости 2000 s−1 микротвердость растет, а размер

зерна снижается, затем твердость уменьшается, а размер

зерна растет и только после 5000 s−1 и твердость, и

размер зерна возрастают.
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Рис. 8. Поверхность разрушения магниевого сплава: a) V = 10−3 s−1; b) V = 2400 s−1; c) V = 2400 s−1; d) V = 2807 s−1.
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