Тестирование диэлектрических покрытий для исследований элементарных флуктуаций заряда методами сканирующей кельвин-зонд микроскопии

© В.Д. Родин^{1,2}, В.Ю. Аксенов¹, А.В. Анкудинов¹, В.О. Большаков¹, А.С. Власов¹, Ю.А. Жарова¹, И.В. Илькив³, Р.В. Левин¹, А.В. Малевская¹, А.М. Минтаиров¹

199034 Санкт-Петербург, Россия

E-mail: vdrodin@stud.etu.ru

Поступила в Редакцию 5 мая 2025 г. В окончательной редакции 24 июня 2025 г.

Принята к публикации 18 сентября 2025 г.

Используя метод сканирующей зондовой микроскопии, исследованы рельеф и вариации поверхностного потенциала у диэлектрических покрытий MgF_2 , SiO_2 , Rio_2 , полученных соответственно методами термического испарения, плазмоактивированного химического осаждения и термического окисления кремния. По сравнению с первыми двумя покрытиями пространственные флуктуации объемного заряда у SiO_2 -покрытия минимальны. Это позволило, исследуя методом сканирующей кельвин-зонд микроскопии значения электрического потенциала Au-наночастиц на таком покрытии, продемонстрировать возможность регистрации одноэлектронных скачков заряда на наночастицах.

Ключевые слова: сканирующая кельвин-зонд микроскопия, закон квантования электрического заряда.

DOI: 10.61011/FTP.2025.06.61955.8008

1. Введение

В настоящее время имеется ряд наблюдений эффектов, которые можно связать с наличием дробного заряда электрона. Они обнаружены и исследованы в полупроводниковых системах с двумерными электронами в режиме дробного квантового эффекта Холла в сильном магнитном поле [1,2] и вигнеровских квантовых точках в нулевом магнитном поле [3]. В вигнеровских квантовых точках дробный заряд формируется за счет спонтанной генерации вихрей квантов магнитного потока одночастичными квантовыми состояниями электронов. Условием формирования таких магнитоэлектронных состояний является вигнеровская локализация, которая возможна в любой системе с двумерными электронами при концентрации ниже критической, что выполняется и для большинства металлов. Особый интерес к исследованию таких состояний в металлах представляет регистрация дробного заряда металлических наночастиц, рассмотренная более 100 лет назад Эйренхафтом [4]. Эксперимент Эйренхафта заключался в наблюдении движения заряженных металлических наночастиц в вакууме под действием электрического поля, а определение величины заряда опиралось на сложный электростатический расчет. В настоящей работе мы с помощью метода сканирующей кельвин-зонд микроскопии (СКЗМ, scanning Kelvin probe microscopy, SKPM) реализовали непосредственные измерения вариаций заряда металлических наночастиц с чувствительностью,

существенно лучшей величины элементарного заряда. Для этого использовалась специальная модельная структура, плоский конденсатор на основе кремния с микроапертурами в верхнем металлическом контакте на изолирующем зазоре из SiO2, в которых располагались наночастицы. Выбор материала подложки определили результаты СКЗМ исследований распределений заряда в ней. Такие исследования, кроме того, интересны как удобная прямая диагностика пассивирующих свойств диэлектрических покрытий. Известно, что использование диэлектриков с внедренными "коронарными" зарядами является одним из базовых методов пассивации поверхности полупроводников, в частности кремниевых солнечных элементов, однако характеризация таких покрытий происходит чаще косвенными методами, такими как, например, измерение времени жизни неравновесных носителей [5,6].

Новизна представляемого исследования состоит в реализации возможности изучения тепловых флуктуаций потенциала уединенной проводящей частички, одноэлектронной динамики ее потенциала с помощью СКЗМ. В частности, наблюдались скачкообразные изменения потенциала частички в зависимости от времени, при развертке напряжения на конденсаторе, плавно меняющем заряд на поверхности микроотверстия с частичкой на доли элементарного заряда. Исследования зарядовых состояний наночастиц методами сканирующей зондовой микроскопии ведутся достаточно активно [7–10]. Существенное отличие от нашего подхода заключается в

 $^{^{1}}$ Физико-технический институт им. А.Ф. Иоффе Российской академии наук,

¹⁹⁴⁰²¹ Санкт-Петербург, Россия

² Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова (Ленина), 197022 Санкт-Петербург, Россия

³ Санкт-Петербургский государственный университет,

использовании частичек по размерам, на порядок меньших, с кулоновской энергией значительно выше тепловой. Кроме того, изучаются не одиночные частички на изоляторе микронной толщины, а массивы наночастиц с характерной плотностью 10³ шт./мкм², отделенных от проводящей подложки туннельно прозрачным [7–9] слоем диэлектрика. Флуктуации потенциала проводящей частички, лежащей на диэлектрике, определяются не только вариацией заряда самой частички (собственный зарядовый шум), но и поведением внешних зарядов в диэлектрике (наведенный зарядовый шум).

В отсутствие внешних зарядов частичка с зарядом Q имеет потенциал $\sim Q/R$. Внешние заряды, локализованные на ловушках в диэлектрике вдалеке от частички (на расстояниях $\gg R$), создают в области с частичкой дальнее поле E_1 , которое не проникает в частичку из-за наведенного заряда, диполя. Соответствующая добавка к потенциалу частички $\sim E_1R$. Внешний заряд Q_2 на одиночной ловушке диэлектрика в непосредственной близости с частичкой создает ближнее поле E_2 . Экранирование этого поля внутри частички дает в потенциал частички вклад $\sim Q_2/R$.

Чтобы исследовать, например, связь амплитуды собственного зарядового шума с размерами частички, требуется минимизировать наведенный зарядовый шум. Для снижения вклада внешних зарядов в потенциал частички нужен диэлектрик с низкой плотностью ловушек, т. е. малым объемным зарядом и, как следствие, E_1 . Если при этом ловушки глубокие, с энергией, существенно большей тепловой, и энергией захвата заряда на саму частичку, то нивелируется и паразитный вклад от E_2 в потенциале частички.

Сказанное выше обосновывает цель работы, а именно: оптимизацию специальной модельной структуры на основе подложек кремния с микронными диэлектрическими покрытиями для детектирования зарядовых состояний и тестирования возможностей сканирующей зондовой микроскопии для обнаружения одноэлектронных и субэлектронных зарядовых состояний в Аинаночастицах. С помощью метода СКЗМ были исследованы различные диэлектрические покрытия, изготовленные методами плазма-активированного и термического нанесения, а также термического окисления.

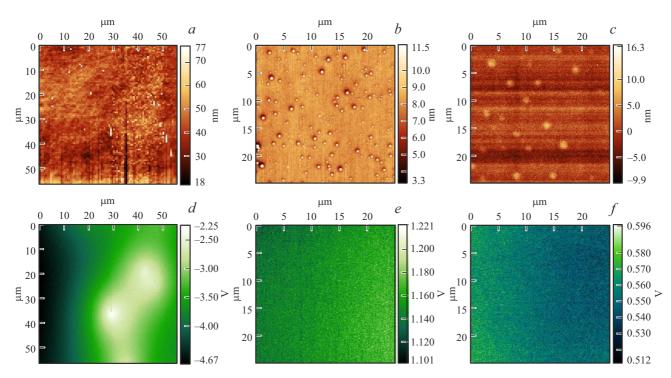
2. Эксперимент

В качестве подложек использовались пластины монокристаллического кремния (c-Si) p-типа и кристаллографической ориентации (100). На поверхности чистых c-Si пластин формировались слои диэлектриков SiN_x , MgF_2 , SiO_2 , полученные методами термического испарения (MgF_2) , плазмоактивированного химического осаждения (SiN_x) и высокотемпературного окисления в парах воды (SiO_2) .

Для осаждения слоя SiN_x использовалась установка плазмоактивированного пиролиза (Rokappa). Осаждение осуществлялось при пониженном давлении

 $(\sim 10^{-7}\, {\rm Topp})$ с использованием ВЧ-плазмы. В ходе процесса реактивные газы (моносилан, аммиак, гелий) через фильеры подаются в верхнюю часть рабочей камеры, где они разлагаются под влиянием разряда мощностью 50 Вт, возбуждаемого резонатором с частотой $\sim 13.5\, {\rm MFL}$. При этом плазменное стимулирование реакции снижает температуру осаждения слоя диэлектрика, ускоряет диссоциацию молекул рабочих газов, генерирует радикалы, интенсифицирует диффузию частиц к подложке и миграцию их по поверхности подложки, способствует реиспарению адсорбированных частиц, что повышает скорость образования зародышей, островков и в целом пленок. Данный метод позволяет формировать сплошные слои ${\rm SiN}_x$ толщиной от $10-20\, {\rm hm}$.

Для формирования слоя MgF_2 использовалась установка $BУ\Pi$ -5, на которой проводилось термическое напыление. Навеска MgF_2 помещалась в тигель из молибдена, при достижении в камере вакуума $\sim 10^{-6}$ Торр тигель нагревался с помощью электрического тока до температуры, обеспечивающей испарение материала. Толщина напыленного слоя MgF_2 зависит от массы навески. Максимальная толщина однородного слоя составила $350\,\mathrm{hm}$. Дальнейшее увеличение толщины приводило к растрескиванию слоя из-за перегрева образца в процессе напыления.


Для формирования слоя SiO_2 на поверхности монокристаллического кремния (c-Si) в качестве исходной подложки использовалась пластина p-типа, с $\rho=18\,\mathrm{mOm}\cdot\mathrm{cm}$ и кристаллографической ориентацией (100). Пластина была порезана и прошла этапы стандартной отмывки. Методом термического окисления в парах воды при температуре $1100\,^{\circ}\mathrm{C}$ в течение $4\,\mathrm{ч}$ был выращен слой SiO_2 толщиной $\delta=1.4\,\mathrm{mkm}$. Данные по толщине диоксида кремния были получены методом спектральной эллипсометрии на спектральном эллипсометре Semilab 2000.

Измерения методом СКЗМ проводились в обычной и разреженной атмосфере (остаточное давление $P\sim 10^{-2}\,{\rm Topp})$ в вакуумной камере на установке NT-MDT Integra Aura. Использовались проводящие контактные кантилеверы модели CSG30, с умеренной жесткостью балки и достаточно высокочастотным резонансом, что способствовало повышению чувствительности СКЗМ измерений поверхностного потенциала (SP) в динамических режимах амплитудной (AM) и фазовой (PM) модуляции.

3. Результаты

3.1. СКЗМ-измерения

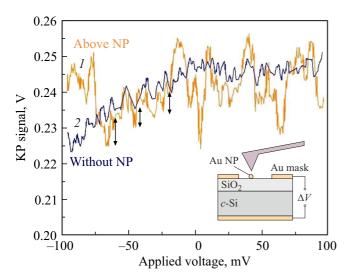
На рис. 1 представлены результаты СКЗМ-измерений слоев. Морфология поверхности по высоте представлена на верхних рисунках, распределение потенциала — на нижних, в таблице собраны результаты математической обработки полученных данных (среднеквадратичная шероховатость поверхности — rms).

Рис. 1. Результаты СКЗМ-измерений диэлектрических покрытий в обычной атмосфере: верхний ряд — профиль высоты, нижний — потенциала поверхности. a, d — слой SiN_x (0.2 мкм); b, e — SiO_2 (1.4 мкм); c, f — MgF_2 (0.35 мкм).

Среднеквадратичная шероховатость высоты рельефа rms (z) и поверхностного потенциала rms (SP) у различных диэлектрических покрытий

Образец	SiN_x (0.2 мкм)	SiO ₂ (1.4 мкм)	MgF ₂ (0.5 мкм)
rms(z), HM	3.0	0.3	1.3
rms(SP), мВ	585	7	8

Шероховатость поверхности всех слоев не превышает нескольких нанометров, если не считать отдельных дефектов — по всей видимости, микрочастичек пыли. Можно отметить, что присутствие таких микрочастичек практически не отражается на картине распределения потенциала. Поверхность слоя MgF_2 имеет зернистую структуру, и относительно больший разброс значений высоты (rms = 1.3 нм) по сравнению со слоем SiO_2 (rms всего 0.3 нм). Самая большая шероховатость наблюдается в слое SiN_x , но и здесь она не превышает 3 нм.


В карте распределения потенциала, рис. 1,d, слоя SiN_x можно наблюдать несколько заряженных центров разной интенсивности. Разница в интенсивности может быть вызвана как глубиной залегания заряженного центра, так и величиной заряда. Перепад потенциала по поверхности превышает $2\,\mathrm{B}$. В слоях, полученных термическим способом без использования в процессе получения заряженных частиц, распределение потенциала равномерно (рис. 1,e,f), перепад потенциала составляет $< 120\,\mathrm{mB}$. Такие плавные и незначительные, учитывая 25-микронную диагональ кадра, изменения

потенциала — горизонтальное поле $\sim 3\,\mathrm{mB/mkm}$ — наблюдаются на поверхности термического окисла в отсутствие проводящего перфорированного контакта на нем. В принципе такое поверхностное поле может приводить в микронных отверстиях нашей модельной структуры к перепадам потенциала в единицы, максимум $10\,\mathrm{mB}$, а на 50-нанометровой частичке — к перепадам потенциала, более существенно меньшим $1\,\mathrm{mB}$. Постоянный средний наклон на рис. 1,e,f не меняет амплитуды шума, так как хорошо известно, что шероховатость поверхности не зависит от ее среднего наклона. В итоге среднеквадратичные отклонения потенциала составляют $7-8\,\mathrm{mB}$, что сопоставимо с аппаратным шумом измерительной установки.

Для дальнейших исследований были выбраны слои термического окисла ${\rm SiO}_2$, так как они имеют минимальные значения rms как шероховатости, так и потенциала, а кроме того, метод позволяет получать слои любой толщины без ухудшения качества.

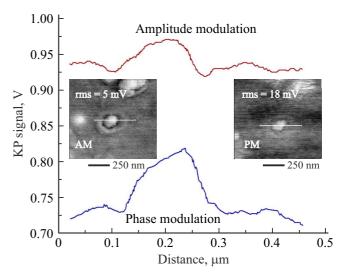
3.2. Чувствительность метода СКЗМ к заряженным состояниям

Для исследования чувствительности метода были созданы специальные модельные структуры. Общая топология представлена на вставке к рис. 2. Структура имеет строение, схожее с плоским конденсатором. Верхний плоский контакт имеет отверстия диаметром ~ 3 мкм, в которые удавалось осадить одиночные коллоидные частички золота размером 40 нм. Между верхним

Рис. 2. Значения сигнала поверхностного потенциала над Аинаночастичкой (линия I) и над поверхностью диэлектрика (линия 2) при подаче развертки $\Delta V=0.2\,\mathrm{B}$ со скоростью $0.5\,\mathrm{mB/c}$ между верхним и нижним контактами структуры. Расстояние между зондом и образцом — $20\,\mathrm{hm}$. Схема специальной структуры представлена на вставке.

и нижним контактами подавалась развертка напряжения $\pm 100\,\mathrm{mB}$, и в процессе изменения напряжения между обкладками конденсатора производилось сканирование одной и той же линии длиной $1\,\mathrm{mkm}$, идущей через Au-наночастицу. Это позволяло контролировать изменение потенциала как над частичкой, так и на расстоянии от нее.

Вне частички над поверхностью диэлектрика наблюдается постепенное увеличение сигнала потенциала от 0.22 до 0.25 В, вызванное частичным выходом поля конденсатора (см. схему на вставке рис. 2) в области отверстия диаметром D = 3.34 мкм. Нелинейность нарастания сигнала можно связать с незначительным дрейфом сигнала над диэлектриком, менее 0.03 мВ/с по абсолютной величине. Реальное изменение потенциала может быть больше измеренного из-за инструментального вклада (обсуждение см. далее). Изменение напряжения между верхним и нижним контактом на $\Delta V = 0.2\,\mathrm{B}$ соответствует изменению полного поверхностного заряда в области отверстия на $\Delta q = 280e$ $(\Delta q = \varepsilon \varepsilon_0 \Delta V \pi D^2 / \delta)$. В отсутствие частички заряд распределяется по поверхности отверстия. Над частичкой при захвате одного или нескольких из этих электронов потенциал изменяется скачкообразно (рис. 2 линия 1). Мы связываем такие изменения с тепловыми флуктуациями потенциала частички. Характерная высота скачков составляет 10 мВ или кратно (скачки отмечены стрелками), что по порядку величины совпадает с тепловой энергией (25 мВ). Ширина скачков по порядку величины также 10 мВ. Учитывая скорость развертки напряжения на нижнем контакте 0.5 мВ/с, получаем, что примерно каждые 20 с частичка скачком меняет свой заряд.


Оценим экспериментальный сигнал, считая форму наночастички сферической, т.е. высота равна ее диаметру $(2R=40\,\mathrm{Hm})$, и учитывая, что измерение поверхностного потенциала происходит на высоте $h=20\,\mathrm{Hm}$ от поверхности. Для приближенного аналитического описания потенциала частички поместим в центр сферы элементарный заряд. Один электрон, удаленный на расстояние R от диэлектрика $(\mathrm{SiO}_2, \varepsilon=4)$, на высоте 2R+h над диэлектриком $(\mathrm{T.e.}$ на высоте h над верхушкой сферы) создает потенциал [11]:

$$arphi = rac{e}{4\piarepsilon_0(R+h)} - rac{e(arepsilon-1)}{4\pi(arepsilon+1)arepsilon_0(3R+h)} \cong 25\,\mathrm{mB}.$$

В эксперименте характерный размах осцилляций, $\Delta SP = 10 \,\mathrm{mB}$ (данные AM СКЗМ измерений, AM — амплитудная модуляция), в 2.5 раза меньше этой величины.

Учтем инструментальный вклад. Вариации SP измерены в режиме AM CK3M (AM SKPM) и поэтому занижают реальные скачки потенциала. Как видно на рис. 3, режим ФМ СК3М (РМ SKPM, ФМ — фазовая модуляция), имея в 2 раза худшее соотношение сигнал/шум, более корректно определяет перепады SP сигнала над субмикронными участками.

Стоит добавить, что АМ- и РМ-изображения (см. вставки на рис. 3) не совпадают не только количественно, но и качественно (см. пятно в потенциале слева от частички на АМ-изображении). Из-за большого емкостного вклада консоли и боковых граней зонда в АМ-сигнал его значения могут зависеть от высоты зонда над поверхностью. В РМ-сигнале превалирует вклад от емкостного взаимодействия самого кончика зонда с образом. РМ-изображение было измерено после АМ-изображения. Природа пятна в потенциале может быть

Рис. 3. СКЗМ-измерения потенциала над 50-нанометровой частичкой Au в разреженной атмосфере. Профиль сигнала над частичкой в режиме амплитудной (верхняя линия) и фазовой (нижняя линия) модуляции. На вставках сигнал *SP* в режимах AM и PM. В обоих режимах расстояние между зондом и образцом — 20 нм.

также вызвана случайным контактом зонда с образцом и локальной инжекцией заряда. На величину перепадов AM- и PM-сигналов над частичкой обсуждаемое качественное расхождение изображений не влияет.

С учетом данных рис. 3 можно положить размах реальных осцилляций над частичкой на рис. 2 в \sim 2 раза большим, т.е. \cong 20 мВ. В итоге измеренные в режиме АМ СКЗМ 10 мВ осцилляции *SP* сигнала (см. рис. 2) соответствуют одноэлектронным скачкам заряда.

Таким образом, в АМ СКЗМ режиме обеспечивается лучшее соотношение сигнал/шум, чем в режиме фазовой модуляции. Однако измеренные перепады потенциала могут занижать, как минимум в 2 раза, реальные перепады. С учетом приведенного расчета это дает основания считать, что измеренные вариации потенциала над изолированной золотой частичкой отражают одноэлектронные скачки заряда, что является доказательством очень высокой чувствительности метода к детектированию заряда.

4. Заключение

Проведены СКЗМ-исследования толстых диэлектрических покрытий, изготовленных различными методами. Показана существенная зависимость "шероховатости" поверхностного потенциала от технологии нанесения слоев. С помощью оптимального, с минимальными флуктуациями поверхностного потенциала, диэлектрического слоя окисла кремния микронной толщины продемонстрирована высокая чувствительность СКЗМметода, его способность регистрировать одноэлектронные заряженные состояния наночастичек золота на таком слое.

Финансирование работы

Работа выполнена при поддержке гранта Российского научного фонда № 24-22-20014 и гранта СПбНФ 24-22-20014 (А.В.Анкудинов, В.Д. Родин, А.М. Минтаиров). Работы по осаждению золотых частиц выполнены при поддержке СПбГУ, шифр проекта 122040800254-4.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- D.C. Tsui, H.L. Stormer, A.C. Gossard. Phys. Rev. Lett., 48, 1559 (1982).
- [2] J. Martin, S. Ilani, B. Verdene, J. Smet, V. Umansky, D. Mahalu, D. Schuh, G. Abstreiter, A. Yacoby. Science, 305, 980 (2004).
- [3] A.M. Mintairov, V.Yu. Axenov, D.V. Lebedev, A.S. Vlasov, A.S. Frolov, E.V. Ponamarev, V.S. Stolyarov. Phys. Rev. B, 111 (4), #0454102025 (2025).

- [4] F. Ehrenhaft. Anzeiger Acad. Weiss (Vienna), 110, 118 (1910).
- [5] R.S. Bonilla, B. Hoex, P.R. Wilsham. Phys. Status Solidi A, 214 (7), 1700293 (2017).
- [6] S.P. Muduli, P. Kale. Mater. Sci. Semicond. Process., 154, 107202 (2023).
- [7] A. Tekiel, Y. Miyahara, J.M. Topple, P. Grutter. ACS Nano, 7 (5), 4683 (2013).
- [8] Y. Zhang, O. Pluchery, L. Caillard, A.-F. Lamic-Humblot, S. Casale, Y.J. Chabal, M. Salmeron. Nano Lett., 15, 51 (2015).
- [9] Y. Abbas, M. Rezeq, A. Nayfeh, I. Saadat. Appl. Phys. Lett., 119, 162103 (2021).
- [10] B. Chatelain, A.E. Barraj, C. Badie, L. Santinacci, C. Barth. New J. Phys., 23, 123009 (2021).
- [11] Общий курс физики. Учеб. пособие для вузов. В 5 т. Т. 3. Электричество, под ред. Д.В. Сивухина (М., Физматлит, 2004).

Редактор А.Н. Смирнов

Dielectric coatings for elementary charge fluctuation studies testing with Kelvin probe microscopy

V.D. Rodin^{1,2}, V.Ju. Aksenov¹, A.V. Ankudinov¹, A.S. Vlasov¹, Ju.A. Jarova¹, V.O. Bolshakov¹, I.V. Ilkiv³, R.V. Levin¹, A.V. Malevskaya¹, A.M. Mintairov¹

¹ loffe Institute,

194021 St. Petersburg, Russia

² St. Petersburg Electrotechnical University "LETI", 197022 St. Petersburg, Russia

³ St. Petersburg State University, 199034 St. Petersburg, Russia

Abstract Using scanning probe microscopy, the relief and variations of the surface potential of MgF_2 , SiN_x , SiO_2 dielectric coatings obtained by thermal evaporation, plasma-activated chemical deposition, and thermal oxidation of silicon, respectively, were studied. Compared with the first two, spatial fluctuations of the volume charge of the SiO_2 coating are minimal. This allowed us to accurately study the charge states of Au nanoparticles deposited on the SiO_2 coating and demonstrate the ability of scanning Kelvin probe microscopy to detect single-electron charge jumps on nanoparticles.