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Продемонстрирована возможность переноса состояния однофотонного возбуждения посредником при

нерезонансном взаимодействии двух осцилляторов. Однофотонное возбуждение представляет собой широко-

полосный по частоте пакет, который нерезонансно воздействует на осциллятор-посредник. Центральная ча-

стота пакета резонансна частоте другого изолированного осциллятора, на который собственно и переносится

возбуждение. В рамках такой постановки однофотонный пакет моделируется широкополосным однофотон-

ным термостатом. Показано, что в условиях нерезонансного взаимодействия осцилляторов обнаруженный

эффект описывается кинетическим уравнением, полученным в рамках марковского приближения на основе

алгебраической резонансной теории возмущений. Показано, что возможен случай переноса возбуждения,

отличающий случай осциллятора от атома. Определена статистика переданного возбуждения.
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1. Введение

Однофтонные волновые пакеты, представляющие со-

бой состояние электромагнитного поля с одним возбуж-

дением, являются привлекательными прежде всего для

целей квантовой теории информации [1,2]. Именно с по-

мощью таких источников осуществляется кодирование

и перенос информации в большинстве квантовых ин-

формационных протоколов. Вместе с тем однофотонный

источник может быть и широкополосным, где наряду с

центральной частотой важную роль играет и спектраль-

ная ширина пакета. В случае, если последняя имеет зна-

чение большее, чем другие характерные спектральные

ширины в задаче, он может рассматриваться как термо-

стат, где однофотонное состояние случайным образом

распределено внутри его спектральной ширины. Такое

состояние может быть получено, например, посредством

генерирования бифотонного светового поля нелинейным

кристаллом, когда один из фотонов пары поступает на

детектор и детектируется, тогда другой фотон достовер-

но поступает в оптическую схему. Подчеркнем, что в

этом случае осуществляется приготовление состояния

путем проекционного измерения, в результате которого

реализуется сугубо квантовое состояния объекта. Поло-

са фазового синхронизма нелинейного кристалла в дан-

ном случае и отвечает спектральной ширине имеющего

место излучения. В рамках такой постановки излучение

со случайным характером распределения одиночного

возбуждения по частоте пакета может рассматриваться

как широкополосный волновой пакет, играющий роль

термостата при его последующем воздействии на другой

физический объект, который становится, таким образом,

открытой системой.

Первостепенной задачей квантовой теории открытых

систем является вывод кинетического уравнения для

матрицы плотности подсистемы или подсистем, основ-

ным компонентом которого является релаксационный

оператор. Обычно предполагается, что сама подсисте-

ма, обладающая определенным, как правило, конечным

числом степеней свободы, слабо взаимодействует с

системой, имеющей знчительно большее число степеней

свободы, называемой термостатом. В работах [3,4] из

общих физических соображений, не привлекая какие-

либо модельные понятия и допущения, за исключе-

нием марковости, был математически установлен вид

релаксационного оператора и соответствующий ему вид

кинетического уравнения, называемый формой Линдб-

лада. Однако универсальный вид Линдблада релаксаци-

онного оператора кинетического уравнения таит в себе

опасность некорректного применения этого уравнения.

В стандартных физических ситуациях — при анализе

предельных случаев и пр. — часто выходят за рамки

применимости известного кинетического уравнения [5].
В нестандартных физических ситуациях часто пренебре-

гают выводом релаксационного оператора, используя,

подчас без какого-либо обоснования, линдбладовский

релаксационный оператор [6]. Например, в статьях [5–
7] релаксационный оператор в форме Линдблада приме-

нялся либо к гамильтониану открытой системы в поле

термостата, в котором не было использовано прибли-

жение вращающейся волны, либо было использовано

приближение вращающейся волны за пределами области
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параметров, в которой приближение вращающейся вол-

ны справедливо. Это привело к парадоксальным выводам

типа нарушения второго закона термодинамики [6,7].
Чтобы избежать подобных ситуаций в новых задачах,

необходимо представлять требования к гамильтониану

открытой системы в термостате в условиях марковско-

го приближения. Тогда моделью термостата является

дельта-коррелированный термостат и в эффективном

гамильтониане не должно быть быстро меняющихся во

времени слагаемых, чтобы время корреляции термостата

было минимальным в системе [8,9]. Поэтому отдель-

ным вопросом во многих задачах теории открытых

систем является обоснование эффективного гамильто-

ниана открытой системы с требуемыми свойствами,

определяющего наряду с релаксационным оператором

кинетическое уравнение.

Еще раз подчеркнем — случай
”
чисто“ фотонных (бо-

зонных) систем с точки зрения кинетических уравнений

особый. Развиты методы для точного решения много-

частичных и многомодовых бозонных задач [10,11,14],
которые, тем не менее, нуждаются в численном мо-

делировании. Мы предлагаем альтернативный подход,

который в рассматриваемой ситуации и в ряде задач

квантовой оптики представляется более простым и фи-

зически наглядным.

В этой работе мы рассматриваем вопрос о переносе

состояния однофотонного широкополосного пакета с

гауссовым распределением фотона по его частотной

полосе при взаимодействии с осцилляторными систе-

мами. Ранее аналогичный вопрос мы обсуждали при

взаимодействии однофотонного широкополосного паке-

та с атомами. Мы рассматриваем две осцилляторные

системы. Одна система представляет из себя просто

обычный гармонический квантовый осциллятор, взаи-

модействие термостата с которым резонансно. Этот

же осциллятор, который мы называем посредником,

нерезонансным образом взаимодействует с однофотон-

ным широкополосным пакетом. Его собственная частота

считается существенно большей центральной частоты

однофотонного пакета, а потому определяющей масштаб

всех характерных времен эволюции в задаче. Кроме того

осциллятор-посредник также нерезонансным образом

взаимодействует еще с одним осциллятором, который

считается
”
изолированным“ как от термостата, так и от

однофотонного волнового пакета. Собственная частота

последнего резонансна центральной частоте пакета. Та-

кая двухосцилляторная схема востребована в связи с

различными архитектурами квантовых вычислительных

систем [15].
”
Изолированный“ осциллятор участвует в

унитарных операциях, поскольку его распад в термостат

заторможен осциллятором−посредником [16–18]. Под-

черкнем — здесь все исходные процессы взаимодействия

полей и систем — нерезонансные.

Другой существенной особенностью такой постановки

задачи является задача разделения двух термостатов —

обычного вакуумного термостата и
”
термостата“, описы-

вающего однофотонный широкополосный волновой па-

кет. В случае распространения широкополосного пакета

в атомарной среде [19] разделение термостатов осу-

ществлялось на основе узкой угловой направленности

однофотонного пакета. В случае двух осцилляторов мы

используем алгебраическую резонансную теорию возму-

щений (АРТВ) для получения эффективного гамильто-

ниана, а разделение термостатов осуществляется введе-

нием отдельных констант взаимодействия с каждым из

широкополосных полей. В принципе, это может быть

обосновано различными условиями взаимодействия по-

лей с осциллятором-посредником.

При этом в формальном решении уравнения Шре-

дингера с эффективным гамильтонианом для термо-

статных полей учтены все порядки разложения фор-

мального решения, тогда как для гауссова широкопо-

лосного однофотонного пакета учитываем только два

низших порядка. Получено кинетическое уравнение ви-

да Линдблада−Коссаковского−Горини−Сударшана для

матриц плотности открытой системы, описывающее ре-

лаксацию и возбуждения системы осцилляторов. Оно

может быть использовано в различных задачах. В данной

статье на основе полученного уравнения показано, что

движения как осциллятора-посредника, так и изолиро-

ванного осциллятора оказываются факторизованы. Про-

анализированы особенности переноса статистических

характеристик состояния пакета на состояние изолиро-

ванного осциллятора и доказано, что при определенных

условиях возможен полный перенос возбуждения и ста-

тистики на
”
изолированный“ осциллятор. Это отличает

задачу переноса возбуждения однофотонного широкопо-

лосного пакета на осциллятор от задачи переноса воз-

буждения на атом. В случае атома имеем максимальную

заселенность возбужденного уровня, равную 1/3. Следу-

ет также подчеркнуть, что полученное уравнение явля-

ется проявлением природы бозонных коммутационных

соотношений и и не может быть получено описанием

источника в рамках классического рассмотрения. К на-

стоящему времени существуют два экспериментально

продемонстрированных физических эффекта подобного

проявления — эффект Казимира [20] и лэмбовский

сдвиг [21] атомных уровней.

2. Постановка основной задачи

Будем предполагать следующую постановку зада-

чи. Пусть существуют два бозонных осциллятора с

существенно разными частотами, для определенности

ωc ≫ ωr , каждый из которых описывается оператора-

ми рождения c†, r† и уничтожения c, r с бозонными

коммутационными соотношениями
[

α, α†
]

= 1, α = c, r ,
[

c, r
]

=
[

c, r†
]

= 0. Осциллятор, описываемый опера-

торами r , будем называть изолированным, полагая

что он взаимодействует только лишь с осциллятором-

посредником c . Такое взаимодействие указанных осцил-

ляторов нерезонансное, иными словами осуществляется
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в крыле линии поглощения какого-либо из них или в

дисперсионном пределе.

Осциллятор-посредник взаимодействует с еще двумя

подсистемами.

Во-первых, взаимодействует со
”
своим“ термоста-

том B , находящимся в вакуумном состоянии. В качестве

термостата B выбрана бозонная система, которая описы-

вается операторами b
†
ω, bω , с аналогичными приведен-

ным гейзенберговыми коммутационными соотношения-

ми [bω
′ , b

†
ω ] = δω′

,ω . При взаимодействии осциллятора

с термостатом предполагаются выполненными обычные

условия слабого взаимодействия подсистемы в широкой

полосе взаимодействия с вакуумным окружением, когда

собственно обратным воздействием системы на термо-

стат можно пренебречь, считая состояние последнего

неизменным, что является стандартным условием для

построения кинетического уравнения.

Во-вторых, на осциллятор-посредник c действует уз-

конаправленный однофотонный широкополосный пакет,

центральная частота которого ω0 существенно меньше

собственной частоты ωc , но резонансна собственной ча-

стоте изолированного осциллятора ω0 = ωr . Операторы

рождения a†(ω) и уничтожения a(ω) квазимоды одно-

фотонного пакета отвечают бозонным коммутационным

соотношениям
[

a(ω), a†(ω
′

)
]

= δ(ω − ω
′

). Эти же опе-

раторы определяют и операторы его напряженности,

которые запишем в виде

ǫ−(t) =

∫

ω∈(ω0)

dωǫ(ω)a(ω) exp(−iωt),

ǫ+(t) = (ǫ−(t))†. (1)

Здесь ǫ(ω) характеризуется свойствами источника од-

нофотонного поля, а интегрирование ведется по его

спектральной полосе S(ω0) с центральной частотой

ω0. Для удобства считаем, что в ǫ(ω) включен также

параметр связи κ осциллятора и однофотонного поля,

который в дальнейшем считаем не зависящим от часто-

ты. Поэтому размерность этой величины не совпадает

с размерностью напряженности электрического поля.

Свободная энергия такого квантованного пакета задана

соотношением

H0,A =

∫

ω∈S(ω0)

dω
|ǫ(ω)|2
κ2

a†(ω)a(ω). (2)

Интегрирование здесь ведется по всей спектральной

полосе источника. Считаем, что каждый из источников

можно считать независимым. Это физически может быть

реализовано, например, как и в случае атомов [19], на
основе узкой угловой направленности однофотонного

пакета при его падении на зеркало микрорезонатора,

реализующего осциллятор-посредник. Отметим, что при

этом осциллятор-посредник служит источником пере-

рассеяния фотонов одного термостата в другой, как и

в случае атомов [19].

Наконец, свободные энергии оставшихся рассматрива-

емых систем — осцилляторов и термостата — запишем

в виде

H0,c = ~ωcc†c, H0,r = ~ωr r†r, H0,B =
∑

ω

~ωb†
ωbω, (3)

а также запишем свободные энергии описанных на-

ми взаимодействий между ними, используя представле-

ние Дирака по свободному гамильтониану H0 = H0,c +
+H0,r + H0,B + H0,A. Эти взаимодействия считаем элек-

тродипольными, а операторы в представлении Дирака

будем отражать явным написанием аргумента t следу-

ющих операторозначных функций:

Vc−r(t) = g(ce−iωct + c†eiωc t)
(

re−iωr t + r†eiωr t
)

,

Vc−A(t) =
(

ǫ−(t) + ǫ+(t))(ce−iωc t + c†eiωc t
)

,

Vc−B(t)=γcB

∑

ω∈(ωc)

(

ce−iωct+c†eiωc t
) (

b†
ωeiωt+bωe−iωt

)

,

(4)
где константы g, γcB определяют параметры связи взаи-

модействий осцилляторов между собой и осциллятора-

посредника со своим вакуумным термостатом. При запи-

си последнего выражения предполагается, что значение

константы взаимодействия выбрано на центральной ча-

стоте ωc осциллятора-посредника и она неизменна внут-

ри всей широкой полосы частот взаимодействия этого

термостата с данным осциллятором. Это предположе-

ние уже является одним из проявлений марковского

характера взаимодействия системы с широкополосным

окружением и является традиционным для задач вывода

кинетического уравнения для открытой системы. На-

помним, что константа взаимодействия осциллятора c с

однофотонным широкополосным пакетом уже включена

в операторозначные выражения для ǫ−(t), ǫ+(t).
Ранее в работах [22,23] в отсутствие широкополосного

однофотонного пакета нами был продемонстрирован эф-

фект релаксации изолированного осциллятора в термо-

стат осциллятора-посредника, который взаимодействует

квазирезонансным образом со своим широкополосным

термостатом в термодинамически равновесном состоя-

нии. Было показано, что динамика релаксации в этом

случае оказывается как для независимых подсистем.

При этом наблюдается как возбуждение изолированного

осциллятора, так и его необратимая релаксация. Послед-

няя, однако, происходит на частоте и в полосе частот,

существенно отличной от той, в которую диссипирует

собственно сам осциллятор-посредник. Было показано,

что физической природой такого появляющегося эффек-

та второго порядка является возникновение нового кван-

тового интерференционного канала, обусловленного ре-

зонансным взаимодействием осциллятора-посредника с

термостатом и нерезонансным взаимодействием осцил-

ляторов между собой. В текущей постановке задачи

именно в этой области частот имеется узконаправлен-

ный однофотонный широкополосный пакет, который в
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поставленных условиях играет роль широкополосного

термостата. Это обстоятельство играет существенную

роль, позволяя рассматривать динамику всей системы

в суперпозиции двух широкополосных полей — одно-

фотонного источника и вакуумного окружения. Поэтому

актуальным представляется как вопрос о непосредствен-

ном переносе однофотонного состояния на состояние

изолированного осциллятора, так и собственно сама его

динамика релаксации в этих условиях.

3. Кинетическое уравнение для
матрицы плотности осцилляторной
системы

Для вывода кинетического уравнения динамики

релаксации открытой системы будем использовать

АРТВ [24,25]. Ее основой является получение эффектив-

ного гамильтониана системы и последующее введение

марковского приближения для представления окруже-

ния белым шумом (источники шумов равновесного

термостата определяются как дельта-коррелированные

во времени случайные процессы), что и обеспечивает

построение корректного уравнения для матрицы плот-

ности подсистемы. Эффективный гамильтониан следует

вполне определенному и физически интуитивно понят-

ному требованию отсутствия в нем быстро меняющих-

ся осциллирующих иначе антивращающих слагаемых.

Обычно эти слагаемые при традиционных построениях

кинетического уравнения игнорируются и отбрасыва-

ются уже на этапе написания взаимодействия. И если

такое игнорирование может быть хоть как-то оправдано

в условиях резонансного и квазирезонансного взаимо-

действий, то при нерезонансных взаимодействиях оно

не оправдано ничем. Отметим, что эти взаимодействия

приводят, например, к дополнительному сдвигу основ-

ной частоты и замораживанию скорости релаксации

системы. Именно поэтому приходится проводить полный

вывод эффективного гамильтониана для каждой новой

физической ситуации.

Для волнового вектора всей системы 9 и полного га-

мильтониана задачи H(t) = Vc−r(t) + Vc−B(t) + Vc−A(t)
запишем уравнение Шредингера в представлении Дира-

ка:
d|9(t)〉

dt
= −i~H(t)|9(t)〉. (5)

Уравнение (5) с учетом выражений (4), содер-

жит осциллирующие слагаемые exp
(

± i(ωc ± ω)t
)

,

exp
(

± i(ωc ± ωr)t
)

, которые в зависимости от значе-

ний частоты ω, пробегающий весь спектр значений, мо-

гут быть как быстро меняющимися функциями времени,

так и медленно меняющимися функциями по сравнению

с exp
(

± iωct
)

и exp
(

± iωr t
)

. Такая ситуация харак-

терна для всех задач взаимодействия оптического излу-

чения с квантовой системой, состоящей из двух и более

энергетических уровней. Для открытых систем наличие

быстро меняющихся функций времени в гамильтониане

в представлении Дирака критично в связи с дальнейшим

использованием марковского приближения и представ-

ления термостатных полей как дельта-коррелированных.

В работе [9] было показано, что для того, чтобы

можно было использовать марковское приближении в

теории открытых квантовых систем, в гамильтониане

системы необходимо исключить все быстро меняющиеся

во времени слагаемые в представлении Дирака. Для

этого удобно использовать АРТВ, основанную на уни-

тарной симметрии квантовой теории. Место АРТВ среди

других методов получения эффективного гамильтониана

обсуждено в работе [8].
Совершим унитарное преобразование исходного

вектора-состояния, переходя к новому представлению:

|9̃(t)〉 = exp
(

− iS(t)
)

|9(t)〉. (6)

В этом представлении уравнение Шредингера для пре-

образованного вектора |9̃(t)〉 имеет тот же самый вид,

что и (5), но с преобразованным (что отмечает знак

”
тильда“) гамильтонианом:

H̃(t) = e−iS(t)H(t)eiS(t) − i~e−iS(t) ∂

∂t
eiS(t). (7)

Дальнейшие преобразования основаны на разложе-

нии генераторов S(t) и H̃(t) в ряды по константам

имеющихся в задаче взаимодействий и учете условий

резонансности. В нашем случае

S(t) = S(1,0,0)(t) + S(0,1,0)(t) + S(0,0,1)(t) + S(2,0,0)(t) + ...,

(8)

H̃(t) = H̃(t)(1,0,0) + H̃(t)(0,1,0)

+ H̃(t)(0,0,1) + H̃(t)(2,0,0) + ....

(9)

Левый индекс каждой тройки верхних индексов опи-

сывает порядок слагаемого по константе связи меж-

ду квантованными осцилляторами, центральный — по

взаимодействию осциллятора-посредника с равновесным

термостатом, а правый — по взаимодействию этого же

осциллятора с однофотонным широкополосным пакетом.

Выражение (9) с конечным числом слагаемых называем

эффективным гамильтонианом и обозначаем H̃E f f (t) .

Поскольку взаимодействие между осцилляторами

нерезнансно, оно начинает проявляться только во вто-

ром порядке по взаимодействию между ними. Взаи-

модействия осциллятора-посредника с окружением но-

сят как резонансный характер при взаимодействии с

собственным термостатом, так и нерезонансный ха-

рактер, проявляющийся во втором порядке по взаи-

модействию с однофотонным источником. Именно по-

этому в рассматриваемой системе будут проявляться

эффекты второго порядка по взаимодействиям. Наряду

с тривиальными эффектами также будет возможность

появления новых нетривиальных каналов релаксации,

Оптика и спектроскопия, 2025, том 133, вып. 10



1094 А.М. Башаров, А.И. Трубилко

обусловленных квантовой интерференцией различных

альтернатив, описывающихся билинейной комбинацией

констант взаимодействий.

Мы не будем выписывать общие уравнения для

слагаемых генераторов, поскольку они неоднократно

выписывались и их общий вид неизменен для различных

физических уcловий [8,19,24]. Особенности описания

воздействия однофотонного широкополосного пакета

совместно с термостатом, правда, на атомы, рассмот-

рены нами в работе [19]. Там же прописана техника

получения кинетического уравнения. Заметим, что вхо-

дящие в (9) эффективные операторы, описывающие как

нерезонансные взаимодействия, так и взаимодействия с

широкополосными полями, в кинетическом уравнении

исчезают, оставляя лишь релаксационный оператор в

форме Линдблада и штарковские сдвиги энергетических

уровней.

В результате стандартных процедур АРТВ и стохасти-

ческих дифференциальных уравнений получили управ-

ляющее кинетическое уравнение для матрицы плотно-

сти ρS , описывающее эволюцию подсистемы из двух

выделенных осцилляторов в следующем виде:

∂ρS

∂τ
= −K(τ )µ2

(

r†rρS + ρSr†r −−2rρSr†
)

− 1

2
K(τ )µ2

(

rr†ρS + ρSrr† − 2r†ρSr
)

−1

2
σ 2

(

r†rρS + ρSr†r − 2rρS r†
)

− 1

2
χ2

(

c†cρS + ρSc†c − 2cρSc†
)

. (10)

Здесь введено безразмерное время τ = ωct . Временная

функция K(τ ) = 2
(

er f (δτ /2)
)

, выраженная через функ-

цию ошибок er f , предопределена гауссовым частотным

распределением однофотонного пакета. Мы предположи-

ли, что однофотонный пакет имеет гауссово частотное

распределение плотности вероятности обнаружения фо-

тона (ν = ω/ωc — безразмерная частота, ν0 = ω0/ωc):

|ǫ(ν)|2 =
1√
πδ

exp(− (ν − ν0)
2

δ2
).

Безразмерная спектральная ширина δ = 1/ωc опреде-

ляется полосой генерации 1 источника однофотонного

излучения.

Представленное уравнение (10) имеет типичную фор-

му уравнения Линдблада и описывает эффекты релакса-

ции и возбуждения системы. Однако его нельзя эвристи-

чески записать, не проделав вычисления, аналогичные

случаю атомов [19] и случаю распада изолированного

осциллятора в термостат [22], поскольку только пря-

мым вычислением можно выделить интерференционные

операторы взаимодействия, отражением которых служат

безразмерные параметры µ = 2
√
2πgκ(~2ω3/2

c

√
ω0)

−1,

σ = 2
√
2πgγcB(~2ω3/2

c

√
ω0)

−1 и χ =
√
2πγcB(~ωc)

−1.

Сами интерференционные операторы не вошли в ито-

говое кинетическое уравнение для осцилляторной систе-

мы, поскольку в интерференции были задействованы ши-

рокополосные поля, которые стандартно
”
исключились“

при написании кинетического уравнения.

4. Характеристики осцилляторов

На основе полученного уравнения (6) можно опре-

делить характеристики выделенных осцилляторов. От-

метим, что динамика обеих подсистем — изолирован-

ного осциллятора, на который переносится состояние

однофотонного пакета, и осциллятора-посредника, фак-

торизуется, если в первоначальных состояниях отсут-

ствовала запутанность. Поэтому обе подсистемы раз-

виваются независимо друг от друга. Их нерезонансное

взаимодействие между собой, а также взаимодействия

с термостатом и однофотонным пакетом, продуцируют

только изменение собственных частот рассматриваемых

подсистем, описываемые следующими формулами:

ω̃c = ωc −5c(ωr ) −
5r (ω0)

g2

∫

dω|ǫ(ω)|2 − γ2
cB

2~ωc

,

−ω̃r = ωr −5r (ωc).

Здесь возникают стандартные параметры АРТВ:

5c(ωr ) =
g2

~

( 1

ωc + ωr

− 1

ωc − ωr

)

,

5r(ωc) =
g2

~

( 1

ωc + ωr

+
1

ωc − ωr

)

.

Динамика осциллятора-посредника в рассмотренных

условиях сводится непосредственно только к его ре-

лаксации, обусловленной лишь его резонансным взаи-

модействием с вакуумным термостатом. Так, среднее

число возбуждений
〈

c†c
〉

(τ ) = S pS

(

c†cρS(τ )
)

описыва-

ется стандартным выражением

〈

c†c
〉

(τ ) =
〈

c†c
〉

0
exp

(

− χ2τ
)

,

где
〈

c†c
〉

0
— среднее число возбуждений осциллятора в

начальный момент времени и, следовательно, начальное

среднее экспоненциально затухает либо не развивается

для начального вакуумного состояния. Нетрудно пока-

зать, что в случае взаимодействия с горячим термоста-

том, состояние которого подчиняется равновесному рас-

пределению, среднее число возбуждений осциллятора-

посредника также определялось бы средней плотностью

числа фотонов непосредственно термостата.

Динамика изолированного осциллятора обусловле-

на каналами релаксации, появляющимися исключи-

тельно вследствие квантовой интерференции альтерна-

тив нелинейных взаимодействий этого осциллятора с

осциллятором-посредником, осциллятора-посредника с

однофотонным пакетом, так и выделенным гауссовым
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характером самого однофотонного пакета. Подчеркнем,

что эти слагаемые естественным образом возникают при

применении АРТВ совместно с квантовыми стохасти-

ческими дифференциальными уравнениями при выводе

кинетического уравнения для матрицы плотности от-

крытой системы, благодаря учету всех быстро меняю-

щихся слагаемых исходного гамильтониана взаимодей-

ствий [19,24,25]. Эти факторы приводят к следующему

уравнению для матрицы плотности ρR изолированного

осциллятора:

∂ρR

∂τ
= −K(τ )µ2

(

r†rρR + ρRr†r − 2rρRr†
)

− 1

2
K(τ )µ2

(

rr† − 1

2
σ 2

(

r†rρR + ρRr†r −−2rρRr†
)

.

(11)
Видно, что динамика изначально изолированного ос-

циллятора определяется взаимодействием с однофо-

тонным пакетом, который линейно взаимодействует с

посредником, коэффициенты которого, однако зависят

от времени, ввиду гауссова характера распределения

одного фотона в частотном пакете. Кроме того, благода-

ря интерференции открывается канал непосредственной

релаксации изолированного осциллятора в термостат

осциллятора-посредника. Эта релаксация, однако, про-

исходит в частотной полосе с центром на собственной

частоте самого изолированного осциллятора, а не по-

средника.

Из уравнения (11) следует кинетическое уравне-

ние динамики среднего числа возбуждений n =
〈

r†r
〉

=
= S pR(r†rρR) изолированного осциллятора:

∂n

∂τ
+

(

K(τ )µ2 + σ 2
)

n = K(τ )µ2. (12)

В рассматриваем случае гауссов характер спектраль-

ного распределения широкополосного однофотонного

пакета приводит к появлению нелинейного характе-

ра уравнения эволюции среднего числа возбуждений.

Аналитическое решение уравнения (12) возможно в

случае отсутствия (или возможностью пренебрежения)
взаимодействия с вакуумным термостатом, когда σ 2 = 0.

В этом случае среднее число возбуждений изолирован-

ного осциллятора определяется соотношением

n(τ ) = n0M(τ ) +
(

1−M(τ )
)

, (13)

где функция M(τ ) определена характером спектрально-

го распределения однофотонного пакета, описываемого

функцией K(τ ), и имеет следующий явный вид:

M(τ ) = exp
(

− 4µ2

δ

[δτ

2
er f (δτ /2)

+
exp(−δ2τ 2/4)√

π
− 1√

π

]

)

. (14)

Заметим, что в рассматриваемом случае среднее чис-

ло возбуждений изолированного осциллятора очевидно

стремится к своему стационарному значению и на

больших временах выходит на уровень равный единице,

так же как и в исходном однофотонном пакете. Поэтому

в случае отсутствия взаимодействия с вакуумным ре-

зервуаром или возможности пренебрежения этим вза-

имодействием среднее число возбуждений передается

от исходного однофотонного пакета к изолированному

осциллятору полностью без изменений.

Покажем, что состояние изолированного осциллятора

в рассматриваемом случае имеет гауссово распределе-

ние для координаты и импульса, cчитая для простоты его

начальное состояние вакуумным. Доказательство этого

факта можно привести двумя разными способами.

Во-первых, можно показать, что коммулянт четверто-

го порядка k
(4)
q =

〈

q4
〉

− 4 〈q〉
〈

q3
〉

− 3
〈

q2
〉2

+ 12
〈

q2
〉

−
−〈q〉2 − 6 〈q〉4 для средних от оператора канонической

координаты q точно равен нулю. Это следует из решений

системы уравнений для средних, построенной на основе

кинетического уравнения (11), которые при выбранном

начальном условии имеют вид

〈q〉 = 0,
〈

q3
〉

= 0,

〈

q2
〉

=
3

2
(1−M(τ )), 〈q4〉 =

27

4
(1−M(τ ))2. (15)

Во-вторых, вводя вигнеровское представление матрицы

плотности

W (q, p, τ ) =
1√
2π

∫

exp
(

− is p
)

〈q + s |ρ|q − s〉 ,

определяющее функцию квазивероятностиW (q, p, τ ) ка-
нонических сопряженных координаты и импульса для

изолированного осциллятора:

∂W (q, p, τ ))

∂τ
=

[

∂q

(

K(τ )

2
µ2q

)

+ ∂p

(

K(τ )

2
µ2p

)

+
(

∂2q + ∂2p

)(3K(τ )

4
µ2

)]

W (q, p, τ ).

(16)

Представленное уравнение является уравнением

Фоккера-Планка с положительно определенными

диффузионными коэффициентами и коэффициентами

сноса и не имеет смешанных производных. Это означает,

что эволюция координаты и импульса осуществляется

независимым образом, а их функциями распределения

в используемом представлении являются гауссовы

функции. Заметим, что из уравнения (16) естественным

образом следуют решения (15) для приведенных

средних.

Для определения статистических характеристик чис-

ла возбуждений изолированного осциллятора найдем

нормально упорядоченное среднее Q =
〈

r†r†rr
〉

, одно-

временное среднее которого подчиняется уравнению,

следующему из (12) в случае отсутствия взаимодействия
с вакуумным термостатом:

∂Q

∂τ
+ 2K(τ )µ2

Q = 4K(τ )µ2n(τ ), (17)
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где функция n(τ ) определена решением (13). Решение

для случая вакуумного начального состояния n0 = 0

изолированного осциллятора имеет простой вид

Q(τ ) = 2
(

1−M(τ )
)2

, (18)

где функция M(τ ) определена согласно (14).

С помощью представленных выражений можно про-

следить эволюцию параметра статистики ξ числа воз-

буждений изолированного осциллятора от времени.

Этот параметр определяет отклонение статистики от

стандартного квантового предела, заданного вакуум-

ным и когерентным состояниями осциллятора, ми-

нимизирующими соотношение неопределенностей со-

пряженных компонент, для которого характерна пуас-

соновская статистика регистрируемого числа возбуж-

дений, дисперсия которого в этом случае равна

1n2 =
〈

r†r†rr
〉

−
〈

r†r
〉2

= n. Представленный параметр

статистики характеризует отклонение от нормированной

на уровень стандартного квантового предела в диспер-

сии числа возбуждений:

1n2

n
= 1 + ξ. (19)

При этом значение ξ = 0 отвечает когерентному состо-

янию осциллятора, при ξ > 0 статистика оказывается

суперпуассоновской, а случай ξ < 0 отвечает субпуас-

соновской статистике числа возбуждений. В рассматри-

ваемом случае дисперсия среднего числа возбуждений

осциллятора 1n2 = n2 + n и параметр статистики прини-

мает в данном случае значение ξ = n.

Представленная аналитическими решениями ситуация

передачи возбуждения и свойств однофотонного пакета

изолированному осциллятору является идеальной, нали-

чие взаимодействия осциллятора с вакуумным термоста-

том осциллятора-посредника приводит к необходимости

учета его необратимой релаксации, что в конечном

итоге приводит к неидеальному переносу как самого

возбуждения, так и статистических свойств исходного

пакета. Это отчетливо видно из рис. 1 и 2, где пред-

ставлена динамика развития и выхода на стационарные

решения среднего числа возбуждений изолированного

осциллятора и нормально упорядоченного среднего Q

соответственно. На представленных графиках приведены

решения как для случая полного отсутствия релаксации

в вакуумный термостат — сплошные кривые, так и при

учете такого взаимодействия — графики, представлен-

ные точками и штрихами. Для всех графиков положена

спектральная ширина исходного однофотонного пакета,

нормированная значением, равным единице. Очевидно,

что учет взаимодействия систем с вакуумным термо-

статом приводит к неполной передаче как среднего

значения числа возбуждений, так и изменению статисти-

ческих свойств исходного гауссова пакета.

0 20 40 60
0.95

0.96

0.97

0.99

1.00

τ

n
(τ
)

0.98

80 10010 30 50 70 90

Рис. 1. Зависимость среднего числа возбуждений n(τ ) изоли-

рованного осциллятора от безразмерного времени τ . Выбраны

следующие значения параметров: δ = 1, µ2 = 0.1, сплошная

кривая — σ 2 = 0, точки — σ 2 = 0.01, штрихи — σ 2 = 0.07.

0 20 40 60
0

0.5

1.0

2.0

τ

Q
(τ
)

1.5

80 100

Рис. 2. Зависимость нормально упорядоченного среднего

Q = 〈r†r†rr〉 изолированного осциллятора от безразмерного

времени τ . Выбраны следующие значения параметров: δ = 1,

µ2 = 0.1, сплошная кривая — σ 2 = 0, точки — σ 2 = 0.005,

штрихи — σ 2 = 0.01. Значение функции равное отвечает

гауссову состоянию осциллятора.

5. Заключение

Следует заметить, что рассмотрение широкополос-

ного однофотонного пакета, уединенное возбуждение

которого распределено по гауссову закону, в качестве

широкополосного термостата для других систем, на

который он и действует, авторам не известно ни по

постановке, ни по решению. При этом следует отметить

следующие обстоятельства.

1. В настоящем смысле широкополосный однофотон-

ный пакет термостатом не является, поскольку воз-

можно полное поглощение фотона. Однако факт широ-

кополосности так, как зачастую это делают в теории
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открытых систем при их взаимодействии с термостатом,

использован при вычислениях.

2. Такие широкополосные пакеты являются состояни-

ями одиночного фотона при генерации широкополосных

бифотонных полей [26,27]. Осуществление проекцион-

ного измерения над одним из фотонов пары однозначно

свидетельствует о воздействии другого из них на выде-

ленную открытую систему. При таком способе приготов-

ления состояние анализируемого фотона существенно

квантовое (с необходимым учетом его коммутационных

соотношений) и не может быть интерпретировано ника-

кими другими классическими источниками. В работе [27]
приведен пример генерации широкополосных бифотон-

ных полей в кристалле ниобата лития, где генерируется

сигнальная волна на длине волны λ = 495 nm с шириной

спектра излучения 1ν ≈ 2.5 · 1014 Hz, что много больше

скорости релаксации поля в оптических резонаторах.

3. Полученное уравнение динамики открытой систе-

мы вида (10) является уравнением, описывающим как

линейное поглощение, так и линейное усиление систе-

мы на основе релаксационного оператора Линдблада.

Оно получено для состояния квантового источника,

поскольку само уравнение является проявлением ком-

мутационных соотношений однофотонного источника.

Гауссова огибающая источника продуцирует нелинейные

эффекты, возникающие в системе. Близкая задача, где

в качестве источника выступают классические поля,

приводит к уравнению и решению принципиально иного

вида. В качестве источников таких полей выступает

обычное лазерное излучение с ослабленным числом

фотонов, среднее значение которых снижено до еди-

ницы. Для их описания коммутационные соотношения

неважны, поскольку их характеристики описываются

здесь обычными с-числовыми функциями. В этом случае

кинетическое уравнение для матрицы плотности откры-

той системы определяется только динамической частью

(без учета взаимодействия с вакуумной составляющей)
и имеет следующий вид:

∂ρ

∂τ
= iη

[

(

rE∗(τ ) + r† − E(τ )
)

, ρ
]

,

где η — константа связи,

E(τ ) =
∫

dνǫ(ν)〈α(ν)〉 exp
(

i(ν − 1)τ
)

, а угловыми

скобками обозначено среднее значение безразмерной

амплитуды поля на данной частоте. Очевидно, что как

вид самого приведенного уравнения, так и его решение

отличаются от анализируемого в настоящей статье

случая.

Мы показали, что в отсутствие или в пренебреже-

нии вакуумным термостатом состояние однофотонного

квантового широкополосного источника может быть

перенесено на состояние изолированного осциллятора в

рассмотренной системе. При резонансном воздействии

на осциллятор возможна аналогичная передача ввиду

полного отождествления вида кинетического уравне-

ния (11) в этом случае. Такая картина наблюдает-

ся благодаря описанию осциллятора операторами типа

Бозе. Если в качестве уединенной системы выбрать

одиночную модель атома, аналогичные результаты не

возникают. Это связано с описанием атомной системы

на основе операторов с коммутационными соотношени-

ями, характерными для операторов углового момента.

Именно они приводят к стационарному значению числа

возбуждений, ограниченному величиной 1/3. Эта вели-

чина оказывается такой же, как предельная заселенность

переноса возбуждения в атомной цепочке [28], и как

при возбуждении двухуровневого атома равновесным

излучением со средним числом фотонов на резонансной

частоте, равным единице [29]. Последнее обстоятельство

можно также рассматривать как оправдание термина

”
термостат“ по отношению к широкополосному однофо-

тонному пакету.
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