09

Регистрация спектров в высокочастотном спектрометре электронного парамагнитного резонанса с помощью цилиндрического волновода без резонатора

© А.Г. Бадалян, Р.А. Бабунц, А.С. Гурин, М.В. Музафарова, Н.Г. Романов

ФТИ им. А.Ф. Иоффе, Санкт-Петербург, Россия

E-mail: marina.muzafarova@mail.ioffe.ru

Поступило в Редакцию 11 августа 2025 г. В окончательной редакции 2 сентября 2025 г. Принято к публикации 3 сентября 2025 г.

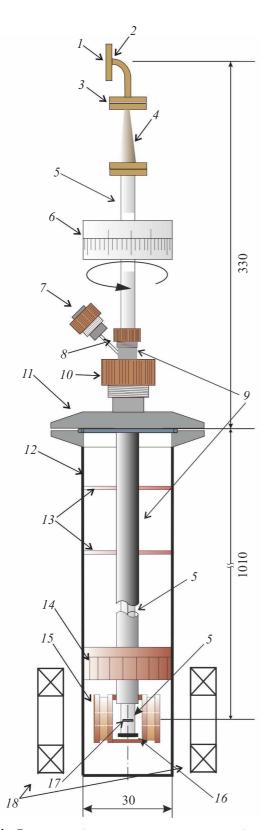
Представлена конструкция устройства, используемого в высокочастотном спектрометре ЭПР, работающем на частотах 94 и 130 GHz. Устройство используется для передачи микроволновой энергии на большие расстояния (от микроволнового генератора к образцу в гелиевом криостате) без заметного ослабления. Такая конструкция позволяет регистрировать спектры ЭПР—ОДМР в нормальном и импульсном режимах без использования резонатора.

Ключевые слова: высокочастотный спектрометр ЭПР, цилиндрический волновод, регистрация ЭПР без резонатора.

DOI: 10.61011/PJTF.2026.01.61923.20468

Открытый более 80 лет назад эффект электронного парамагнитного резонанса (ЭПР) [1] в скором времени после этого превратился в мощный метод исследования веществ, который не утратил своего значения и в настоящее время, так как его экспериментальная база непрерывно совершенствуется, что позволяет углублять проводимые исследования. Одной из основных причин актуальности исследований магнитного резонанса в различных областях физики, химии, биологии и медицины является то, что с его помощью удается получить информацию о процессах, происходящих в изучаемых материалах, на уровне атома. Количество публикаций, в которых содержатся результаты ЭПР, неуклонно растет. Помимо ЭПР получили развитие родственные ему оптически детектируемый магнитный резонанс (ОДМР) [2], двойной электронно-ядерный резонанс (ДЭЯР) [3], импульсные методы регистрации [4].

Долгое время приборная промышленность выпускала спектрометры, работающие в X-диапазоне (9 GHz) и Q-диапазоне (35 GHz) микроволновых частот. Это объясняется, с одной стороны, легкостью изготовления микроволновых резонаторов для создания высокой напряженности микроволнового поля на образце H_1 , а с другой — достаточно несложным изготовлением электромагнитов с индукцией до 2 Т, требующихся для работы в указанных диапазонах СВЧ. Появление полупроводниковых диодов Ганна позволило понизить напряжение в генераторе СВЧ до нескольких вольт по сравнению с высоковольтными клистронами (500—1000 V). Однако использование диодов Ганна качественно не изменило конструкции СВЧ-генераторов.


Идея использования более высоких микроволновых частот вытекает из самой природы эффекта, так как повышение частоты ведет к увеличению чувствительности

и разрешающей способности при измерении g-факторов, что особенно важно при исследованиях в органической химии и биологии. Первый высокочастотный спектрометр, работающий в двухмиллиметровом диапазоне (D-диапазон), был сконструирован советским ученым Я.С. Лебедевым [5] в 1977 г. на частоте 130 GHz с использованием одномодового цилиндрического резонатора TE_{011} [6]. Чувствительность спектрометра Лебедева достигла $4\cdot 10^7$ spin/G.

Для наблюдения электронного парамагнитного резонанса в диапазоне 130 GHz необходимо было создать магнит с индукцией не менее 5 T (*g*-фактору, равному 2, соответствует магнитное поле 4.64 T). В качестве магнита Я.С. Лебедев применил сверхпроводящий соленоид. В свою очередь применение сверхпроводящего магнита потребовало создания специального гелиевого криостата. До середины 80-х годов спектрометр Лебедева не имел аналогов в мире. Серьезным фактором, который ограничивает распространение таких высокочастотных спектрометров ЭПР, является необходимость использовать в больших количествах жидкий гелий.

Разработка и конструирование высокочастотных спектрометров ЭПР до сих пор являются сферой деятельности энтузиастов. Лишь фирма "Вruker" [7] выпустила промышленный вариант спектрометра ЭПР, работающего как в X-(10 GHz) и Q-(35 GHz) диапазонах, так и в W-диапазоне (95 GHz). Основной недостаток этого прибора — он очень дорог.

Микроволновое поле на образце (\mathbf{H}_1) в современных спектрометрах создается генераторами, стабильность частоты которых составляет порядка 10^{-6} для частот от 90 GHz и выше, а полоса частот чрезвычайно узкая — всего сотни kHz [8]. Применение таких генераторов позволяет изменить конструкцию, обеспечивающую пе-

Рис. 1. Схема устройства передачи микроволновой энергии и регистрации спектров в высокочастотном спектрометре ЭПР-ОДМР без резонатора. Внизу и справа показаны размеры гелиевого криостата в миллиметрах.

редачу микроволновой энергии от генератора к образцу. Во-первых, отпадает необходимость использования автоматической подстройки частоты. Во-вторых, применение цилиндрического одномодового резонатора в данном случае значительно усложняет конструкцию, так как изготовление такого резонатора — сложная механическая работа. Также сложно выполнить согласование резонатора с волноводом и управлять его настройками внутри гелиевого криостата.

В настоящей работе предлагается описание устройства передачи микроволновой мощности к образцу, помещенному в гелиевый криостат замкнутого цикла [9], причем без использования резонатора. Поскольку генератор излучает очень узкую полосу частот и вся энергия аккумулирована в этой полосе, при условии малых потерь в передающей линии удалось получить высокую напряженность микроволнового поля на образце. Устройство позволяет получить высокую чувствительность в стационарном режиме и возможность работать в импульсном, а также оптически детектировать магнитный резонанс. При использовании радиочастотной катушки возможна регистрация двойного электронноядерного резонанса.

В описываемой конструкции, которая применяется в разработанном нами высокочастотном спектрометре ЭПР на частоте 94 GHz, для создания микроволнового поля H_1 на образце используется цилиндрический волновод. Выбор цилиндрического волновода был обусловлен тем, что с его помощью можно передавать СВЧ-мощность почти без затухания на большую длину. Это очень важно, так как образец находится на большом расстоянии от генератора в высоком криостате. Кроме того, цилиндрический волновод упрощает вращение образца в постоянном магнитном поле при регистрации угловой зависимости.

Выбор трубки из немагнитной нержавеющей стали с толщиной стенки 0.2 mm в качестве волновода был обусловлен, во-первых, низкой теплоемкостью и теплопроводностью нержавеющей стали, что очень важно при использовании ее в криогенной технике. Низкая теплопроводность необходима для того, чтобы минимизировать передачу тепла от верхней части волновода внутрь криостата до самого его дна. Во-вторых, высоким качеством внутренней поверхности трубки, которая не поддается коррозии. Хотя электропроводность нержавеющей стали (удельное сопротивление стали $0.103\,\mu\Omega\cdot m$) меньше, чем, например, для меди $(0.01724\,\mu\Omega\cdot m)$, как показал опыт, ее достаточно для получения оптимального результата.

Основой конструкции является тонкостенная трубка диаметром 8 mm из немагнитной нержавеющей стали. На ней крепятся все элементы конструкции. Внутри этой трубки коаксиально вставлена другая трубка диаметром 5 mm также из нержавеющей стали, которая и является собственно волноводом.

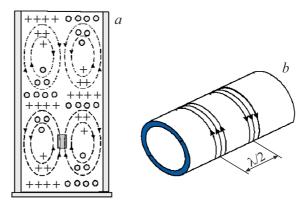
На рис. 1 схематически изображено устройство для передачи микроволновой энергии от СВЧ-генератора

к образцу. Оно состоит из фланца 1 и поворотной (под 90°) секции прямоугольного волновода 2, который одним фланцем соединяется с генератором СВЧ, а другим с волноводной секцией 4, осуществляющей переход от прямоугольного волновода к цилиндрическому. Длина этой секции составляет примерно $30 \, \mathrm{mm}$, что равняется десяти длинам волн $(3 \, \mathrm{mm})$.

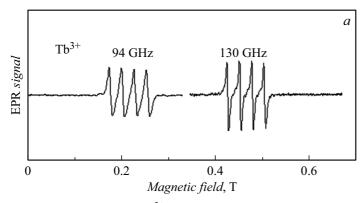
Между фланцами, соединяющими переход с прямоугольного волновода на цилиндрический 3, и цилиндрическим волноводом 5 установлена тонкая тефлоновая прокладка, которая вакуумирует волновод 5, а также электрически изолирует этот волновод от генератора. Вращающееся сочленение с гониометром 6 необходимо для вращения образца в постоянном магнитном поле. Оно представляет собой два круглых фланца, в одном из которых сделаны четвертьволновая канавка и канавка, в которую вставлено резиновое кольцо для вакуумного уплотнения частей сочленения. Вращающее соединение заключено в корпус гониометра, причем один из фланцев соединен с вращающейся частью гониометра, а другой — с неподвижной. Вакуумный электрический разъем 7 служит для электрического соединения датчика температуры и нагревателя, которые расположены в термостате 13, с измерительными приборами, а также иными электрическими соединениями. Вакуумное соединение 8 служит для подгонки по высоте волновода 5 относительно несущей трубы 9, а также для быстрой смены образцов. Соединение 10 служит для регулировки по высоте несущей трубки диаметром 8 mm относительно быстроразъемного фланцевого соединения 11, с помощью которого конструкция фиксируется в шахте 12 криостата. На трубе 9 размещено большинство элементов конструкции, включая медные экраны 13, которые необходимы для препятствия конвекционным потокам газообразного гелия, заполняющего внутреннюю шахту криостата. На этой же трубке крепятся термостат 14 (массивный медный цилиндр) и катушки модуляции магнитного поля 15. Образец помещается в самой нижней части волновода, закороченного крышкой 16. Так как крышка сделана съемной, можно легко заменять образцы и корректировать положение образца относительно оси сверхпроводящего соленоида 18. Для осуществления регистрации ОДМР или оптической подсветки образца в волноводе 5 делается прорезь 17.

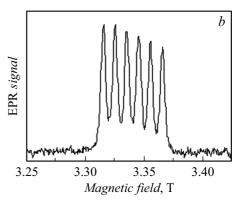
Существуют три основных типа поперечных волн, которые могут распространяться по СВЧ-линиям передач: электромагнитные (ТЕМ), электрические (ТЕ) и магнитные (ТМ). В прямоугольных и цилиндрических волноводах могут распространяться только ТЕ- и ТМ-волны. Свойства этих волн

TE: $E_z = 0$, $H_z \neq 0$,


TM: $H_z = 0$, $E_z \neq 0$.

В волноводах могут распространяться волны, у которых существует только составляющая H_z (TE) либо E_z (TM). Доминирующая волна, которая распростра-


няется в прямоугольном волноводе, — ТЕ₁₀. Она имеет самую низкую критическую частоту. При переходе волны из прямоугольного волновода в цилиндрический в последнем должна генерироваться волна с доминирующей модой ТЕ11. Однако в нашем случае из-за электрического разрыва волновода и длинного перехода прямоугольник-цилиндр генерируется волна ТЕ01, у которой нет аналога в прямоугольном волноводе. Критическая длина волны для этой моды равна $\lambda_{g} = 1.64r$, где r — радиус волновода. Радиус волновода, сделанного из трубки нержавеющей немагнитной стали диаметром 5 mm с толщиной стенок 0.2 mm, равен 2.3 mm. Критическая длина волны равна $\lambda_g = 3.77 \, \mathrm{mm}$. Длина волны генератора 3 mm. Такая волна хорошо вписывается в предлагаемый нами волновод. Структура поля этой волны показана на рис. 2.


Схема магнитных силовых линий, изображенная на рисунке, указывает на то, что образец, помещенный в центре волновода, как на рис. 2, a, будет находиться в магнитном поле H_1 такой же конфигурации, как в цилиндрическом резонаторе (ТЕ011). Так как электрические токи не текут вдоль стенок волновода, такая мода обладает минимальным затуханием и используется для переноса микроволновой энергии на большое расстояние, причем затухание волны уменьшается при увеличении частоты [10]. Это обстоятельство очень важно, поскольку расстояние от СВЧ-генератора до образца в криостате составляет около 1.4 m. Так как электрические токи в волне ТЕ01 текут перпендикулярно направлению распространения волны (рис. 2, b), возможно вырезать в волноводе прорези вдоль диаметра волновода. Прорези необходимы для проникновения внутрь волновода низкочастотной модуляции, радиочастоты при регистрации ДЭЯР и света при оптической регистрации магнитного резонанса.

Кроме моды TE_{01} в волноводе диаметром 5 mm могут распространяться и другие моды, например TE_{02} , TE_{03} и моды еще более высоких порядков, но их интенсивность значительно уменьшается с увеличением порядкового

Рис. 2. a — структура волны TE_{01} , которая передает энергию образцу. Магнитные линии показаны пунктиром, электрические — знаками "+" и "о". Прямоугольником отмечено место расположения образца. b — направления электрических токов.

Рис. 3. a — спектры ЭПР иона Tb^{3+} в иттрий-алюминиевом гранате, зарегистрированные в одном и том же образце на частотах 94 и 130 GHz в непрерывном режиме; b — спектр ЭПР иона Mn^{2+} в кристалле BaF_2 , зарегистрированный по электронному спиновому эху.

номера моды. При этом их основное свойство — течение токов перпендикулярно направлению распространения волны — сохраняется и не меняет общей картины магнитных полей. Все изложенное для частоты 94 GHz справедливо и для частоты 130 GHz, которая также используется в нашем спектрометре.

Для иллюстрации работы предлагаемого устройства на рис. 3 показаны спектры ЭПР, зарегистрированные с его помощью

На рис. 3, a приведены примеры спектров ЭПР иона ${
m Tb}^{3+}$ в иттрий-алюминиевом гранате, зарегистрированные в одном и том же образце на частотах 94 и 130 GHz в непрерывном режиме. Четыре линии в спектрах соответствуют сверхтонкой структуре иона (ядерный спин I=3/2). На частоте 130 GHz спектр ${
m Tb}^{3+}$ наблюдается в более высоком магнитном поле. Спектры показаны в едином масштабе. На рис. 3, b показан спектр ЭПР ${
m Mn}^{2+}$ в кристалле ${
m BaF}_2$, зарегистрированный по спиновому эху. Так как при импульсной регистрации не используется модуляция магнитного поля, шесть линий сверхтонкой структуры иона ${
m Mn}^{2+}$ зарегистрированы в виде первообразной.

Представленная конструкция устройства передачи микроволновой мощности на образец, находящийся в гелиевом криостате (на большом удалении от генератора СВЧ), относительно проста в исполнении. Она позволяет без применения резонатора получать высокую напряженность микроволнового поля на образце, быстро менять образцы, легко регистрировать угловую зависимость. С ее помощью возможна регистрация спектров ЭПР, ОДМР, ДЭЯР в непрерывном и импульсном режимах. Чувствительность спектрометра с данным устройством оказалась не хуже чувствительности спектрометра фирмы "Bruker". Применение цилиндрического волновода с модой TE_{01} и регистрация сигналов без резонатора имеют большие перспективы при конструировании высокочастотных спектрометров ЭПР, в которых применяются синтезаторы микроволновых частот от 50 GHz и выше.

Благодарности

Авторы выражают глубокую благодарность Л.Ю. Богданову за плодотворное сотрудничество, ценные и конструктивные предложения.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] E.K. Zavoysky, J. Phys., 44, 1245 (1945).
- [2] S. Geshwind, in *Electron paramagnetic resonance*, ed. by S. Geshwind (Plenum, N.Y., 1972), p. 353–426.
- [3] G. Feher, Phys. Rev., **103** (3), 834 (1956). DOI: 10.1103/PhysRev.103.834
- [4] К.М. Салихов, А.Г. Семенов, Ю.Д. Цветков, Электронное спиновое эхо и его применение (Наука, Новосибирск, 1976).
- [5] A. Schweiger, G. Jeschke, *Principles of pulse electron paramagnetic resonance* (Oxford University Press, 2001).
- [6] A.A. Galkin, O.Y. Grinberg, A.A. Dubinskii, N.N. Kabdin, V.N. Krymov, V.I. Kurochkin, Y.S. Lebedev, L.F. Oranskii, V.F. Shuvalov, Instrum. Exp. Tech., 20 (4), 1229 (1977). https://archive.org/details/sim_instruments-and-experimentaltechniques 1977 20 contents/page/1554/mode/2up
- [7] https://www.bruker.com/en/products-and-solutions/mr/epr-instruments/epr-research-instruments/Elexsys-II-E600-680.html
- [8] Р.А. Бабунц, А.Г. Бадалян, А.С. Гурин, Б.Р. Намозов, Н.Г. Романов, П.Г. Баранов, Письма в ЖТФ, **43** (8), 63 (2017). DOI: 10.21883/PJTF.2017.08.44536.16475 [R.A. Babunts, A.G. Badalyan, A.S. Gurin, B.R. Namozov, N.G. Romanov, P.G. Baranov, Tech. Phys. Lett., **43** (4), 393 (2017). DOI: 10.1134/S1063785017040162].
- [9] https://nanoscience.oxinst.com/products/spectromagpt
- [10] В.Ю. Пименов, В.И. Вольман, А.Д. Муравцов, *Техническая электродинамика* (Радио и связь, М., 2000).