03

Влияние глубины овально-дуговых лунок на снижение гидравлического сопротивления и увеличение тепловой эффективности структурированного канала на стабилизированном гидродинамическом участке турбулентного воздушного потока

© С.А. Исаев 1,2 , А.Ю. Чулюнин 3 , Д.В. Никущенко 1 , А.Г. Судаков 2

E-mail: isaev3612@yandex.ru

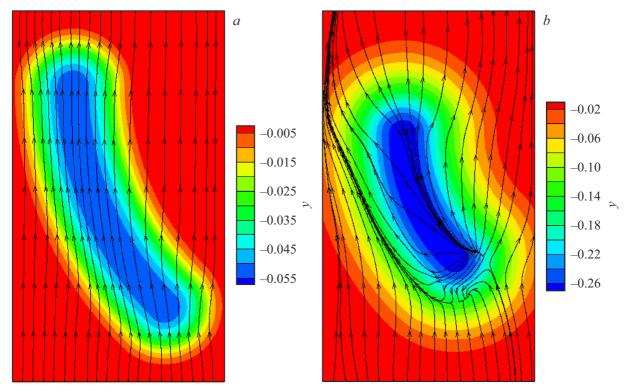
Поступило в Редакцию 4 августа 2025 г. В окончательной редакции 28 августа 2025 г. Принято к публикации 29 августа 2025 г.

В рамках RANS-подхода к описанию движения воздушного потока в канале с однорядными мелкими (глубиной 0.055 от высоты канала) овально-дуговыми лунками на стенке с плотностью нанесения 0.65 для стабилизированного гидродинамического участка при $Re=2\cdot 10^5$ получено почти 4% снижение гидравлических потерь по сравнению со случаем плоскопараллельного канала. При глубинах лунок порядка 0.09 в канале наблюдается 10% рост тепловой эффективности при 2% снижении относительных гидравлических потерь. Для оптимальной глубины лунок 0.275 прогнозируется 33% максимум теплогидравлической эффективности. Безотрывное обтекание структурированной поверхности канала сохраняется до умеренных глубин 0.14 лунок.

Ключевые слова: гидравлические потери, структурированный канал, овально-дуговая лунка, интенсификация, теплообмен, численное моделирование.

DOI: 10.61011/PJTF.2026.01.61915.20461

Проблема уменьшения вязкого трения при обтекании тел и снижения гидравлических потерь при движении жидкости в трубах и каналах давно привлекает внимание исследователей в различных сферах аэрогидромеханики, а также одно- и многофазной теплофизики [1]. Снижение сопротивления и гидравлических потерь напрямую связывается с энергетической эффективностью технических проектов различного назначения, в частности с созданием эффективных поверхностей теплообмена. Одним из способов уменьшения сопротивления является структурирование обтекаемой поверхности траншеями [2] и лунками [3]. В численных расчетах турбулентного стабилизированного течения в канале высотой H показана принципиальная возможность снижения его сопротивления структурированной траншеями глубиной 0.03Н поверхностью на 5% по сравнению с сопротивлением плоской стенки [2]. В [3] дается анализ сопротивления и теплопередачи для различных предложенных геометрий мелких лунок: круглой, эллиптической, ромбовидной и каплевидной с вершиной, направленной вверх и вниз по потоку. Для структурированных поверхностей характерна высокая плотность нанесения лунок, приближающаяся к 100%. Показывается улучшение теплопередачи на стенках с лунками для всех геометрий до 16%. Оно сопровождалось общим снижением сопротивления для всех геометрий до порядка 8 %, за исключением круглой


лунки, которая привела к увеличению сопротивления примерно на 5%. В [4] рассматриваются интенсификаторы теплообмена на энергоэффективных структурированных поверхностях в виде наклонных овальнотраншейных и овально-дуговых лунок. Они являются генераторами интенсивных спиралевидных пристеночных вихрей. Такие структурированные поверхности обладают предпочтительными характеристиками по гидравлическим потерям, существенно отличаются от аналогов в [3] и поэтому используются в настоящей работе. Расчетная методология взята из работы [5], где рассчитывается течение в периодическом модуле канала с наклонной овально-траншейной лункой в рамках RANS-подхода с использованием модифицированной SST-модели турбулентности. С целью снижения гидравлических потерь в канале радиус скругления кромок лунок выбирается значительным, а их глубина варьируется от 0 до 0.425 в долях высоты канала.

Аналогично [3] рассматривается участок стабилизированного воздушного течения и теплообмена в канале высотой *H* с многорядными наклонными овальнодуговыми лунками на участке изотермической стенки, на боковых границах которого поставлены условия симметричности, соответствующие зеркальному расположению лунок в многорядном пакете, а на проточных входных и выходных границах — условия периодичности. Все

¹ Санкт-Петербургский государственный морской технический университет, Санкт-Петербург, Россия

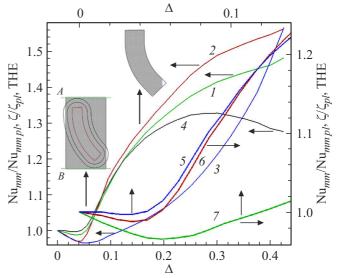
² Санкт-Петербургский государственный университет гражданской авиации им. Главного маршала авиации А.А. Новикова, Санкт-Петербург, Россия

³ Научно-исследовательский институт механики Московского государственного университета им. М.В. Ломоносова, Москва, Россия

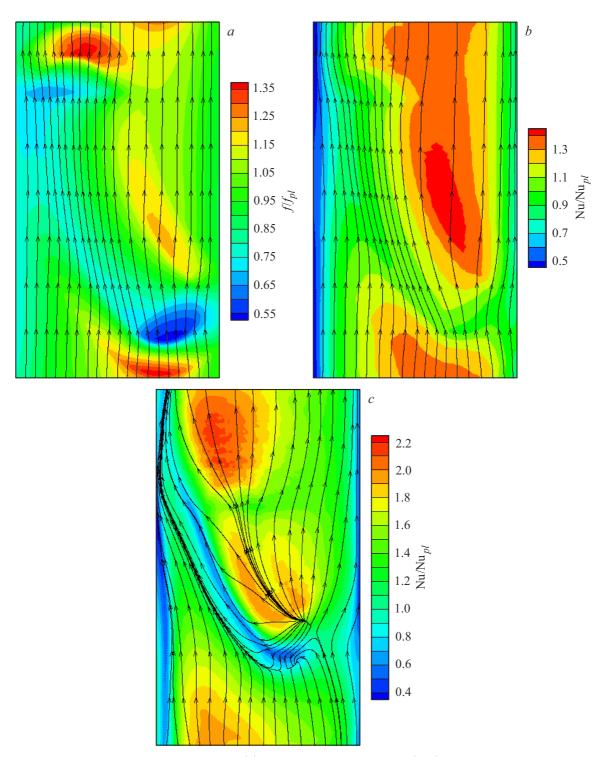
Рис. 1. Картины поверхностных профилей дугообразных овальных лунок глубиной $\Delta = 0.055~(a)$ и 0.275~(b) в однорядных пакетах на стабилизированных гидродинамических участках канала с нанесенными на омываемые стенки линиями растекания воздуха траекториями жидких частиц в пристеночном слое на расстоянии $5 \cdot 10^{-6}$. Цветной вариант рисунка представлен в электронной версии статьи.

линейные размеры отнесены к Н. Расчетная периодическая секция канала имеет высоту 1, длину 3.5 и ширину 2. В центре нижней изотермической стенки располагается лунка переменной глубины с радиусом скругления кромки 2 (рис. 1). Овально-дуговая лунка сочетает в себе два полусферических фрагмента, соединенных дуговой цилиндрической траншеей, с наклоном 45° на входном участке и ориентацией по потоку на выходе. Для очень мелких лунок ширина траншейной части равна 1, а длины лунок равны 3.5. Плоская верхняя стенка канала поддерживается при температуре $T_{ref} = 293 \,\mathrm{K}$, а нижняя структурированная стенка нагревается до 303 К. Число Рейнольдса, определенное по характерной среднемассовой скорости потока $U_{\rm o}$ и H, задается равным $2 \cdot 10^5$. Декартова система координат х, у, z привязана к середине нижней стенки канала во входном сечении, а оси ориентируются вдоль канала, в вертикальном и поперечном направлениях. Декартовы составляющие скорости U, V, W отнесены к характерной скорости U_0 , энергия турбулентности K — к U_0^2 , а турбулентная вязкость — к U_0H . На стенках задается условие прилипания. Число Нуссельта Nu определяется по градиенту температуры на стенке и перепаду между температурой стенки и среднемассовой температурой в соответствующем поперечном сечении канала. Характеристики с индексом pl берутся

в точках плоскопараллельного канала, соответствующих проекциям криволинейной структурированной стенки канала. Для умеренных и больших глубин лунки Δ при значительном радиусе скругления кромки (равном 2) площадь пятна лунки на стенке периодического модуля заметно возрастает (рис. 1). В случае мелких лунок плотность облунения составляет величину порядка 65%, что заметно ниже, чем в исследовании [3].


Численное моделирование конвективного теплообмена при турбулентном воздушном течении в канале с однорядными овально-дуговыми лунками проводится на основе записанных для несжимаемой жидкости осредненных по Рейнольдсу уравнений Навье-Стокса и энергии [6]. Система уравнений замыкается с помощью модели переноса сдвиговых напряжений, которая модифицирована с учетом кривизны линий тока в рамках подхода Роди-Лешцинера-Исаева [6]. Исходные стационарные уравнения в линеаризованной форме решаются с использованием многоблочных вычислительных технологий и разномасштабных структурированных сеток с их частичным пересечением. Вводятся декартова сетка в периодической секции канала и криволинейная косоугольная сетка в пристеночном слое, согласованная с поверхностью лунки. Общее количество ячеек сетки порядка $1.7 \cdot 10^6$. Продольные и поперечные шаги сеток на структурированной стенке равны 0.025.

	Влияние глубины	г овально-дугов	ой лунки н	а экстремальные	параметры	стабилизированног	о турбулентного	течения н	в канале со
(структурированно	ой стенкой							з канале со
	17 71 1								


Δ	$U_{ m max}$	$U_{ m min}$	$W_{ m max}$	$W_{ m min}$	$K_{\rm max}\cdot 10^2$	$\mu_{t \max} \cdot 10^3$
0	1.082	0	0	0	0.5791	3.103
0.025	1.083	0	0.0399	-0.0347	0.614	3.11
0.045	1.089	0	0.0558	-0.06558	0.663	3.188
0.055	1.095	0	0.0599	-0.08115	0.6994	3.249
0.075	1.106	0	0.0692	-0.1133	0.782	3.408
0.085	1.109	0	0.0731	-0.1289	0.822	3.476
0.105	1.116	0	0.0892	-0.1565	0.906	3.545
0.125	1.125	0	0.1012	-0.1873	1.006	3.536
0.135	1.130	0	0.1064	-0.1998	1.065	3.538
0.145	1.135	-0.0015	0.1103	-0.2139	1.129	3.537
0.165	1.145	-0.0122	0.1162	-0.2477	1.162	3.557
0.185	1.153	-0.0290	0.1207	-0.2853	1.455	3.613
0.205	1.160	-0.0512	0.124	-0.3299	1.663	3.680
0.225	1.164	-0.0778	0.1272	-0.3764	1.829	3.752
0.25	1.168	-0.1206	0.1318	-0.4278	1.987	3.843
0.275	1.169	-0.1622	0.1345	-0.4637	2.076	3.996
0.3	1.169	-0.2015	0.1357	-0.4833	2.134	4.223
0.325	1.168	-0.2323	0.1403	-0.4899	2.198	4.466
0.35	1.167	-0.2593	0.1527	-0.5214	2.266	4.711
0.375	1.165	-0.2752	0.1670	-0.5543	2.402	4.949
0.4	1.169	-0.2921	0.1909	-0.5824	2.548	5.279
0.425	1.167	-0.2975	0.2058	-0.6157	2.829	5.515

Пристеночные шаги 10^{-5} . Валидация расчетной модели проведена на аналогичных тестовых задачах аномальной интенсификации отрывного течения и теплообмена на структурированных поверхностях (см., например, [7]).

На рис. 1-3 представлены некоторые из полученных результатов, а в таблице собраны экстремальные величины характеристик течения в канале с многорядными лунками. С ростом Δ турбулентное течение в периодическом модуле канала изменяется от безотрывного (рис. 1, a) к отрывному (рис. 1, b), причем переход наблюдается при Δ порядка 0.14. Ключевым в численном исследовании является рис. 2, на котором представляются зависимости от Δ тепловой и теплогидравлической эффективности контрольных участков поверхностей нижней стенки модуля и криволинейной зоны лунки шириной 1 и длиной 3.5, а также относительных гидравлических потерь между входным (А) и выходным (В) сечениями. Для детализации анализа распределений характеристик в различных масштабах выделяются две области варьирования Δ : от 0 до 0.425 и от 0 до 0.14. Прежде всего следует отметить достижение минимума ξ/ξ_{pl} порядка 0.96 при $\delta=0.055$. Также привлекает внимание то обстоятельство, что при снижении относительных гидравлических потерь до уровня 0.98 наблюдается увеличение тепловой эффективности в структурированном канале до величины порядка 1.1. С ростом Δ тепловая эффективность быстро нарастает, достигая величины 1.56 при $\Delta = 0.425$. При $\Delta = 0.275$ наблюдается максимум теплогидравлической эффективности THE = 1.33. Важно подчеркнуть, что начиная с $\Delta = 0.08$ увеличение тепловой эффективности участка внутри овально-дуговой лунки опережает по величине

Рис. 2. Сравнение тепловой эффективности Nu_{mm}/Nu_{mm} pl стенки периодического модуля канала с дугообразной лункой (1,5) и криволинейного участка, окружающего контур лунки (2,6), с зависимостью относительных гидравлических потерь ξ/ξ_{pl} между сечениями A и B модуля (3,7) и теплогидравлической эффективности модуля $THE = Nu_{mm}/Nu_{mm}$ $pl/(\xi/\xi_{pl})^{-1/3}$ (4) от глубины лунки Δ для двух диапазонов изменения: от 0 до 0.425 (1-4) и от 0 до 0.14 (5-7).

Рис. 3. Поля относительных величин трения $f/f_{pl}(a)$ и числа Нуссельта Nu/Nu $_{pl}(b,c)$ с нанесенными картинами растекания воздуха по стенкам периодического модуля с дуговыми лунками глубиной 0.055 (a,b) и 0.275 (c). Цветной вариант рисунка представлен в электронной версии статьи.

рост тепловой эффективности нижней стенки периодического модуля.

Поля относительных величин поверхностных трения f/f_{pl} и числа Нуссельта $\mathrm{Nu/Nu}_{pl}$ на рис. 3 иллюстрируют конфигурации облуненных стенок, которым соответствуют экстремальные теплогидравлические характе-

ристики. Снижение гидравлических потерь, определяемых перепадом полного давления, в структурированном канале подобно уменьшению сопротивления движению в [1–3] и обусловливается уменьшением интегрального относительного трения для $\Delta=0.055$ (рис. 3,a). Локальный минимум $f/f_{pl}=0.55$ расположен во входном

участке лунки, при этом зоны повышенного относительного трения с максимумом $f/f_{pl}=1.35$ сохраняются на входе в модуль и выходе из лунки. Нарастание гидравлических потерь в облуненном канале по мере увеличения Δ связывается с увеличением преобладающего вклада сопротивления давления в общее сопротивление.

Интересно сравнить поля $\mathrm{Nu/Nu}_{pl}$ для конфигураций канала, соответствующих минимуму гидравлических потерь при $\Delta=0.055$ и оптимуму теплогидравлической эффективности при $\Delta=0.275$ (рис. 3,b,c). Максимум относительной теплоотдачи $\mathrm{Nu/Nu}_{pl}$ возрастает с 1.4 до 2.2 и смещается с наветренного склона лунки в ее концевую часть.

Турбулентное течение воздуха в периодическом модуле с наклонной овально-дуговой лункой развивается по мере увеличения Δ (см. таблицу). Для мелких лунок (Δ менее 0.14) характерно их безотрывное обтекание, но при этом в пристеночном слое в пределах лунки формируется и распространяется спиралевидный вихрь с интенсивностью закрученного потока порядка 20% от U_0 . Энергия турбулентности $K_{\rm max}$ возрастает примерно в 1.8 раза, а максимальная турбулентная вязкость меняется незначительно в 1.13 раза, причем ее величина в диапазоне Δ от 0.1 до 0.2 оказывается замороженной на уровне 0.0035.

При переходе к глубоким лункам происходит интенсификация отрывного течения с ростом максимальных скоростей возвратного и закрученного течения до 0.3 и 0.6 соответственно.

Течение довольно быстро турбулизуется. $K_{\rm max}$ растет пятикратно, а $\mu_{t\,{\rm max}}$ — почти в 1.8 раза для $\Delta=0.425$.

Ускорение турбулентного потока в ядре канала невелико и составляет порядка 8%. Численное моделирование турбулентного течения и теплообмена в канале с многорядными наклонными овально-дуговыми лунками при варьировании глубины при высоких числах Рейнольдса порядка $2\cdot 10^5$ на стабилизированном гидродинамическом участке подтвердило возможность заметного снижения относительных гидравлических потерь (почти до 4%) для мелких лунок глубиной 0.055 с радиусом скругления кромок 2. Также установлено, что при умеренном (порядка 2%) уменьшении относительных потерь достигается 10% рост тепловой эффективности для глубин лунок порядка 0.09. Обнаружен максимум теплогидравлической эффективности, равный 33% для глубин лунок 0.275.

Финансирование работы

Исследования выполнены в рамках госзадания 075-03-2025-584 от 27.01.2025 г.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] Viscous flow drag reduction, ed. by H.R. Hough. Progress in Astronautics and Aeronautics (American Institute of Aeronautics and Astronautics, 1980), vol. 72.
- [2] S.A. Isaev, A.D. Chornyi, Yu.V. Zhukova, A.A. Vysotskaya,
 V.B. Kharchenko, J. Eng. Phys. Thermophys., 92 (6), 1509 (2019). DOI: 10.1007/s10891-019-02070-x
- [3] M.A. Nasr, C.M. Tay, B.C. Khoo, J. Enhanced Heat Transfer, 29 (4), 81 (2022). DOI: 10.1615/JEnhHeatTransf.2022041456
- [4] A. Mironov, S. Isaev, A. Skrypnik, I. Popov, Energies, 13, 5243 (2020). DOI: 10.3390/en13205243
- [5] С.А. Исаев, А.Б. Мазо, Д.В. Никущенко, И.А. Попов, А.Г. Судаков, Письма в ЖТФ, **46** (21), 18 (2020). DOI: 10.21883/PJTF.2020.21.50190.18454 [S.A. Isaev, A.B. Mazo, D.V. Nikushchenko, I.A. Popov, A.G. Sudakov, Tech. Phys. Lett., **46** (11), 1064 (2020). DOI: 10.1134/S1063785020110073].
- [6] S.A. Isaev, P.A. Baranov, A.E. Usachov, Multiblock computational technologies in the VP2/3 package on aerothermodynamics (LAP LAMBERT Academic Publ., 2013).
- [7] С.А. Исаев, А.Г. Судаков, Д.В. Никущенко, А.Е. Усачов, М.А. Зубин, А.А. Синявин, А.Ю. Чулюнин, Е.Б. Дубко, Изв. РАН. Механика жидкости и газа, № 5, 70 (2023). DOI: 10.31857/S1024708423600379 [S.A. Isaev, A.G. Sudakov, D.V. Nikushchenko, A.E. Usachov, M.A. Zubin, A.A. Sinyavin, A.Yu. Chulyunin, E.B. Dubko, Fluid Dyn., **58** (5), 894 (2023). DOI: 10.1134/S001546282360133X].