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Влияние геометрии на распространение спиновых волн в системе

двух волноведущих структур с линейно изменяющейся шириной
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Проведено исследование влияния геометрии на распространение спиновых волн с использованием

микромагнитного моделирования в составной структуре волноводов на основе пленки железо-иттриевого

граната с линейно изменяющимися ширинами. Показано, что при увеличении расстояния между волноводами

с линейно изменяющимися ширинами наблюдается уменьшение частотного диапазона с отсечением

высокочастотной области. Структура может использоваться в качестве пространственного и частотного

фильтра.
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Исследование физики возбуждения и передачи спино-

вых волн (СВ) в последнее время вызывает огромный

интерес. Создание устройств на принципах магнони-

ки [1] позволит открыть альтернативный путь развития

логических элементов и расширит область использо-

ванных устройств. Основным отличием от полупровод-

никовых устройств является перенос информации не

за счет распространения электронов с сопровождаемым

выделением джоулева тепла, а за счет прецессии на-

магниченности спина электронов, которые закреплены в

кристаллической решетке материала [2–4]. В частности,

используются ферро- и ферримагнитные материалы.

Одним из возможных кандидатов для создания

устройств на принципах магноники являются пленки

железо-иттриевого граната (ЖИГ), отличительной чер-

той которых является крайне низкая константа затуха-

ния СВ [5–9]. Пленки ЖИГ могут быть получены раз-

личными технологическими методами, включая метод

жидкофазной эпитаксии, который позволяет формиро-

вать пленки толщиной от 1 до 10 µm. Данный метод осо-

бенно привлекателен благодаря возможности получения

пленок с шириной ферромагнитного резонанса ∼ 0.5Oe,

измеренной на частоте 9.7GHz.

На основе пленок ЖИГ возможно формировать струк-

туры различной геометрии: планарные волноводы, систе-

му волноводов на одной подложке, структуры с измене-

нием направления групповой скорости СВ (структуры с

закруглением) [10,11], периодические неоднородные по

толщине структуры [12].

В работе [13] была использована структура с линейно

изменяющейся шириной для коротковолнового возбуж-

дения. Также была исследована структура с линейно

изменяющейся шириной [14], в которой в процессе рас-

пространения СВ наблюдалось увеличение групповой

скорости.

Если магнонные волноводы с одинаковой шириной

расположены близко друг к другу, спин-волновая связь

приводит к периодическому переносу энергии между

волноводами [15] за счет дипольного взаимодействия

двух смежных по бокам магнитных полосок. В отличие

от таких систем в настоящей работе исследуется более

сложная геометрия, где ширина волноводов изменяется

линейно. Новизна работы заключается в выявлении

влияния градиента ширины на условия и эффективность

связи между волноводами.

В настоящей работе при помощи метода микро-

магнитного моделирования, проводимого в программе

MuMax3 [16], продемонстрированы режимы распростра-

нения СВ в структуре волноводов с линейно изменяю-

щимися ширинами, разделенных зазором, относительно

друг друга. Показано влияние параметра зазора на ха-

рактеристики спин-волнового распространения, а также

на режимы перераспределения спин-волновой мощности

в выходные каналы.

Исследуемая структура представляет собой систе-

му латерально связанных волноведущих волноводов —

два волновода с изменяющейся шириной вдоль всей

структуры (показаны на рис. 1). Данные волноводы

представляют собой пленки ЖИГ толщиной t = 10 µm,

которые в реальных экспериментах сформированы на

подложке гадолиний-галлиевого граната методом жидко-

фазной эпитаксии. Данные связанные волноводы имеют

следующие параметры: длина структуры L0 = 7000 µm,

ширина большей части трапеции w1 = 200 µm, ширина
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Рис. 1. Изображение исследуемой структуры: система латерально расположенных на одной подложке микроволноводов с линейно

изменяющимися ширинами на основе тонкой пленки железо-иттриевого граната.

меньшей части трапеции w0 = 50µm, ширина зазора d
изменялась от 20 до 80 µm.

В микромагнитном моделировании создавались усло-

вия для возбуждения поверхностной магнитостатиче-

ской волны, при котором внешнее магнитное поле H0

прилагалось вдоль оси y . Величина параметра внешнего

магнитного поля H0 составляла 1200Oe.

В ходе решения задачи передачи спин-волнового сиг-

нала для уменьшения отражений СВ от границ расчет-

ной области на границах структуры (заштрихованные

области на рис. 1) были введены поглощающие слои с

экспоненциально возрастающим коэффициентом затуха-

ния α. Рассматриваемая система волноведущих структур

обладает тремя портами. В качестве источника возбуж-

дения спин-волнового сигнала непосредственно после

области затухания располагалась микрополосковая ан-

тенна P1, а приемные антенны P2 и P3 располагались на

выходе структуры, как показано на рис. 1. Антенны P1,

P2 и P3 имеют ширину 30µm, при этом длина антенн

P1 и P3 составляет 200 µm, а антенны P2 — 50 µm, что

соответствует ширинам волноводов.

Исследование проводилось в программном пакете

MuMax3, в котором моделируемая структура разби-

валась сеткой, в узлах которой численно решалось

уравнение Ландау−Лифшица с затуханием Гильберта

(ЛЛГ) [17,18]:

∂M

∂t
= γ

[

He f f ×M
]

+
α

Ms

[

M×

∂M

∂t

]

,

где M — вектор намагниченности, α=10−5 — параметр

затухания пленки ЖИГ, He f f =H0+Hdemag+Hex+Ha —

эффективное магнитное поле, H0 — внешнее магнитное

поле, Hdemag — поле размагничивания, Hex — обменное

поле, Ha — поле анизотропии, γ = 2.8MHz/Oe —

гиромагнитное отношение.

Взаимодействие между волноводами в уравнении ЛЛГ

учитывается через расчет He f f для всей системы, кото-

рое включает все взаимодействия. MuMax3 напрямую

решает уравнение ЛЛГ численно на дискретной сетке,

учитывая все взаимодействия (обменное, дипольное,

зеемановское и т. д.) без предварительных приближений

по силе связи. Если волноводы находятся далеко друг

от друга, симулятор покажет слабую связь. Если они

близко, то проявится сильная связь.

Первоначально была рассмотрена статическая задача

с построением распределения внутренних магнитных

полей Hint , показанных на рис. 2. На рис. 2, а приведена

карта распределения внутреннего магнитного поля Hint

в двух волноводах с плавно изменяющимися ширинами

при зазоре d = 40µm. Необходимо отметить, что при

уменьшении ширины волноведущего канала происхо-

дит уменьшение значения Hint . И при расположении

латерально друг к другу волноводов с линейно из-

меняющимися ширинами при фиксированном значении

x -координаты значение внутреннего магнитного поля

Hint в каждом из волноводов будет разным. На рис. 2, b

показаны профили Hint , снятые вдоль x -координаты и

захватывающие сразу два волновода с плавно изменя-

ющимися ширинами. Можно сказать, что единственная

область, в которой величины Hint для обоих волново-

дов равны, соответствует x = 3.5mm (отмечена серой

штриховой линией и обозначена как Hint,m). И при

смещении области среза дальше по оси x разница

между величинами внутреннего магнитного поля обоих

волноводов 1Hint может составлять ∼ 150Oe. Передача

спиновой волны из одного волновода в другой проис-

ходит в области, где их ширины примерно одинаковы,

что согласуется с теорией связанных мод [19]. Соглас-
но этой теории, при изменении величины внутреннего

магнитного поля Hint изменяются условия распростра-

нения СВ, что приводит к смещению дисперсионной

кривой и изменению частотного диапазона их существо-

вания.

Далее рассмотрена конфигурация волноводов с ли-

нейно изменяющимися ширинами, в которых расстояние

между волноводами d будет изменяться. На рис. 3 пред-

ставлены амплитудно-частотные характеристики (АЧХ),
полученные на выходных портах P2 (a) и P3 (b) для

случаев разных зазоров между волноводами. Черными

линиями обозначены амплитудно-частотные характери-

стики, полученные для одиночного волновода с плавно

изменяющейся шириной: в области с шириной волновода
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Рис. 2. а — карта распределения внутреннего магнитного поля Hint в латерально связанной структуре с линейно изменяющимися

ширинами при зазоре d = 40 µm. b — распределение Hint , снятое при фиксированном значении x -координаты: x = 3.5mm

(сплошная линия), 4.125mm (штрихпунктирная линия), 4.75mm (штриховая линия) и 7mm (пунктирная линия).

4.9 5.1
–120

–100

Frequency, GHz

–80

5.3

a

T
ra
n
sm
is
si
o
n

, 
d
B

–60

–40

5.0 5.2 4.9 5.1
–120

–100

Frequency, GHz

–80

5.3

b

T
ra
n
sm
is
si
o
n

, 
d
B

–60

–40

5.0 5.2

Рис. 3. Амплитудно-частотные характеристики, полученные для выходных портов P2 (a) и порта P3 (b). Цветом на рисунке

выделены амплитудно-частотные характеристики для случаев зазора между волноводами с линейно изменяющейся шириной

d = 20 µm (красная линия), 40 µm (синяя линия), 80 µm (зеленая линия). Черным цветом обозначены АЧХ, полученные для

одиночного волновода с плавно изменяющейся шириной: в области с шириной волновода 50 (a) и 200 µm (b). Цветной вариант

рисунка представлен в электронной версии статьи.

50 µm (рис. 3, a) и 200 µm (рис. 3, b). По полученным

АЧХ для выходного порта P3 можно отметить, что при

увеличении зазора между волноводами с линейно из-

меняющейся шириной наблюдается сужение частотного

диапазона с отсечением высокочастотной области. Необ-

ходимо отметить, что чем больше значение параметра

d, тем сильнее происходит смещение в низкочастотную

область. В случаях d = 20 и 80 µm разница между

частотами отсечки составляет ∼ 100MHz. Также необ-

ходимо отметить, что для случая выходного порта P2

при увеличении зазора d средний уровень передачи на

АЧХ уменьшается.

Для наблюдаемых на АЧХ провалов были построены

пространственные карты распределения интенсивности

СВ для рассмотренных случаев разных значений пара-

метра d (рис. 4). На частоте f = 5.068GHz (рис. 4, a)

при параметре d = 20µm наблюдается режим, при ко-

тором спиновая волна перекачивается в нижний планар-

ный волновод. При увеличении параметра d до 40 µm

на частоте f = 5.062GHz (рис. 4, b) также наблюдается

режим, при котором спиновая волна перекачивается в

нижний планарный волновод, но с меньшей мощностью.

При увеличении параметра d до 80µm на частоте

f = 5.050GHz (рис. 4, c) почти не наблюдается режим,

при котором СВ перекачивается в нижний планарный

волновод. При дальнейшем увеличении d (> 100µm)

волноводы становятся изолированными, и их взаимное

влияние исчезает.
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Рис. 4. Пространственные карты распределения интенсивности СВ в системе латерально расположенных на одной подложке

микроволноводов на частоте f 1 = 5.068GHz при d = 20µm (a), на частоте f 2 = 5.062GHz при d = 40µm (b) и на частоте

f 3 = 5.050GHz при d = 80µm (c).

Во всех трех случаях на картах распределения интен-

сивности спиновой волны переизлучение спин-волновой

мощности наблюдается при x ∼ 3.5mm, что можно

связать с тем, что в этой области происходит вырав-

нивание величины внутренних магнитных полей Hint .

И при этом при увеличении параметра d интенсивность

переброшенной спиновой волны в смежный волновод

уменьшается.

Таким образом, с помощью численного моделирова-

ния была исследована система латерально связанных

волноводов с линейно изменяющимися ширинами. Были

построены амплитудно-частотные характеристики и про-

странственные карты распределения интенсивности СВ,

демонстрирующие режимы перераспределения мощно-

сти СВ. При увеличении зазора d между микроволново-

дами эффективность переноса СВ уменьшается. Данная

структура может быть использована как направленный

ответвитель и частотный фильтр СВЧ-сигнала за счет

эффективного переизлучения сигнала при x ∼ 3.5mm

и фильтрации сигнала с отсечением высокочастотной

области для создания устройств обработки информаци-

онных сигналов на принципах магноники.
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