Physics of the Solid State, 2025, Vol. 67, No. 7

11,12

Modified Monte Carlo method with thermostat algorithm

for model orthonickelates

© V.S. Ryumshin', Yu.D. Panov', V.A. Ulitko!, A.S. Moskvin'-?

Unstitute of Natural Sciences, Ural Federal University,
Yekaterinburg, Russia

2 M.N. Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences,

Yekaterinburg, Russia
E-mail: vitaliy.riumshin@urfu.ru
Received March 6, 2025

Revised March 6, 2025
Accepted May 5, 2025

The results of numerical simulation using a modified Monte Carlo method with a thermostat algorithm for a
pseudospin model of rare-earth orthonickelates are presented. Temperature phase diagrams are constructed for
various degrees of filling and for various parameters of the model, and the effect of local correlations on the critical
temperatures of the model orthonickelate is investigated. The possibility of detecting phase inhomogeneous states
is shown. The numerical simulation results show good qualitative agreement with the analytical results in the mean

field approximation.
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1. Introduction

Orthonickelates RNiO3 (R is a rare-earth element or Y)
exhibit a variety of physical properties, such as metal-
insulator transition, unusual conduction behavior, non-
collinear magnetic structures, etc. These compounds are
of great interest from both a fundamental and an applied
side and have been the object of intensive experimental
and theoretical research for many years [1-4]. Nickelates
belong to a large family of Jahn-Teller magnets, however, the
removal of orbital degeneracy in them occurs due to anti-
Jahn-Teller disproportionation, which is an experimentally
proven fact [5,6]. The same mechanism is associated with
the metal-insulator transition, which is also accompanied by
a structural phase transition in nickelates, with the exception
of LaNiOj3, which remains metallic.

Previously, within the framework of the mean field
approximation, as well as the classical Monte Carlo (MC)
method with kinematic consideration of the constancy of
boson concentration, we investigated a two-dimensional
analog of the charge-disproportionated phase of rare-earth
nickelates RNiO3 with a local basis in the form of a
quartet of states consisting of a singlet Ni** and the triplet
Ni?* [7,8]. In this paper, the results of modeling using the
thermostat algorithm in the framework of the MC method
for a three-dimensional model orthonickelate with a local
basis of an octet of states of various charge states of the
octahedron NiOg are discussed. In particular, we study the
effect of local charge correlations on the behavior of pure
phases, for which only one order parameter is non zero. In
addition, as in the mean field approximation and classical
MC modeling, there is a tendency to phase separation,
as well as the presence of instability regions of the
antiferromagnetic insulator and bosonic superfluid phases.

The article is organized as follows. The model used is
briefly described in section 2 and some basic results of
the mean field approximation are presented. A modified
thermostat algorithm of the MC method is described in
section 3, and the results of numerical modeling and their
comparison with the results of the mean field approximation
are presented in section 4. Brief conclusions are formulated
in section 5.

2. Model and mean field approximation

To describe the electronic structure and phase diagrams
of orthonickelates, a generalized model of effective charge
triplets was proposed in which the low-energy state of
undistorted octahedra NiOg is formed by a charge triplet
[NiO4]10=+2=-8= (nominally Ni2*-3*4+) with different spin
and orbital ground states. The octahedron wave function
is denoted by |XM;I'y; Sm) where M is the charge pseu-
dospin and its projection, T'v is the orbital state (v is the
irreducible representation of a point group O, and its row),
Sm is the magnitude and projection of the ordinary spin.
State [NiOg]®~ is singlet [11;A1,1;00), [NiOg)°~ spin-orbit
quartet |10; E,0; % + %>, |10; E, 2; % + %}, [NiO4]!%~ spin
triplet |1 — 1;42,1;10), |1 — 1; A5, 1; 1 £ 1).

Let’s write down the simplified Hamiltonian of the model
leaving only local (U) and non-local (V) charge correlations,
pair transport (¢) and bilinear isotropic superexchange (J)
and limiting the model to interaction with nearest neighbors:

~ U o ~ o~ ~ o~
H ) Xi:zz,i —1 (Z; (B;,iBm,j "’B;,]Bm,i)
ijym
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In Hamiltonain (1) 5. is the pseudospin operator, S the
spin operator S = 1, and the spin-triplet boson creation
and annihilation operators, B*i and Bm i, respectively, are
analogous to the creation and annihilation operators in the
local (hard-core) boson model [11]. Next, it is convenient

to switch to Cartesian components for operators B; ; and

B, using the relations B}, = B" + iI?;f’i, and then the
corresponding term will take the form
B}, ;By; + B, ;B = 2(BIB", + B"B",) = 2B!'B".
(2)
Let’s use Bogolyubov’s inequality to estimate a large
thermodynamic potential:

Q§52W0+<ﬁ—ﬁ0—ﬂziz,i>o’ (3)

where W, is the free energy of the ideal system and
statistical averaging in the second term is also carried out
over the states of the ideal system. The term with a
chemical potential u allows taking into account the condition
of conservation of the number of ez-electrons in the system,
which we will write as

= Y ) 4)
The value of An =0 when the lattice is uniformly filled
with e,-electrons corresponds to the states of the Ni*™, and
An = —1 and +1 to states Ni** and Ni**.

We introduce sublattices A and B according to the
chessboard type, and choose the Hamiltonian of the ideal
system Hy, in which the interaction of a cluster with its
environment is described using molecular fields acting on
this cluster in the following form:

Hoy = Zﬁ‘”’ (5)

Zl Ztm i 8A( )§

N U .
Hy; = 5 sz,i -
(6)

Here the index is A(i) = A or B if the site i belongs to
the sublattice A or B. The molecular fields ¢;, f}', g, are
variational parameters to minimize the estimation of a large
thermodynamic potential:

2Q
N - E Yor — 2zt E BB} + zVEsXp + zJSASs
i m

+Y (- Y GBI+ gis:. (7)
7 T 7

Here z is the coordination number (for a simple cubic lattice
7=06),

1 ~
Yori) = 3 In(eFHor), (8)

0or 0os
pONPCALUN VULV L L/
T T

where f = 1/(kpT), and we assume kg = 1.
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The necessary minimum condition for Q leads to equa-
tions for molecular fields:

Q) =Mu— szz, ﬂn = ZZtBin, g = —JSZ, (10)
where 1 is a sublattice additional to 2. To obtain the
dependences of thermodynamic parameters on An, it is
necessary to exclude the chemical potential using the
equation

2A+ 2 = —2An. (11)

For the high-temperature disordered (NO) phase, the
minimum of Q is reached at @)=, f'=, g2 =0. The
condition of loss of stability of the minimum of the NO
phase allows finding the critical temperature of the second
order phase transition.

Explicit analytical expressions for quantities in the for-
mula (9) can be obtained in some special cases. The
charge-ordered (CO) phase with the order parameter
1 = (X4 — Xp)/2 is determined by a particular solution of
the form

pa# @5, 7 =0, g =0. (12)
In this case
Yor = _}3 Inf4 4 e PV (PP 4 3e7P7)), (13)
eﬁ(pz _ 3e*ﬁ(l)ﬂ
Z/l(@/l) = 4¢BU2 1 oo 4 3e—Pwi’ (14)

Equation for critical temperature T¢o
ZVEi(p) =1 (16)

under the condition X;(¢) = —An allows a dependency
Tco(An).

For the antiferromagnetic (AFM) phase with the order
parameter L = (S, 4 — S, 5)/2, we consider a particular
solution
£ =0,

1=, g1=1(0,0,g2). (17)

Then S; = (0, 0, Sz,l)’ B:ln =0,

Yor = —}3 In{4 + e PU2[eP? 1 (1 + 2ch(Bgs))e P91},

(18)
e/ —[1 +2ch(Bgs) e
T 82) = 4ePU2 1 ePr —[1 +2ch(Bgs)]e ¥’ (19)
B
Szale. 81) = hipsi)e

. (20
4eBU2 4 ePr + 1 + 2ch(Bg;)] e e (20)
The corresponding equation for the critical temperature

Tarm has the form

asZ l(@? 0)

=1 21
o2s (21)
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The following solutions can be considered for the phase,
which, by analogy with the model of local (hard-core)
bosons [11], can be called the phase of a superfluid bose
liquid (BS) with the order parameter B}’ # 0

=(f",0),
In this case S; = 0, By’ = (B}, 0),

pr=¢, g1 =0. (22)

Yo = —éln{4+26*ﬁw2 e +ch(pe)]},  (23)

where &(, f) = \/@? + 3 [ 7 =Zu(f")

@sh(BE) — e
e, f) = E[2ePU2 ¢ P9 + ch(BE)]’ 24
B} (. f) = S >

4€[2ePUT2 L ¢ P9 & ch(BE)]’

The equation for the critical temperature Ty has the form

E)B”’(go, 0)

2zt
zt o

= 1. (26)

3. Monte Carlo thermostat algorithm

We use the thermostat algorithm of the MC method for
numerical simulation [12]. Compared with the classical
version based on the Metropolis algorithm and assuming
continuous change of observables or states at the nodes of
the system [7], the quantum nature of the state change in
the elementary MC step in our version of the thermostat
algorithm eliminates the divergence of heat capacity at
low temperatures. The disadvantages of the thermostat
algorithm include the high complexity of the elementary
MC step, which is associated with the need to solve the
eigenvalue problem for the Hamiltonian at the node.

Let us briefly describe the thermostat algorithm for
the model (1). Let’s write the wave function of the system
as the product of the wave functions at the nodes:

\Ij> = H |wc>’

Let’s construct the Hamiltonian of the node ¢, averaging
over the states of all nodes ¢’ # c:

e) = > @byl IM;Ty;Sm).  (27)
MTySm

H, = (W |H|W,),

=] ) (28)

¢’

For the model (1), we get

Uz
322 U, —IZ
+VY (5

/Bm—‘r B >/§+)

m

) 7588, (29)

Here, the values (A).s = (1he|A|h/) act as external ficlds
acting on the node ¢ from the node ¢’, and summation is
assumed for the neighbors closest to the node c. A term
with a chemical potential has also been added, which allows
us to further obtain the dependences of thermodynamic
functions on An.

The node state change is implemented using the thermo-
stat algorithm. To do this, we solve the eigenvalue problem
on the node:

ﬁcl¢c,n> - 8n|l/)c,n>’ (30)

let us determine the probabilities of the states and construct
the distribution function:

e_ﬁen

Pn = Emg*ﬁem ’

=> Pm (31)
m=1
and using a random value evenly distributed over the

interval (0.1) £, we determine the number of the new state
of node c from the equation:

£=F(n). (32)

Next, we collect statistics on MC steps in a standard way.

4. Comparison of numerical simulation
results and mean field approximation

Figure 1 shows the critical transition temperatures from
the disordered phase to the CO, AFM, and BS phases of the
model nickelate. Here, the parameter of local correlations
is U = 0, which differs from the situation with U = —oco
discussed earlier in Refs. [7,8]. The simulation results show
a characteristic underestimation of T¢op compared to the

-1.0 0.5 0 0.5 1.0

An
Figure 1. Critical temperature dependencies at z =6, V =1,

J=1,¢t=1, U =0. Solid lines — middle field, dotted line —
MC modeling.
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Figure 2. Critical temperature dependencies NO-CO at V =1, J = 0, t = 0. Solid lines — middle field, dotted line — simulation MC.
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Figure 3. Dependence of the temperature of the NO-CO
transition on the parameter of non-local correlations. Solid line —
middle field, dotted line — MC simulation.
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Figure 4. Critical temperature dependencies of NO-BS. The
dotted lines show the stability boundaries of the homogeneous
phase.
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value in the average field method. However, it should be
noted that, unlike the classical MC method, there is no
reduction in critical temperatures by an order of magnitude.
This is probably due to the qualitatively more adequate
nature of accounting for temperature fluctuations in the
presented algorithm. The discontinuity of the curves for
Tarm at An ~ 0.5 and Tpg at An ~ 0.3 corresponds to the
beginning of the instability region of these phases. The
ability to define the boundaries of this region is also a feature
of this method: certain values of An are unattainable for all
set values of the chemical potential u. The stability of these
phases will be discussed in detail below.

At U > 0 (Figure 2,a), Tco begins to decrease smoothly.
A sequential increase of U to 4 (Figure 2,b) causes the
appearance of a plateau near the half-fill of An = 0, which
indicates the occurrence of a first order phase transition.
A further increase of U to 6 (Figure 2,¢) leaves only a
disordered phase in case of half filling.

Figure 3 shows the dependence of T¢p for An =0 in
variables 7' — V. The results of calculations using the mean
field method, equation (16), predict a linear dependence
Tco(V), while the MC simulation gives the expected
underestimated result. As in the mean field, a second order
phase transition is observed at V /U > 0.5, and a first order
phase transition in the range 0.25 < V /U < 0.4.

Figure 4 shows a gradual decrease of Tpg with an
increase of U to 4, at which a significant suppression of
the BS phase occurs. The dotted lines show the boundaries
of the thermodynamic stability regions that converge at
An ~ 0.6 with a decrease in temperature for situations
with U =0, 1 and 2. In the case of U =2, the BS
phase is divided into 2 parts, each of which, in turn,
has areas of instability At U =4, only a small area
of the BS phase remains in the range —1 < An < 0.7.
Further, the BS phase becomes unstable, which means
the appearance of a disordered phase or a region of
phase separation. A similar situation is observed for the
AFM phase (Figure 5). Its existence is possible in the
interval 0.5 < An < 1. These results are consistent with
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Figure 5. Critical temperature dependencies of NO-AFM. The
dotted lines show the stability boundaries of the homogeneous
phase.
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Figure 6. Phase diagram of model nickelate at V =1, J =1,
t=1, U=0. Dotted line — boundaries of the CO+BS and
CO+AFM phase separation regions.

data of the mean field approximation and classical MC
simulation [7].

One of the possible phase diagrams of the model nickelate
is shown in Figure 6. Two regions of phase separation
can be clearly observed here: CO+BS in the range
—0.6 < An < 0 and CO+AFM in the range 0 < An < 0.9.
The BS, CO, and AFM phases are located sequentially
between them. The results show that for the ground state, as

well as in the mean-field approximation, the BS and AFM
phases are realized near small and large values of n, and
the CO phase exists at finite temperatures for these model
parameters.

A comparison of the obtained phase diagrams with half-
filling An = 0.5 shows that the simulation results correctly
predict the NO-CO transition at a qualitative level. However,
with a further decrease in temperature, under certain model
parameters, it is only possible to preserve the CO phase or
transition to the BS phase.

5. Conclusion

The results of numerical simulation using the modified
Monte Carlo method with the thermostat algorithm show
good qualitative agreement with the results of the mean field
approximation for those simple solutions when analytical
expressions can be obtained. This makes it possible to
use this numerical method to analyze the properties of
phase states in more complex situations where an analytical
solution is not available. Temperature phase diagrams are
constructed in this paper for a pseudospin model of rare-
earth orthonickelates at various values of the local charge
correlations parameter. It is shown that the model predicts
various types of phase transitions, as well as the existence of
inhomogeneous phase states at different parameter values.
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