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pseudospin model of rare-earth orthonickelates are presented. Temperature phase diagrams are constructed for
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is shown. The numerical simulation results show good qualitative agreement with the analytical results in the mean

field approximation.
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1. Introduction

Orthonickelates RNiO3 (R is a rare-earth element or Y)
exhibit a variety of physical properties, such as metal-
insulator transition, unusual conduction behavior, non-
collinear magnetic structures, etc. These compounds are
of great interest from both a fundamental and an applied
side and have been the object of intensive experimental
and theoretical research for many years [1–4]. Nickelates
belong to a large family of Jahn-Teller magnets, however, the
removal of orbital degeneracy in them occurs due to anti-
Jahn-Teller disproportionation, which is an experimentally

proven fact [5,6]. The same mechanism is associated with
the metal-insulator transition, which is also accompanied by
a structural phase transition in nickelates, with the exception
of LaNiO3, which remains metallic.
Previously, within the framework of the mean field

approximation, as well as the classical Monte Carlo (MC)
method with kinematic consideration of the constancy of
boson concentration, we investigated a two-dimensional
analog of the charge-disproportionated phase of rare-earth
nickelates RNiO3 with a local basis in the form of a
quartet of states consisting of a singlet Ni4+ and the triplet
Ni2+ [7,8]. In this paper, the results of modeling using the
thermostat algorithm in the framework of the MC method
for a three-dimensional model orthonickelate with a local
basis of an octet of states of various charge states of the

octahedron NiO6 are discussed. In particular, we study the
effect of local charge correlations on the behavior of pure
phases, for which only one order parameter is non zero. In
addition, as in the mean field approximation and classical
MC modeling, there is a tendency to phase separation,
as well as the presence of instability regions of the
antiferromagnetic insulator and bosonic superfluid phases.

The article is organized as follows. The model used is
briefly described in section 2 and some basic results of
the mean field approximation are presented. A modified
thermostat algorithm of the MC method is described in
section 3, and the results of numerical modeling and their
comparison with the results of the mean field approximation
are presented in section 4. Brief conclusions are formulated
in section 5.

2. Model and mean field approximation

To describe the electronic structure and phase diagrams
of orthonickelates, a generalized model of effective charge
triplets was proposed in which the low-energy state of
undistorted octahedra NiO6 is formed by a charge triplet
[NiO6]

10−,9−,8− (nominally Ni2+,3+,4+) with different spin
and orbital ground states. The octahedron wave function
is denoted by |6M; Ŵγ ; Sm〉 where 6M is the charge pseu-
dospin and its projection, Ŵν is the orbital state (Ŵν is the
irreducible representation of a point group Oh and its row),
Sm is the magnitude and projection of the ordinary spin.
State [NiO6]

8− is singlet |11;A1g1; 00〉, [NiO6]
9− spin-orbit

quartet |10;Eg0;
1
2
± 1

2
〉, |10;Eg2;

1
2
± 1

2
〉, [NiO6]

10− spin
triplet |1− 1;A2g1; 10〉, |1− 1;A2g1; 1± 1〉.
Let’s write down the simplified Hamiltonian of the model

leaving only local (U) and non-local (V ) charge correlations,
pair transport (t) and bilinear isotropic superexchange (J)
and limiting the model to interaction with nearest neighbors:

Ĥ =
U

2

∑

i

6̂2
z ,i − t

∑

〈i j〉m

(B̂+
m,i B̂m, j + B̂+

m, j B̂m,i)

+ V
∑

〈i j〉

6̂z ,i 6̂z , j + J
∑

〈i j〉

Ŝi Ŝ j . (1)
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In Hamiltonain (1) 6̂z is the pseudospin operator, Ŝ the

spin operator S = 1, and the spin-triplet boson creation

and annihilation operators, B̂+
m,i and B̂m,i , respectively, are

analogous to the creation and annihilation operators in the

local (hard-core) boson model [11]. Next, it is convenient

to switch to Cartesian components for operators B̂+
m,i and

B̂m,i using the relations B̂+
m,i = B̂m

xi + iB̂m
yi , and then the

corresponding term will take the form

B̂+
m,i B̂m, j + B̂+

m, j B̂m,i = 2(B̂m
xi B̂

m
x j + B̂m

yi B̂
m
y j) = 2B̂m

i B̂
m
j .

(2)
Let’s use Bogolyubov’s inequality to estimate a large

thermodynamic potential:

� ≤ �̃ = 90 +
〈
Ĥ − Ĥ0 − µ

∑

i

6̂z ,i

〉
0
, (3)

where 90 is the free energy of the ideal system and

statistical averaging in the second term is also carried out

over the states of the ideal system. The term with a

chemical potential µ allows taking into account the condition

of conservation of the number of eg -electrons in the system,

which we will write as

−1n =
1

N

∑

i

〈6̂z ,i〉. (4)

The value of 1n = 0 when the lattice is uniformly filled

with eg -electrons corresponds to the states of the Ni3+, and

1n = −1 and +1 to states Ni4+ and Ni2+.

We introduce sublattices A and B according to the

chessboard type, and choose the Hamiltonian of the ideal

system Ĥ0, in which the interaction of a cluster with its

environment is described using molecular fields acting on

this cluster in the following form:

Ĥ0 =
∑

i

Ĥ0,i , (5)

Ĥ0,i =
U

2

∑

i

6̂2
z ,i − ϕλ(i)6̂z i −

∑

m

fmλ(i) − B̂m,i − gλ(i)Ŝi .

(6)
Here the index is λ(i) = A or B if the site i belongs to

the sublattice A or B . The molecular fields ϕλ , f
m
λ , gλ are

variational parameters to minimize the estimation of a large

thermodynamic potential:

2�̃

N
=

∑

λ

ψ0λ − 2z t
∑

m

Bm
AB

m
B + zV6A6B + z JSASB

+
∑

λ

(ψλ − µ)6λ +
∑

λ,m

fmλ B
m
λ +

∑

λ

gm
λ Sλ. (7)

Here z is the coordination number (for a simple cubic lattice

z = 6),

ψ0λ(i) = −
1

β
ln(e−βĤ0,i ), (8)

6λ = −
∂ψ0λ

∂ψλ
, Bm

λ = −
∂ψ0λ

∂fmλ
, Sλ = −

∂ψ0λ

∂gλ
, (9)

where β = 1/(kB T ), and we assume kB = 1.

The necessary minimum condition for �̃ leads to equa-

tions for molecular fields:

ϕλ = µ − zV6λ̄, fmλ = 2z tBm
λ̄
, gλ = −JSλ̄, (10)

where λ̄ is a sublattice additional to λ. To obtain the

dependences of thermodynamic parameters on 1n, it is

necessary to exclude the chemical potential using the

equation

6A + 6B = −21n. (11)

For the high-temperature disordered (NO) phase, the

minimum of �̃ is reached at ϕλ =, fmλ =, gλ = 0. The

condition of loss of stability of the minimum of the NO

phase allows finding the critical temperature of the second

order phase transition.

Explicit analytical expressions for quantities in the for-

mula (9) can be obtained in some special cases. The

charge-ordered (CO) phase with the order parameter

l = (6A − 6B)/2 is determined by a particular solution of

the form

ϕA 6= ϕB , fmλ = 0, gλ = 0. (12)

In this case

ψ0λ = −
1

β
ln[4 + e−βU/2(e βϕλ + 3 e−βϕλ )], (13)

6λ(ϕλ) =
e βϕλ − 3 e−βϕλ

4 e βU/2 + eβϕλ + 3 e−βϕλ
, (14)

Bm
λ = 0, Sλ = 0. (15)

Equation for critical temperature TCO

zV6′
λ(ϕ) = 1 (16)

under the condition 6λ(ϕ) = −1n allows a dependency

TCO(1n).
For the antiferromagnetic (AFM) phase with the order

parameter L = (Sz ,A − Sz ,B)/2, we consider a particular

solution

ϕλ = ϕ, fmλ = 0, gλ = (0, 0, gλ). (17)

Then Sλ = (0, 0, Sz ,λ), B
m
λ = 0,

ψ0λ = −
1

β
ln

{
4 + e−βU/2[e βϕ + (1 + 2ch(βgλ))e

−βϕ]
}
,

(18)

6λ(ϕ, gλ) =
e βϕ − [1 + 2ch(βgλ)] e

−βϕ

4 e βU/2 + e βϕ − [1 + 2ch(βgλ)] e−βϕ
, (19)

Sz ,λ(ϕ, gλ) =
2sh(βgλ) e

−βϕ

4 e βU/2 + e βϕ + [1 + 2ch(βgλ)] e−βϕ
. (20)

The corresponding equation for the critical temperature

TAFM has the form

z J
∂Sz ,λ(ϕ, 0)

∂gλ
= 1. (21)
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The following solutions can be considered for the phase,

which, by analogy with the model of local (hard-core)
bosons [11], can be called the phase of a superfluid bose

liquid (BS) with the order parameter Bm
λ 6= 0

ϕλ = ϕ, fmλ = ( f m, 0), gλ = 0. (22)

In this case Sλ = 0, Bm
λ = (Bm

λ , 0),

ψ0λ = −
1

β
ln

{
4 + 2 e−βU/2

[
e−βϕ + ch(βξ)

]}
, (23)

where ξ(ϕ, f ) =
√
ϕ2 + 1

4
f 2, f 2 = 6m( f m)2,

6λ(ϕ, f ) =
ϕsh(βξ) − ξ e−βϕ

ξ [2 e βU/2 + e−βϕ + ch(βξ)]
, (24)

Bm
λ (ϕ, f ) =

f msh(βξ)

4ξ [2 e βU/2 + e−βϕ + ch(βξ)]
. (25)

The equation for the critical temperature TBS has the form

2z t
∂Bm

λ (ϕ, 0)

∂ f
= 1. (26)

3. Monte Carlo thermostat algorithm

We use the thermostat algorithm of the MC method for

numerical simulation [12]. Compared with the classical

version based on the Metropolis algorithm and assuming

continuous change of observables or states at the nodes of

the system [7], the quantum nature of the state change in

the elementary MC step in our version of the thermostat

algorithm eliminates the divergence of heat capacity at

low temperatures. The disadvantages of the thermostat

algorithm include the high complexity of the elementary

MC step, which is associated with the need to solve the

eigenvalue problem for the Hamiltonian at the node.

Let us briefly describe the thermostat algorithm for

the model (1). Let’s write the wave function of the system

as the product of the wave functions at the nodes:

|9〉 =
∏

c

|ψc〉, |ψc〉 =
∑

MŴγSm

ac
Mγm|1M; Ŵγ ; Sm〉. (27)

Let’s construct the Hamiltonian of the node c , averaging

over the states of all nodes c ′ 6= c :

Ĥc = 〈9̃c |Ĥ|9c〉, |9c〉 =
∏

c′ 6=c

|ψc′〉. (28)

For the model (1), we get

Ĥc =
U

2
6̂2

z − µ6̂z − t
∑

c′,m

(
〈B̂+

m〉c′ B̂m + 〈B̂m〉c′ B̂+
m

)

+ V
∑

c′

〈6̂z 〉c′6̂z + J
∑

c′

〈Ŝ〉c′ Ŝ. (29)

Here, the values 〈Â〉c′ = 〈ψc′ |Â|ψc′〉 act as external fields

acting on the node c from the node c ′, and summation is

assumed for the neighbors closest to the node c . A term

with a chemical potential has also been added, which allows

us to further obtain the dependences of thermodynamic

functions on 1n.

The node state change is implemented using the thermo-

stat algorithm. To do this, we solve the eigenvalue problem

on the node:

Ĥc |ψc,n〉 = εn|ψc,n〉, (30)

let us determine the probabilities of the states and construct

the distribution function:

pn =
e−βεn

6me−βεm
, F(n) =

n∑

m=1

pm, (31)

and using a random value evenly distributed over the

interval (0.1) ξ , we determine the number of the new state

of node c from the equation:

ξ = F(n). (32)

Next, we collect statistics on MC steps in a standard way.

4. Comparison of numerical simulation
results and mean field approximation

Figure 1 shows the critical transition temperatures from

the disordered phase to the CO, AFM, and BS phases of the

model nickelate. Here, the parameter of local correlations

is U = 0, which differs from the situation with U = −∞
discussed earlier in Refs. [7,8]. The simulation results show

a characteristic underestimation of TCO compared to the

∆n

0–1.0 –0.5 0.5 1.0

1

2

0

TCO

TAFM

TBS

3

4

T
/V

Figure 1. Critical temperature dependencies at z = 6, V = 1,

J = 1, t = 1, U = 0. Solid lines — middle field, dotted line —
MC modeling.
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∆n
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T
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cU = 6
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0

0.5

1.5

Figure 2. Critical temperature dependencies NO-CO at V = 1, J = 0, t = 0. Solid lines —- middle field, dotted line — simulation MC.
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1st order

2nd order
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U/

V U/

Figure 3. Dependence of the temperature of the NO-CO

transition on the parameter of non-local correlations. Solid line —
middle field, dotted line — MC simulation.

∆n
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T
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U

0
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Figure 4. Critical temperature dependencies of NO-BS. The

dotted lines show the stability boundaries of the homogeneous

phase.

value in the average field method. However, it should be

noted that, unlike the classical MC method, there is no

reduction in critical temperatures by an order of magnitude.

This is probably due to the qualitatively more adequate

nature of accounting for temperature fluctuations in the

presented algorithm. The discontinuity of the curves for

TAFM at 1n ≃ 0.5 and TBS at 1n ≃ 0.3 corresponds to the

beginning of the instability region of these phases. The

ability to define the boundaries of this region is also a feature

of this method: certain values of 1n are unattainable for all

set values of the chemical potential µ. The stability of these

phases will be discussed in detail below.

At U > 0 (Figure 2, a), TCO begins to decrease smoothly.

A sequential increase of U to 4 (Figure 2, b) causes the

appearance of a plateau near the half-fill of 1n = 0, which

indicates the occurrence of a first order phase transition.

A further increase of U to 6 (Figure 2, c) leaves only a

disordered phase in case of half filling.

Figure 3 shows the dependence of TCO for 1n = 0 in

variables T −V . The results of calculations using the mean

field method, equation (16), predict a linear dependence

TCO(V ), while the MC simulation gives the expected

underestimated result. As in the mean field, a second order

phase transition is observed at V/U > 0.5, and a first order

phase transition in the range 0.25 < V/U < 0.4.

Figure 4 shows a gradual decrease of TBS with an

increase of U to 4, at which a significant suppression of

the BS phase occurs. The dotted lines show the boundaries

of the thermodynamic stability regions that converge at

1n ≃ 0.6 with a decrease in temperature for situations

with U = 0, 1 and 2. In the case of U = 2, the BS

phase is divided into 2 parts, each of which, in turn,

has areas of instability. At U = 4, only a small area

of the BS phase remains in the range −1 < 1n < 0.7.

Further, the BS phase becomes unstable, which means

the appearance of a disordered phase or a region of

phase separation. A similar situation is observed for the

AFM phase (Figure 5). Its existence is possible in the

interval 0.5 < 1n < 1. These results are consistent with
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T
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2

Figure 5. Critical temperature dependencies of NO-AFM. The

dotted lines show the stability boundaries of the homogeneous

phase.

∆n
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T
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CO
AFM

CO +AFM
BS

CO +BS

Figure 6. Phase diagram of model nickelate at V = 1, J = 1,

t = 1, U = 0. Dotted line — boundaries of the CO+BS and

CO+AFM phase separation regions.

data of the mean field approximation and classical MC

simulation [7].
One of the possible phase diagrams of the model nickelate

is shown in Figure 6. Two regions of phase separation

can be clearly observed here: CO+BS in the range

−0.6 < 1n < 0 and CO+AFM in the range 0 < 1n < 0.9.

The BS, CO, and AFM phases are located sequentially

between them. The results show that for the ground state, as

well as in the mean-field approximation, the BS and AFM

phases are realized near small and large values of n, and

the CO phase exists at finite temperatures for these model

parameters.

A comparison of the obtained phase diagrams with half-

filling 1n = 0.5 shows that the simulation results correctly

predict the NO-CO transition at a qualitative level. However,

with a further decrease in temperature, under certain model

parameters, it is only possible to preserve the CO phase or

transition to the BS phase.

5. Conclusion

The results of numerical simulation using the modified

Monte Carlo method with the thermostat algorithm show

good qualitative agreement with the results of the mean field

approximation for those simple solutions when analytical

expressions can be obtained. This makes it possible to

use this numerical method to analyze the properties of

phase states in more complex situations where an analytical

solution is not available. Temperature phase diagrams are

constructed in this paper for a pseudospin model of rare-

earth orthonickelates at various values of the local charge

correlations parameter. It is shown that the model predicts

various types of phase transitions, as well as the existence of

inhomogeneous phase states at different parameter values.
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