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Electronic transport in topological itinerant helical magnet
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A spin system with helical order can exhibit nontrivial topology of the band structure. An example of such a

system is the metallic delafossite PdCrO2. To describe its transport properties, a simple two-dimensional quasi-

isotropic model of the Fermi surface has been proposed, which takes into account the emergence of spin texture,

i. e., it consists of alternating fragments with opposite spin polarization. It has been shown that this model can

explain the emergence of non-reciprocal electronic transport observed in the metallic delafossite PdCrO2, as well

as the unusual anomalous Hall effect.
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1. Introduction

According to Bloch’s theorem, the dispersion depen-

dences of electrons in crystal structures should be periodic

functions in momentum space, and their periodicity is

determined by the size of the Brillouin zone [1]. Thus,

the boundaries of the zone can be
”
glued“ so as to

explicitly specify the periodicity of the dispersion relations,

which in this case will be determined on a cylinder

for one-dimensional (1D) systems, on a torus for two-

dimensional (2D) and a hypertor for three-dimensional (3D)
structures [2]. The topological nontriviality of these objects

leads to the fact that the zone structure can belong to

various topological classes [3]. Traditionally, it is assumed

that a nontrivial band structure arises due to the specific

phase distribution of the wave function in the Brillouin

zone [4]. The phase variation can be represented as a vector

field of the Berry vector potential (or connectivity). It has

properties similar to the vector potential of a magnetic field,

in particular, the ambiguity associated with gauge invariance.

It is convenient to move from it to another vector field,

the Berry curvature, which is similar in its properties to

the induction of a magnetic field. The distribution of the

Berry curvature in the Brillouin zone may have a different

topology. This is easy to see, for example, for 2D systems:

on the surface of a torus, the Berry curvature as a vector

field can belong to various topological classes in cases where

the
”
monopole“ is inside or outside the torus [3].

In recent decades, the main efforts of researchers have

been focused on studying topological insulators (TI) and

edge states in them, since unusual observed effects occur

here [5,6], which are determined by surface states with

enormous mobility of charge carriers.

It has recently been shown that a new type of nontrivial

topological structures may exist in magnetic helicoidal

systems that are not related to the Berry vector potential [7].
They arise for two reasons. First, in a helicoidal magnetic

field, the dispersion relations εk,σ have a specific symme-

try [8]:

εk,〈σ 〉 = ε−k,−〈σ 〉, (1)

where k is the wave vector, 〈σ 〉 is the average spin value.

Secondly, two characteristic periods of the structure, i. e.,

crystallographic and magnetic, together with Born-Karman

periodic boundary conditions in the helicoidal system lead

to the fact that within the Brillouin magnetic zone, the

dispersion dependence is not periodic and forms a group of

branches (a multi-sheet dispersion surface), which, in turn,

has a nontrivial the topology [7]. A 2D model of palladium

layers in metallic delafossite PdCrO2 was considered as an

example of such a band structure. One of the features of

the band structure with a nontrivial topology turned out to

be the spin texture of the Fermi surface [8,9].

Metallic delafossites (PdCoO2, PtCoO2, PdCrO2) have

record-breaking electrical conductivity for metallic oxides

comparable to values typical for elementary metals such as

copper and silver [10]. These compounds have a layered

structure in which the dielectric layers CoO2 and CrO2 al-

ternate with conductive layers of platinum or palladium [11].
The relatively low concentration of mobile charge carriers

and high electrical conductivity lead to abnormal values

of the free path. This suggests an unusual mechanism of

electronic transport [12].

Among metallic delafossites, PdCrO2 is the only com-

pound in which a long-range magnetic order occurs at

TN = 38K [13]. The magnetic structure turns out to be

extremely complex: chromium ions in the CrO2 interlayers
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Figure 1. A spin-textured Fermi surface in a 2D model of almost free electrons for a hexagonal palladium layer obtained at different

values of the Fermi level (a and b) [8,9]. Sheets α and γ are designated. Spin polarization is shown in color (blue and red) for spin-up

and spin-down polarization.

form the 120◦th order with alternating chirality in neighbor-

ing interlayers. In total, the magnetic structure consists of

18 sublattices [13]. The transition to a magnetically-ordered

state leads to a sharp drop in resistance. In addition to

its extremely high conductivity, PdCrO2 has a number of

other unexpected transport properties: the non-reciprocity

of electronic conductivity [14] and the unusual anomalous

Hall effect (UAHE) [15].
It is shown in this paper that all of the above transport

properties can be explained within the framework of a

2D model of a Fermi surface with a spin texture.

2. Quasi-isotropic two-dimensional Fermi
surface model

The Fermi surface in PdCrO2 is currently well studied,

both in the paramagnetic (PM) and magnetically ordered

phases [10,16–18]. In the first case, there is a single

sheet (α) of a quasi-two-dimensional Fermi surface with

an electronic conductivity. The Fermi surface reconstruction

takes place in the magnetically ordered phase below TN , due

to the transition to the Brillouin magnetic zone [17,18], as
a result of which the main α sheet becomes a hole sheet γ

and an electronic sheet α (pocket) near the K-point.

In particular, it was proven in Ref. [7], that a non-trivial

band structure appears under the action of a 120◦ magnetic

(molecular) field in a two-dimensional hexagonal layer in

electrons, when a separate sheet of the dispersion surface

is non-periodic in the Brillouin magnetic zone. In this case,

the band structure as a whole turns out to be periodic, as

required by Bloch’s theorem.

Thus, one of the main results of the studies in Refs. [7–
9] concluded that a single-sheet Fermi surface with a spin

texture corresponding to the ratio (1) is possible in the

topological metal regime. At the same time, it is non-

degenerate along the back, possibly with the exception

of isolated points. In other words, the spin state of an

electron on the Fermi surface depends on the wave vector

(spin texture) and is uniquely determined by it (absence of

degeneracy). Then we can omit the spin index, which we

will do in the future.

The band structure of a hexagonal 2D metallic layer in a

helicoidal magnetic field in the approximation of almost free

electrons [8,9], proposed as a model of conducting layers

in PdCrO2, is shown in Figure 1. Under the influence

of the effective field of magnetically ordered chromium

ion layers, the main γ sheet, the Fermi surface, and

pockets (α sheet) appear, which are in good agreement with

experimental data. The spin texture of the Fermi surface

also appears, corresponding to the topological metal regime,

which consists of six alternating arches with opposite spin

polarization. In some cases, a similar structure occurs in the

edge states of TI.

The transport properties of the zone structure are largely

determined by the main γ sheet. At the same time, it

can be approximately considered isotropic. Then, if we

ignore pockets near K points, it is possible to proceed to

the following 2D model representation: the Fermi surface

in the absence of a magnetic field is isotropic in shape

and has a spin structure. In the case of a nonzero

magnetic field, which is assumed to be perpendicular to the

spin plane, the arches of the Fermi surface corresponding

to different directions of spin polarization are shifted in

opposite directions due to the Zeeman effect. Therefore,

we will call the model quasi-isotropic. This model allows

performing analytical calculations for transport properties

taking into account the spin texture. We will also assume a

parabolic law of dispersion. Figure 2 shows a model Fermi
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surface with a spin texture for cases without a magnetic

field and a magnetic field oriented perpendicular to the spin

plane.

As was shown earlier in Ref. [19], the spin texture

partially suppresses the processes of electron-phonon scat-

tering with overshooting and therefore leads to abnormal

conductivity at low temperatures. The following section

shows that it also leads to non-reciprocity of electronic

transport.

3. Non-reciprocity of electronic transport
in PdCrO2 in a magnetic field

It was shown in Ref. [20] that the following condition

follows from the Onsager relation in the case of chiral

systems in a magnetic field: the electrical conductivity must

be invariant with respect to the simultaneous change of the

sign of the current and the magnetic field. This means

that the reciprocity condition of electronic transport can be

violated in a magnetic field. After that, an active search

for chiral structures with non-reciprocal electronic transport

began. In particular, it was detected in the magnetically

ordered phase PdCrO2 for the orientation of current and

magnetic field along the crystallographic axis a [14], which

corresponds to the direction Ŵ-M in the Brillouin magnetic

zone.

When the external homogeneous electric field is oriented

along the direction of the magnetic field (E ‖ B), the kinetic
equation takes on a simple form [21]

e

~
E∇k f = −δ f

τ
, (2)

where f and δ f is the distribution function and its deviation

from the equilibrium state, k is the electron wave vector, τ is

the relaxation time, which is considered isotropic, e is the

electron charge. The magnetic field is not explicitly included

in expression (2), but it changes the equilibrium distribution

function (see Figure 2). Here and below we assume that the

spin plane is oriented perpendicular to the magnetic field.

This condition is always approximately fulfilled in strong

magnetic fields, i. e. above the spin-flop transition field B s f .

For PdCrO2, the value of B s f is of the order of 7 T [18].
As usual, the deviation of the distribution function from

the equilibrium f 0 state in the metal is considered small.

Then the deviation from the equilibrium state linear in the

electric field can be written as

f 1 = eτ Exvx

d f 0

dε
, (3)

where Ex and vx are the components of the electric field

and velocity along the axis x (along the crystallographic

direction a). The particle energy is assumed in the standard

form ε = ~
2k2/(2m), and the particle velocity v = ~

−1∇kε.

The current density in the 2D model is determined by the

following expression:

jx =
e

4π2

∫

vx f dk. (4)

B = 0 B < 0 B > 0

Figure 2. Quasi-isotropic 2D model of a textured Fermi

surface (polarization is shown in color) at various magnetic field

values (B).

The first-order correction f 1 gives a linear response of the

system to an electric field, i. e., ordinary conductivity with

minor corrections due to the deviation of the Fermi surface

from the isotropic shape in the presence of an external

magnetic field.

In normal metals, the equilibrium distribution function is

centrally -symmetric, i. e. f 0(k) = f 0(−k). Then the first-

order -correction must be antisymmetric.: f 1(k) = f 1(−k),
and -the second-order correction must be again centrally

symmetric f 2(−k) = f 2(−k). Then the second-order

correction by E in the -current density disappears, since

the integral expression in the -formula (4) turns out to be

an odd function (k, and thus the -transport turns out to be

reciprocal. However, this conclusion is unfair -for a spin-

textured Fermi surface in the presence of a magnetic field,

-since in this case, under the influence of the Zeeman effect

f 0(−k) 6= f 0(−k), as can be seen in Figure 2.

The correction to the second-order distribution function

can be obtained by substituting f 1 → f into the left-hand

side of equation (1). Then we get

f 2 = (eτ Ex)
2

[

d2 f 0

d2ε
v2

x +
1

m

d f 0

dε

]

. (5)

Substituting (5) into (4) after some transformations leads to

the expression of the correction to the current density in the

second order according to E in the form:

j2 =
e(eτ Ex)

2

√
2π2m1/2~2

x d2 f 0

d2ε
ε3/2dε cos3(ϕ)dϕ, (6)

where ϕ is the angle in polar coordinates. In the low

temperature limit (kBT )/εF ≪ 1), the integral is calculated

analytically, and at B 6= 0, the value of the nonlinear part of

the current turns out to be nonzero

j2 = −e(eτ Ex )
2

8π2~2
1vF , (7)

where 1vF = 2µBB/(mvF0) is the difference of Fermi

velocities for different spin directions for a quasi-isotropic

model, vF0 is the Fermi velocity in the absence of a

magnetic field, µB is the Bohr magneton. It is also assumed

that 1vF/vF0 ≪ 1.

Since the measurement results of non-reciprocal elec-

tronic transport were presented in Ref. [14] in terms of
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nonlinear resistivity

ρ = ρ0 + ρ2 j, (8)

it is convenient to convert the expression (7) to this kind.

The nonlinear correction is small compared to the linear

part of the resistivity. Then it can be shown that

ρ2 ∝ B/τ . (9)

It can be seen from the expression (9) that ρ2 is proportional
to the magnetic field, which is consistent with experimental

data in strong fields [14]. In addition, there is a strong

and non-monotonic dependence of ρ2 on temperature over

the relaxation time, which should be proportional to ρ0(T )
to TN , and then, during the transition to the paramagnetic

phase, when the spin texture disappears, the nonlinear part

of the resistivity It should go to zero. This behavior is also

qualitatively observed experimentally [14].
The effect of non-reciprocity during the flow of current in

periodic magnetic structures was studied in Ref. [22], and
from fairly general considerations it was shown that a non-

planar magnetic structure is necessary for its occurrence.

At first glance, this contradicts the results obtained in this

section. However, it should be noted that the absence of an

external magnetic field was allowed in Ref. [22], whereas

its presence was a necessary condition in the approach used

above for the non-reciprocity of transport properties. From

the analysis of the symmetry of the kinetic coefficients, it

can be shown [20] that in a chiral system, the resistance of

a bipolar can contain a term of the form aIB, where a is

the coefficient, I and B is the current and induction of the

magnetic field, and when the chirality changes (from left

to right and vice versa), the coefficient a must change

sign. This contribution corresponds to the magnetochiral

anisotropy [20], and the above dependence (9) corresponds

precisely to it.

4. Unusual anomalous Hall effect

An anomalous Hall effect is observed in the magnetically

ordered phase in PdCrO2, and the Hall resistance cannot be

represented as the sum of two terms linear in the magnetic

field and magnetization [15]. Therefore, it is referred to

as UAHE. Figure 3 shows the experimental dependences of

the Hall resistance in PdCrO2 in the magnetically ordered

T = 2K and paramagnetic phases T = 40K. There are

complex models of this effect involving concepts of the

Berry phase, scattering in non-planar magnetic systems, etc.

On the other hand, it is shown below that a fairly simple

explanation can be given, bearing in mind several types of

mobile charge carriers in the magnetically ordered phase.

It was already noted above that the magnetic order

leads to the reconstruction of the Fermi surface and the

appearance of hole-like γ and electronic α sheets. Moreover,

the mobility of holes can be significantly higher than that of

electrons due to the spin texture (abnormal conductivity)
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Figure 3. Hall resistance PdCrO2 as a function of the magnetic

field at T = 40K (blue circle), T = 2K (black square) from

Ref. [15] and the dependence in the two-band model (solid line).

and blocking of scattering processes with flipping [19].
Then, the Hall coefficient in metal has a well-known form

in the framework of the two-band model [1]

R(H) =
Reρ

2
h + Rhρ

2
e + ReRh(Re + Rh)B

2

(ρe + ρh)2 + (Re + Rh)2B2
, (9)

where ρe(h) and Re(h) are the resistivity and Hall constant

for the electron (e) and hole (h) zones, respectively. In

this case, the Hall constant defined in the expression (9)
becomes a function of the magnetic field [1].
Figure 3 shows the dependence of ρyx = BR, where

the Hall constant is determined by the formula (9)
with the following parameters: ρe = 3.76 · 10−8 Ohm ·m,

ρh = 1.93 · 10−7 Ohm ·m, Re = −7.08 · 10−10(C ·m3)−1,

Rh = 2.09 · 10−8(C ·m3)−1. It should be noted that the mo-

bilities of electrons and holes (µ = |R|/ρ) are very different

in this case: µe = 0.019m2/V · s and µh = 0.11m2/V · s.
The above example shows that the two-band model,

although it is probably too simplified for the electronic

structure PdCrO2, nevertheless allows describing UAHE in

this compound in a natural way without involving complex

theoretical models.

5. Conclusion

In this paper, we propose a simple two-dimensional

model of a quasi-isotropic textured Fermi surface corre-

sponding to the nontrivial topology of the band structure of

hexagonal conductive layers in a chiral magnetic (molecular)
field. It is shown that it makes it possible to explain all the

main anomalous transport properties of the magnetic metal-

lic delafossite PdCrO2. In particular, from a microscopic

point of view, the non-reciprocity of electron transport

is related to the fact that the Fermi surface with a spin
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texture becomes asymmetric in a magnetic field (without

an inversion center). It was previously shown in Ref. [19]
that the texture of the Fermi surface leads to an abnormally

high conductivity observed in PdCrO2. It has long been

known that the Hall constant becomes dependent on the

magnetic field in a two-band metal model [1]. This makes it

possible to describe the UAHE in PdCrO2 in the magnetic

phase.
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