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1. Introduction

Systems based on orthoferrites-orthochromites of

RFe1−xCrxO3 (R = Nd, Gd, Dy, Y, Lu) type were the

subject of intense fundamental theoretical and experimental

studies in the end of 20th century [1–9]. A new surge

of interest in these systems already in the 21st century is

associated with the finding of specific magnetoelectric and

magnetocaloric properties [10–13] and the new prospects

for practical application of the phenomena of temperature

compensation of the magnetic moment, exchange bias and

spin reorientation to create various multifunctional devices,

for example, of spintronics [14–22].

The fundamental studies of orthoferrites and or-

thochromites are sill based first of all on the features

of 4 f −3d-interaction and antisymmetric Dzyaloshinskii–
Moriya (DM) exchange [1,23–27]. From the micro-

scopic theory of antisymmetric exchange for the systems

of RFe1−xCrxO3 type it is possible to obtain both the

numerical estimation of the Dzyaloshinskii vector value

and, what is especially important, its sign, which once

played a principal role in the prediction and experimental

discovery of a new type of magnetic ordering — weak

ferrimagnetism [25]. The key feature of weak ferrimagnets

is the competition of Dzyaloshinskii vectors between ion

pairs Fe3+−Fe3+ and Cr3+−Cr3+ on the one hand and ion

pairs Fe3+−Cr3+ and Cr3+−Fe3+ on the other hand.

Despite its long history, the unusual effect of the

spontaneous spin reorientation (SR) in weak ferrimagnets

with a non-magnetic R-ion (Y, Lu) in the absence of

the external fields has not yet been described adequately.

Usually the researchers limit themselves to phenomenolog-

ical approaches and mean field approximations [1–3,25,28],

using which, one can relate the possibility to change the

Neel vector orientation Gz ↔ Gx with microscopic nature

of DM-interaction in the mixed orthoferrites-orthochromites

YFe1−xCrxO3. The tools making it possible to
”
ob-

serve“ and study the magnetic configurations in these

systems are Monte Carlo methods. These methods

have already been used previously for modeling of rare-

earth perovskites [29–33] and also mixed orthoferrites–
orthochromites [34,35], but the authors have never consid-

ered the phenomena of spin reorientation.

Therefore, the main objective of the paper is development

of the Monte Carlo (MC) method, which makes it possible

to observe and study the complex magnetic configurations

that are not typical for
”
parent“ YFeO3 and YCrO3 in the

mixed orthoferrites−orthochromites YFe1−xCrxO3.

2. Model

Weak ferrimagnets of YFe1−xCrxO3 type are orthorhom-

bic perovskites with the space group Pbnm. There are

4 magnetic 3d-ions per unit cell, for which the following

classical basis vectors can be introduced [3]:

4SF = S(1) + S(2) + S(3) + S(4),

4SG = S(1) − S(2) + S(3) − S(4),

4SC = S(1) + S(2) − S(3) − S(4),

4SA = S(1) − S(2) − S(3) + S(4). (1)

Here the vector G describes the main antiferromagnetic

component of the magnetic structure, F is the vector of

weak ferromagnetism (overt canting of sublattices), weak
antiferromagnetic components C and A describe the canting
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of magnetic sublattices without formation of the total

magnetic moment (hidden canting of sublattices). Typical

spin configurations for the 3d-sublattice, compatible with

the antiferromagnetic sign of the main isotropic superex-

change, are indicated as Ŵ1(Ax ,Gy ,Cz ), Ŵ2(Fx ,Cy , Gz ),
Ŵ4(Gx , Ay , Fz ), where the brackets contain the only nonzero

components of basis vectors.

Contrary to YFeO3 and YCrO3, which are weak ferro-

magnet with the main magnetic structure of Ŵ4(Gx , Ay , Fz )
type below Neel temperature TN, weak ferrimagnets

orthoferrites−orthochromites YFe1−xCrxO3 according to

the data of magnetic measurements show full or partial

spin-reorientation of Gx Fz−Gz Fx type in the wide range

of substitution [2]. Usually in such systems the reorientation

arises due to 4 f −3d-interaction [3], but in case of non-

magnetic yttrium ion such mechanism is excluded, and

anisotropy of 3d-sublattice must be considered. And indeed,

the phenomenon can be explained by the strong reduction

in the contribution of DM-interaction into the magnetic

anisotropy [7,28].
Let us present the spin-Hamiltonian of a weak ferri-

magnet in the simplest form, taking into account only the

contributions of the isotropic exchange interaction, and also

the antisymmetric Dzyaloshinskii−Moriya exchange:

Ĥ = Ĥex + ĤDM

Ĥex =
1

2

∑

〈i j〉

I i j(Ŝi · Ŝ j),

ĤDM =
1

2

∑

〈i j〉

di j [Ŝi × Ŝ j ] (2)

summation runs over nearest neighbors, I i j is the exchange

integral, di j the Dzyaloshinskii vector.

Figire 1 shows the structure of superexchange bonds in

the model. The cation-anion distances and the superex-

change bond angles for the nearest neighbors slightly differ,

so below we assume the equality of the superexchange

integrals Iab = Ic = I and the modules of the Dzyaloshinskii

vectors dab = dc = d, although the vectors themselves are

directed in different directions. Let us also presume further

that the pairs of nearest ions lie along the axes of the

system of coordinates x ′y ′z ′, which is rotated around axis z

by angle 45◦; however, all vector values in the paper are

calculated in the system xyz , axes of which correspond to

the crystal abc axes.

Microscopic expression of the relation between Dzya-

loshinskii vector and the geometry of the superexchange

cation–anion–cation bond is as follows [1]

di j = di j(θ)[ri × r j ], (3)

where ri j are unit vectors along bonds O2−−Fe3+, or

O2−−Cr3+, θ the angle of superexchange bond (hereinafter
it will be omitted in the designations). The structure factors

determining the orientation of the Dzyaloshinskii vectors in

orthoferrites−orthochromites of the YFe1−xCrxO3 are given

1
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4

3

3

3

2

4

4
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Figure 1. The structure of superexchange bonds; large balls are

Fe3+, Cr3+ ions, small balls are O2−; 1, 2, 3, 4 are magnetic ions in

four non-equivalent positions.

in the table. The simple formula (3) allows determining a

direct relationship of magnetic non-collinearity (overt and

hidden canting of sublattices) in weak ferromagnets with

the crystal structure [23–25].
In accordance with the crystal symmetry, the clear view

of the Dzyaloshinskii vectors depending on the site number

is as follows:

di jk(Ox ′) = d







(−1)i+ j+kαab

(−1)i+ j+kβab

(−1)i+ jγab






(4)

di jk(Oy ′) = d







−(−1)i+ j+kαab

(−1)i+ j+kβab

(−1)i+ jγab






(5)

di jk(Oz ′) = d







(−1)kαc

(−1)i+ j+kβc

0






, (6)

where index i numbers ions along axis x ′, j along axis y ′, k

along axis z ′, di jk(Ox ′) is vector for pairs of ions, on the

Components x, y, z of structure factors [ri × r j ] calculated using

the neutron diffraction data [11] for YFe0.5Cr0.5O3

x y z

[r2 × r1] αc = 0.216 βc = 0.562 0

[r4 × r1] ±αab = 0.303 βab = 0.287 γab = 0.397
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site i jk and its nearest neighbor along axis x ′, di jk(Oy ′) —
vector for ion pairs along axis y ′, di jk(Oz ′) — vector for

ion pairs along axis z ′ .

3. Methods

For numerical modeling of a simple cubic 3d-lattice

with Hamiltonian (2) we considered the two Monte Carlo

(MC) methods with the different methods of state selection

in the lattice site within the Metropolis algorithm [36].
In the first case it is a pure classical Monte Carlo method

(MC1), when spin operators Ŝi in the Hamiltonian (2) are

substituted with the classical vectors

mi = Si









cos v i

√

1− u2
i

sin v i

√

1− u2
i

ui









, (7)

where ui is a random value from −1 to +1, v i is a random

value from 0 to 2π, Si is the spin quantum number of the

corresponding site. This is one of the simplest MC methods,

which is often used in the work with the spin-Hamiltonian

of type (2), including for description of magnetic phenom-

ena in rare-earth perovskites [29,30,32,35,37].
At the initial step of MC, at each site of the lattice i ,

the numbers u
(0)
i , v

(0)
i are selected randomly, the magnetic

moments mi and system energy E(0) are calculated. At the

next step the new random numbers u
(1)
i , v

(1)
i are selected,

and also between 0 and 1 the random number p is

selected, then the corresponding energy and its change

are calculated relative to the previous state of the system

1E = E(1)−E(0). If the new state complies with the

inequation exp(−1E/T ) > p, where T is the system tem-

perature, we accept the new state of the system: u
(0)
i → u

(1)
i ,

v
(0)
i → v

(1)
i , if the new state does not comply with the

inequation, we leave the previous state of the system. This

step is repeated until the system reaches equilibrium at the

specified temperature T .

In the second case we propose the quasi-classical

Monte Carlo (MC2) method, when the site state is specified

by the wave function |ψ〉 =
∑

M

cM |S,M〉, where S is the site

spin, M is the spin projection on the axis, cM are random

coefficients with normalization 〈ψ|ψ〉 = 1 (site indices are

omitted).
In case of the iron ions (spin S = 5/2) the wave function

has the following form

|ψ〉 = c− 5
2

∣

∣

∣

∣

5

2
,−

5

2

〉

+ c− 3
2

∣

∣

∣

∣

5

2
,−

3

2

〉

+ c− 1
2

∣

∣

∣

∣

5

2
,−

1

2

〉

+ c 1
2

∣

∣

∣

∣

5

2
,
1

2

〉

+ c 3
2

∣

∣

∣

∣

5

2
,
3

2

〉

+ c 5
2

∣

∣

∣

∣

5

2
,
5

2

〉

, (8)

with coefficients presented as

c 5
2

=

√

1− ζ
1
5

1 e
i2πξ 5

2 ,

c 3
2

= ζ
1
10

1 ζ
1
8

2 ζ
1
6

3 ζ
1
4

4 ζ
1
2

5 e
i2πξ 3

2 ,

c 1
2

= ζ
1
10

1 ζ
1
8

2

√

1− ζ
1
3

3 e
i2πξ 1

2 ,

c− 1
2

= ζ
1
10

1 ζ
1
8

2 ζ
1
6

3

√

1− ζ
1
2

4 e
i2πξ

−

1
2 ,

c− 3
2

= ζ
1
10

1 ζ
1
8

2 ζ
1
6

3 ζ
1
4

4

√

1− ζ5 e
i2πξ

−

3
2 ,

c− 5
2

= ζ
1
10

1

√

1− ζ
1
4

2 e
i2πξ

−

5
2 , (9)

where all ζq, ξM are random values from 0 to 1. In case

of chromium ions with spin S = 3/2, it is necessary to

set ζ1 = ζ2 = 1. Such parameterization of the coefficients

guarantees the normalization of the wave function on the

site and that any state with the uniform sampling ζq, ξM will

appear with the same frequency in the algorithm operation.

Therefore, in the MC2 method the magnetic moment per

site and the system energy are accordingly calculated as

mi = 〈ψi |Ŝi |ψi〉, (10)

E = 〈9|Ĥ|9〉, (11)

where |9〉 = 5i |ψi〉 is the wave function of the entire

system. This method works using the same Metropolis

algorithm as the one given above for MC1, but using

formulas (8)−(11).
For the characterization of the angular phase, at each step

of MC (after achievement of equilibrium in the system)
both methods calculate the basis vectors (1) in the entire

lattice as

F =
1

N

N
∑

i jk

mi jk

Si jk

, G =
1

N

N
∑

i jk

(−1)i+ j+k mi jk

Si jk

,

C =
1

N

N
∑

i jk

(−1)i+ j mi jk

Si jk

, A =
1

N

N
∑

i jk

(−1)k mi jk

Si jk

, (12)

where index i numbers ions along axis x ′, j along axis y ′, k

along axis z ′, N is the number of 3d-ions, Si jk is the spin of

site i jk , mi jk is the magnetic moment of site i jk , calculated

using formula (7) in MC1 method and formula (10)
in MC2 method.

4. Results

Numerical simulation was carried out using a simple

cubic lattice of N = 64× 64× 64 sites with periodic bound-

ary conditions. In accordance with concentration x each

site is randomly selected as an iron or a chromium ion.

To establish the equilibrium, at the specified values of

temperature and concentration, 2 · 104 MC steps were made

at each site of the lattice, and then another 3 · 104 MC steps

to the site for statistics collection.

Based on the results in the mean field approximation

(MFA) [28], the Hamiltonian parameters in this paper

take the following values: IFeFe = 36.6K, ICrCr=18.7K,
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Figure 2. The first (a) and second (b) compensations of weak ferromagnetic vector F in MC1 method.

IFeCr=13.4K, dFeFe=2.0K, dCrCr = 1.7K, dFeCr = −2.5K,

where the negative sign of the parameter dFeCr, relative

to dFeFe and dCrCr, specifies in the model system the

competition of Dzyaloshinskii vectors.

Note at once that the considered systems of N = 643 ions

are far from the size of the real samples, and the results may

depend on how the impurity will be distributed at specific

modeling. For example, with the considerable quantity of

impurity (x ≈ 0.5) the system will contain different areas:

when all nearest neighbors of the selected ion are ions of

the same type (where the contribution is provided only by

vectors dFeFe and dCrCr), and when all closest neighbors are

ions of another type (where the contribution is provided

only by vector dFeCr), and depending on the relative volume

of the areas, the value and the direction of basis vectors (1)
will differ. In this paper we will not study the possible

effects.

The calculations using the MC1 method show that in the

mixed orthoferrite−orthochromite YFe1−xCrxO3 below the

critical temperature TN(x) a spontaneous transition occurs

from a disordered state into a phase with the single non-zero

components of basis vectors Gx , Ay .Fz , i. e. into phase Ŵ4.

In this context the MC1 method agrees with MFA, including

a conclusion that for reorientation into the phase different

from Ŵ4(Gx , Ay , Fz ), single competition of Dzyaloshinskii

vectors is not sufficient and, for example, it is necessary to

take into account the effects of the single-ion spin anisotropy.

Figire 2 shows the examples of behavior of weak

ferromagnetic vector F depending on relative temperature

T/TN,max, where TN,max = 320K is the temperature of

magnetic moment formation in the model system YFeO3.

What is important, the MC1 method, same as MFA,

shows the presence of the magnetic moment compensation

(effect of negative magnetization) at low concentration

of chromium x ≈ 0.2 (Figire 2, a), and also predicts the

presence of the second compensation near concentration

x ≈ 0.8 (Figire 2, b).

In the case of the MC2 method, at certain concentrations

the temperature dependences of absolute values of vectors

x
0 0.2 0.4 0.6 0.8

3
F

 ·
1
0

5

0

10

1.0

MC1

MC2

MFA

15

Figure 3. Concentration dependence of the value of weak

ferromagnetic vector F in MC1 methods (circles), MC2 methods

(triangles) and in the mean field approximation (solid line) near

the ground state (T/TN,max ≪ 1).

F,G behave in the same manner as in case of MC1 method,

but with the ordering temperature of TN,max = 85K. Be-

sides, the magnetizations near the ground state turn out to

be close, too (Figire 3). The first and second compensations,

for example, at x = 0.2 and x = 0.77, accordingly, are

observed here as well (Figire 4).

The specific feature of the method is the fact that in

the area of intermediate concentrations at the selected

parameters of the model we find phase Gxyz , which

includes all components of vectors F,G,A, C (Figire 4).
Therefore, there is angular configuration, which in the mixed

composition YFe1−xCrxO3 turns out to be more preferable

than the
”
parent one“ Ŵ4(Gx , Ay , Fz ).

The MC2 method remains classical as such, but account-

ing for the operator nature of the spin using quasi-classical

wave functions of type (8) turns out to be sufficient to

show the presence of phases different from Ŵ4 (i. e. the
possibility of spin reorientation) only at the expense of

the competition of Dzyaloshinskii vectors without inclusion

of additional mechanisms, for example, external fields and
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Figure 4. Temperature dependences of basis vectors at different concentrations of chromium, blue circles are the projection of the

corresponding vector along a-axis of the crystal, orange triangles are onto along b-axis, green diamond are onto along c-axis.

single-ion anisotropy. The inspection of the MC2 method in

the absence of competition, with the co-directional vectors

dFeFe, dCrCr and dFeCr, found no angular configurations, only

phase Ŵ4(Gx , Ay , Fz ) is observed.

Note the issue of determining the critical tempera-

tures TC , for example, when the system transitions from

the disordered paramagnetic state to phase Ŵ4.

In case of classical MC methods with Metropolis algo-

rithm these temperatures become much lower than in the

case of the mean field approximation. On the one hand,

it is known that MFA tends to overestimate TC , since such

methods do not account for important local correlations and

fluctuations. On the other hand, when simulating systems

that contain off-diagonal operators in the Hamiltonian, a

strong underestimation TC occurs in classical MC methods.

We relate this to the unkillable dispersion of energy and

order parameters, caused by the continuity of the spectrum

of single-site operators. When a new state is selected in

the site, we are limited only by the normalization condition;

therefore, at any temperature a new site state will be found,

which is rather close by energy, which will be most probably

accepted on process of the elemental step of the Metropolis

algorithm. For this reason in this paper we were interested

only in the magnetic configuration of the mixed composition

YFe1−xCrxO3, and the results above were given in relative

temperatures T/TN,max, where TN,max is the temperature of

transition from the disordered paramagnetic state for YFeO3

(TN,max = 320K in the MC1 method, and TN,max = 85K

in the MC2 method). For more precise study of the critical

temperatures by the classical MC method, other algorithms

are required [31,33,34,38].

5. Conclusion

In this paper we developed software for simulating of

magnetic moments by the Monte Carlo method in the mixed

orthoferrite−orthochromite YFe1−xCrxO3. Key features are

explained by the competition of the Dzyaloshinskii vectors.

It is confirmed that the system has the first compensation

near x ≈ 0.2, and also the second compensation is predicted

near x ≈ 0.8. Whereas in the parent systems YFeO3

and YCrO3 the phase Ŵ4(Gx , Ay , Fz ) is observed exclusively,

and their mixed composition demonstrates an angular

phase Gxyz , including all components of the basis vectors

F,G, C,A. The presence of phase Gxyz indicates the

possibility of spin reorientation, but detailed description

requires additional research, accounting for single-ion spin
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anisotropy, and the modification of the algorithm that

determines the elemental step of the Monte Carlo method.
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