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1. Introduction

Systems based on orthoferrites-orthochromites of
RFe;_,Cr,O3 (R=Nd, Gd, Dy, Y, Lu) type were the
subject of intense fundamental theoretical and experimental
studies in the end of 20th century [1-9]. A new surge
of interest in these systems already in the 21st century is
associated with the finding of specific magnetoelectric and
magnetocaloric properties [10-13] and the new prospects
for practical application of the phenomena of temperature
compensation of the magnetic moment, exchange bias and
spin reorientation to create various multifunctional devices,
for example, of spintronics [14-22].

The fundamental studies of orthoferrites and or-
thochromites are sill based first of all on the features
of 4f—3d-interaction and antisymmetric Dzyaloshinskii—
Moriya (DM) exchange [1,23-27]. From the micro-
scopic theory of antisymmetric exchange for the systems
of RFe;_,Cr,Os3 type it is possible to obtain both the
numerical estimation of the Dzyaloshinskii vector value
and, what is especially important, its sign, which once
played a principal role in the prediction and experimental
discovery of a new type of magnetic ordering — weak
ferrimagnetism [25]. The key feature of weak ferrimagnets
is the competition of Dzyaloshinskii vectors between ion
pairs Fe3* —Fe?* and Cr**—Cr** on the one hand and ion
pairs Fe>* —Cr** and Cr3* —Fe* on the other hand.

Despite its long history, the unusual effect of the
spontaneous spin reorientation (SR) in weak ferrimagnets
with a non-magnetic R-ion (Y, Lu) in the absence of
the external fields has not yet been described adequately.
Usually the researchers limit themselves to phenomenolog-
ical approaches and mean field approximations [1-3,25,28],
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using which, one can relate the possibility to change the
Neel vector orientation G, <« G, with microscopic nature
of DM-interaction in the mixed orthoferrites-orthochromites
YFe;_,Cr,O3;. The tools making it possible to ,,0b-
serve“ and study the magnetic configurations in these
systems are Monte Carlo methods.  These methods
have already been used previously for modeling of rare-
earth perovskites [29-33] and also mixed orthoferrites—
orthochromites [34,35], but the authors have never consid-
ered the phenomena of spin reorientation.

Therefore, the main objective of the paper is development
of the Monte Carlo (MC) method, which makes it possible
to observe and study the complex magnetic configurations
that are not typical for ,parent® YFeOs and YCrO; in the
mixed orthoferrites—orthochromites YFe;_,Cr,Os.

2. Model

Weak ferrimagnets of YFe;_,Cr,O3 type are orthorhom-
bic perovskites with the space group Pbmm. There are
4 magnetic 3d-ions per unit cell, for which the following
classical basis vectors can be introduced [3]:

4SF = S(U + S(z) + S(3) + S<4)’

45G =S — 82 4 §B) _g@),
45C =S 1 8§ _gB) _g@)
4SA =S — 8@ _g() 4 g4 (1)

Here the vector G describes the main antiferromagnetic
component of the magnetic structure, F is the vector of
weak ferromagnetism (overt canting of sublattices), weak
antiferromagnetic components C and A describe the canting
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of magnetic sublattices without formation of the total
magnetic moment (hidden canting of sublattices). Typical
spin configurations for the 3d-sublattice, compatible with
the antiferromagnetic sign of the main isotropic superex-
change, are indicated as I'i(A., G,,C;), Iz (F:, Cy, G,),
I'4(Gy, Ay, F,), where the brackets contain the only nonzero
components of basis vectors.

Contrary to YFeOs and YCrOj;, which are weak ferro-
magnet with the main magnetic structure of I';(Gy, Ay, F.)
type below Neel temperature 7Ty, weak ferrimagnets
orthoferrites—orthochromites YFe;_,Cr,O3 according to
the data of magnetic measurements show full or partial
spin-reorientation of G.F,—G_ F, type in the wide range
of substitution [2]. Usually in such systems the reorientation
arises due to 4f—3d-interaction [3], but in case of non-
magnetic yttrium ion such mechanism is excluded, and
anisotropy of 3d-sublattice must be considered. And indeed,
the phenomenon can be explained by the strong reduction
in the contribution of DM-interaction into the magnetic
anisotropy [7,28].

Let us present the spin-Hamiltonian of a weak ferri-
magnet in the simplest form, taking into account only the
contributions of the isotropic exchange interaction, and also
the antisymmetric Dzyaloshinskii—Moriya exchange:

I:I = I:Iex +ﬁDM
R 1 SO
H,, = 3 Zlij(si -S;),
(i)

- 1 N N
HDM—EgdU[Si XS/] (2)
ij

summation runs over nearest neighbors, /;; is the exchange
integral, d;; the Dzyaloshinskii vector.

Figire 1 shows the structure of superexchange bonds in
the model. The cation-anion distances and the superex-
change bond angles for the nearest neighbors slightly differ,
so below we assume the equality of the superexchange
integrals 1,, = I, = I and the modules of the Dzyaloshinskii
vectors d,, = d. = d, although the vectors themselves are
directed in different directions. Let us also presume further
that the pairs of nearest ions lie along the axes of the
system of coordinates x"y’z’, which is rotated around axis z
by angle 45°; however, all vector values in the paper are
calculated in the system xyz, axes of which correspond to
the crystal abc axes.

Microscopic expression of the relation between Dzya-
loshinskii vector and the geometry of the superexchange
cation—anion—cation bond is as follows [1]

dij =di;(0)[r; xrj], (3)

where r;; are unit vectors along bonds 02~ —Fe3*, or
0%~ —Cr**, 0 the angle of superexchange bond (hereinafter
it will be omitted in the designations). The structure factors
determining the orientation of the Dzyaloshinskii vectors in
orthoferrites—orthochromites of the YFe;_,Cr, O3 are given

Figure 1. The structure of superexchange bonds; large balls are
Fe3+, crit ions, small balls are 02’; 1, 2, 3, 4 are magnetic ions in
four non-equivalent positions.

in the table. The simple formula (3) allows determining a
direct relationship of magnetic non-collinearity (overt and
hidden canting of sublattices) in weak ferromagnets with
the crystal structure [23-25].

In accordance with the crystal symmetry, the clear view
of the Dzyaloshinskii vectors depending on the site number
is as follows:

)t+;+k
D) By (4)
(=1 yap
—(=1)+itkay,
(= 1)+, (5)
(=) Yab
(—Dfe,

(_1)i+j+k‘BC , (6)
0

dijk(Ox/) =d (

d;j(0y') =d

dijk(OZ/) =d

where index i numbers ions along axis x’, j along axis y’, k
along axis z’, d; jk(Ox’ ) is vector for pairs of ions, on the

Components x, y, z of structure factors [r; x r;] calculated using
the neutron diffraction data [11] for YFe( sCro 503

X y z
a =0216 | B.=0.562 0
tau =0.303 | Bup =0.287 | yu» = 0.397

[I’z X r1]

[I’4 X r1]
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site i jk and its nearest neighbor along axis x’, d; jx(Oy’) —
vector for ion pairs along axis y’, d;jx(0Oz’) — vector for
ion pairs along axis z'.

3. Methods

For numerical modeling of a simple cubic 3d-lattice
with Hamiltonian (2) we considered the two Monte Carlo
(MC) methods with the different methods of state selection
in the lattice site within the Metropolis algorithm [36).

In the first case it is a pure classical Monte Carlo method
(MC1), when spin operators S; in the Hamiltonian (2) are
substituted with the classical vectors

1 —u?
l—ui2 ’ (7)

Ui

Cos V; 2

m; = Si | sin v,

where u; is a random value from —1 to +1, v; is a random
value from 0 to 27, S; is the spin quantum number of the
corresponding site. This is one of the simplest MC methods,
which is often used in the work with the spin-Hamiltonian
of type (2), including for description of magnetic phenom-
ena in rare-earth perovskites [29,30,32,35,37].

At the initial step of MC, at each site of the lattice i,
the numbers ul(o), vl(o) are selected randomly, the magnetic
moments m; and system energy E® are calculated. At the
next step the new random numbers ul(l), vl(l) are selected,
and also between 0 and 1 the random number p is
selected, then the corresponding energy and its change
are calculated relative to the previous state of the system
AE =EW_E©  If the new state complies with the
inequation exp(—AE/T) > p, where T is the system tem-
(0) (1)

perature, we accept the new state of the system: u; " — u; ’,

vl(o) — vfl), if the new state does not comply with the
inequation, we leave the previous state of the system. This
step is repeated until the system reaches equilibrium at the
specified temperature 7.

In the second case we propose the quasi-classical
Monte Carlo (MC2) method, when the site state is specified

by the wave function 1)) = > cy|S, M), where S is the site
M

spin, M is the spin projection on the axis, ¢y are random
coefficients with normalization (i[1)) = 1 (site indices are
omitted).

In case of the iron ions (spin S = 5/2) the wave function
has the following form

|w>—c §_§ +c é_g +c é_l
BRI AV A1 VA YA 1 PA)

51 573
22) )T

with coefficients presented as
L i2nés
c%:\/l—glse 2,
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2

11 T i2ne |
1 =000 V=4 e 2,

o111 i2mé_3
cy=ghEeted Vo BT

L 1 i2m
oy =& 15T, 9)

where all £, &y are random values from 0 to 1. In case
of chromium ions with spin S =3/2, it is necessary to
set £ = & = 1. Such parameterization of the coefficients
guarantees the normalization of the wave function on the
site and that any state with the uniform sampling &,, & will
appear with the same frequency in the algorithm operation.
Therefore, in the MC2 method the magnetic moment per
site and the system energy are accordingly calculated as

m; = (i [S;[:), (10)

E = (V|H|V), (11)

where |W) =1I1;|¢);) is the wave function of the entire
system. This method works using the same Metropolis
algorithm as the one given above for MCI, but using
formulas (8)—(11).

For the characterization of the angular phase, at each step
of MC (after achievement of equilibrium in the system)
both methods calculate the basis vectors (1) in the entire
lattice as

N N
1 m; g 1 L m; ;.
F=— 2, G == (-1,
N%; Siik N%;( : Sij
C =— -1 i+j Uk’ A= — 1 k l]k’ 12
DN RS 3 T

where index i numbers ions along axis x’, j along axis y’, k
along axis z’, N is the number of 3d-ions, S; jk 1s the spin of
site i jk, m; j is the magnetic moment of site i jk, calculated
using formula (7) in MC1 method and formula (10)
in MC2 method.

4. Results

Numerical simulation was carried out using a simple
cubic lattice of N = 64 x 64 x 64 sites with periodic bound-
ary conditions. In accordance with concentration x each
site is randomly selected as an iron or a chromium ion.
To establish the equilibrium, at the specified values of
temperature and concentration, 2 - 10* MC steps were made
at each site of the lattice, and then another 3 - 10* MC steps
to the site for statistics collection.

Based on the results in the mean field approximation
(MFA) [28], the Hamiltonian parameters in this paper
take the following values: Ipere = 36.6K, Icicr=18.7K,
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Figure 2. The first (a) and second (b) compensations of weak ferromagnetic vector F in MC1 method.

Irecr=13.4K, drere =2.0K, derer = 1.7K, drecr = —2.5K,
where the negative sign of the parameter drecy, relative
to drere and dcrcr, specifies in the model system the
competition of Dzyaloshinskii vectors.

Note at once that the considered systems of N = 64° ions
are far from the size of the real samples, and the results may
depend on how the impurity will be distributed at specific
modeling. For example, with the considerable quantity of
impurity (x ~ 0.5) the system will contain different areas:
when all nearest neighbors of the selected ion are ions of
the same type (where the contribution is provided only by
vectors drere and dcrcr), and when all closest neighbors are
ions of another type (where the contribution is provided
only by vector drecr), and depending on the relative volume
of the areas, the value and the direction of basis vectors (1)
will differ. In this paper we will not study the possible
effects.

The calculations using the MC1 method show that in the
mixed orthoferrite—orthochromite YFe;_,Cr,O3; below the
critical temperature 7Ty(x) a spontaneous transition occurs
from a disordered state into a phase with the single non-zero
components of basis vectors Gy, A,.F7, i.e. into phase I'4.
In this context the MC1 method agrees with MFA, including
a conclusion that for reorientation into the phase different
from T4(Gy, Ay, F,), single competition of Dzyaloshinskii
vectors is not sufficient and, for example, it is necessary to
take into account the effects of the single-ion spin anisotropy.

Figire 2 shows the examples of behavior of weak
ferromagnetic vector F depending on relative temperature
T/TN.maxs Where Tnmax = 320K is the temperature of
magnetic moment formation in the model system YFeOs.
What is important, the MC1 method, same as MFA,
shows the presence of the magnetic moment compensation
(effect of negative magnetization) at low concentration
of chromium x ~ 0.2 (Figire 2,a), and also predicts the
presence of the second compensation near concentration
x ~ 0.8 (Figire 2,b).

In the case of the MC2 method, at certain concentrations
the temperature dependences of absolute values of vectors

15}
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0 0.2 0.4 0.6 0.8 1.0

x
Figure 3. Concentration dependence of the value of weak

ferromagnetic vector F in MC1 methods (circles), MC2 methods
(triangles) and in the mean field approximation (solid line) near
the ground state (T /TN max < 1).

F, G behave in the same manner as in case of MC1 method,
but with the ordering temperature of 7Tn.max = 85K. Be-
sides, the magnetizations near the ground state turn out to
be close, too (Figire 3). The first and second compensations,
for example, at x = 0.2 and x = 0.77, accordingly, are
observed here as well (Figire 4).

The specific feature of the method is the fact that in
the area of intermediate concentrations at the selected
parameters of the model we find phase G,,,, which
includes all components of vectors F, G, A, C (Figire 4).
Therefore, there is angular configuration, which in the mixed
composition YFe;_,Cr,O3 turns out to be more preferable
than the ,,parent one” I'4(Gy, 4y, F;).

The MC2 method remains classical as such, but account-
ing for the operator nature of the spin using quasi-classical
wave functions of type (8) turns out to be sufficient to
show the presence of phases different from I'y (i.e. the
possibility of spin reorientation) only at the expense of
the competition of Dzyaloshinskii vectors without inclusion
of additional mechanisms, for example, external fields and

Physics of the Solid State, 2025, Vol. 67, No. 7
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Figure 4. Temperature dependences of basis vectors at different concentrations of chromium, blue circles are the projection of the
corresponding vector along a-axis of the crystal, orange triangles are onto along b-axis, green diamond are onto along c-axis.

single-ion anisotropy. The inspection of the MC2 method in
the absence of competition, with the co-directional vectors
dfere, derer and drecy, found no angular configurations, only
phase I';(G,, A, F,) is observed.

Note the issue of determining the critical tempera-
tures T¢, for example, when the system transitions from
the disordered paramagnetic state to phase I'4.

In case of classical MC methods with Metropolis algo-
rithm these temperatures become much lower than in the
case of the mean field approximation. On the one hand,
it is known that MFA tends to overestimate T, since such
methods do not account for important local correlations and
fluctuations. On the other hand, when simulating systems
that contain off-diagonal operators in the Hamiltonian, a
strong underestimation 7¢ occurs in classical MC methods.
We relate this to the unkillable dispersion of energy and
order parameters, caused by the continuity of the spectrum
of single-site operators. When a new state is selected in
the site, we are limited only by the normalization condition;
therefore, at any temperature a new site state will be found,
which is rather close by energy, which will be most probably
accepted on process of the elemental step of the Metropolis
algorithm. For this reason in this paper we were interested
only in the magnetic configuration of the mixed composition
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YFe;_,Cr, O3, and the results above were given in relative
temperatures 7 /TN max, Where TN max 18 the temperature of
transition from the disordered paramagnetic state for YFeO;
(TN.max = 320K in the MC1 method, and Ty max = 85K
in the MC2 method). For more precise study of the critical
temperatures by the classical MC method, other algorithms
are required [31,33,34,38].

5. Conclusion

In this paper we developed software for simulating of
magnetic moments by the Monte Carlo method in the mixed
orthoferrite—orthochromite YFe;_,Cr,O3. Key features are
explained by the competition of the Dzyaloshinskii vectors.
It is confirmed that the system has the first compensation
near x =~ 0.2, and also the second compensation is predicted
near x ~0.8. Whereas in the parent systems YFeOs
and YCrOs3 the phase I'4(G., Ay, F,) is observed exclusively,
and their mixed composition demonstrates an angular
phase G,,;, including all components of the basis vectors
F,G,C,A. The presence of phase Gy,. indicates the
possibility of spin reorientation, but detailed description
requires additional research, accounting for single-ion spin
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anisotropy, and the modification of the algorithm that
determines the elemental step of the Monte Carlo method.
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