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On the abrupt change in the superconducting order parameter
in the vicinity of the s . — s, transition in the Born limit
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In multiband systems like iron pnictides and chalcogenides, the unconventional superconducting state can emerge.
Effect of disorder on this state may have unexpected consequences, such as, for instance, change of the s+
superconducting order parameter structure to the s, one. Studying of a system behavior near such a transition
is very important. For this purpose, the grand thermodynamic potential for the normal, Q2n, and superconducting,
Qs, states is calculated, as well as their difference AQ = Qg — Qn. An expression for AQ is derived for a two-band
model of iron-based superconductors with the nonmagnetic impurities. The presence of disorder is considered
within the T-matrix approximation for a multiband Eliashberg theory. Near the Born limit in the vicinity of
s+ — s44 transition, two sets of solutions, which are obtained for opposite directions in changing of the impurity
scattering rate, are found to exist. Based on AS2, a phase diagram showing energetically favorable solutions for s+
and s, states as well as the transition between them is plotted. At low temperatures within the region where two
sets of solutions coexist, the transition is abrupt and barely dependent on temperature. At higher temperatures, the
Eliashberg equations have a single set of solutions, with the transition between s+ and s, states being smooth.
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1. Introduction

The discovery of superconductivity in iron pnictides
stimulated the development of interest in multiband sys-
tems [1-5]. The ideas proposed decades ago for two-
band superconductivity [6,7] have gained new life with
the discovery of iron-based superconductors [8,9]. The
order parameter with sy gap function changing its sign
between different bands, was proposed as the dominant
instability in the Cooper channel, which was confirmed in
experiments on inelastic neutron scattering [10-12], quasi-
particle interference [13], and Andreev reflection measure-
ments [14].

A distinctive feature of iron-based superconductors,
which distinguishes them from a large family of unconven-
tional superconductors, is their robustness to superconduc-
tivity suppression by non-magnetic impurities [15-18]. This
property is related to the possibility of changing the structure
of the superconducting order parameter with the addition
of non-magnetic impurities [19,20]. Such a change is a
transition from a s -state with a gap function that changes
its sign between bands to a state with a sign-preserving gap
function of the s -type.

Experimentally, such a transition can be detected by
changing the London penetration depth for a superconduc-
tor with a nonmagnetic disorder [21]. There are at least two
independent reports on the experimental observation of this
transition [22,23)].
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The transition is significantly influenced by the strength
of the impurity potential [24,25], namely: for a weak
scattering potential, in the so-called Born limit, the tran-
sition (a change in the sign of a gap in one of the
bands) is characterized by a sharp change in the order
parameter, while for a larger impurity potential this change
is smooth and accompanied with gradual passing of one
of the gaps through zero. The multiband analogue of
Anderson’s theorem holds in the unitary limit of the strong
scattering potential of an impurity [6,26], and there is
no transition. The nature of the abrupt transition near
the Born limit is still unclear. There are a number
of studies [27-30], in which it is assumed that this
transition can pass through a state with broken time-
reversal symmetry and that this state has been observed
experimentally [31]. We showed in Ref [32] that such
a state is not realized in the two-band model, unlike
the study in Ref [30]. Comparison with the results
obtained in other studies is impossible without adding
the third band [27-29,31] to the model used here, or
without considering the external magnetic field induced by
superconducting currents [29].

In order to shed light on the details of the transition
s+ — s;4 near the Born limit, in this paper we use the
Grand thermodynamic potential (also called the Landau free
energy) €2, calculated for a two-band model to refine the
phase diagram of the transition under consideration in the
disorder-temperature axes.
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2. Model

In this paper, we use a two-band model of iron-based
superconductors with non-magnetic impurities [19,20] in
terms of &-integrated Green functions g(iw,) defined in a
combined band space (matrices are denoted with bold-face
font) and Nambu space (matrices are denoted with ,,~ «),
and depending on the fermionic Matsubara frequency iw,,

By = | [ Gk iw)deh)

a

iWanTo + PanT>
/2 52
wan + ¢an

where N, is the density of states at the Fermi level in the
band with index @ = (a, b) in the normal state, i@,, and
$an are the Matsubara frequency and the superconducting
order parameter, respectively, renormalized by supercon-
ducting interaction and nonmagnetic impurity scattering,
7; are Pauli matrices in Nambu space. The following
system of units is adopted here: h =kp =1. Thus, the
temperature 7 and the frequency w, = (2n + 1)aT are set
in energy units. It should be noted that there are no
terms proportional to the Pauli matrices 7; and 73. In the
first case, the summand is omitted, taking into account the
symmetry in the Nambu space of the equations on the order
parameter [33], while in the second case, the summand
vanishes due to the &-integration procedure.

The Matsubara frequencies and the order parameter are
self-consistently renormalized by the self-energy as follows:

= —7N, Su» (1)
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where the term 55, in the self-energy is related to the
pairing interaction and depends on the matrix 2 x 2 of
coupling constants with elements in the band space. The
matrix A4 is an analog of the electron-phonon coupling
constant, and, like the electron-phonon coupling constant,
it determines the critical temperature. The pairing is
determined by the spectral function B(S2), reflecting the
frequency dependence of spin fluctuations [19]. The term
ngl;a refers to scattering by non-magnetic impurities and
is calculated within the 7-matrix approximation, which is
equivalent to the approximation of noncrossing diagrams.
The indexes ,,0¢ and ,,2“ point to the corresponding Pauli
matrices 7;. The equations (2) and (3) represent the system
of Eliashberg equations for a multiband superconductor with
nonmagnetic impurities [19].

3. Landau free energy

In the most general form, the Grand thermody-
namic potential or Landau free energy is given by the
Luttinger—Ward expression for a multi-band system [34,35]
with generalization to the case of a superconductor with
nonmagnetic impurities:

Qs(T) = —T

Wy

Gk, iw,
kTr[ln{ G l(k, w)}

+Z(k, iwn)(A}(k, iwn)] + Qsc(T) + Qi (T), (4)

QL (T) = gZTr [Bsclk i0)GlK iw,)] . (5)
k,w,
Qnp(T) = nimpT H_ Tr lZ; (ﬁé(k, iwn))’] . (6)
wn, Kk =1

where the Greens function G and the self-energy s
are written in general form and depend on both the
momentum k and the Matsubara frequency w,, with the
sum over momenta, y_, denoting integration over the entire
first Brillouin zone, >, < [, d*k/(27)3, leading to the
expression (1) for the Green’s function and for the self-
energy, included in the equations (2) and (3). The explicit
form of latter is given in Ref [19]. The matrix of the
scattering potential of impurities U has the following form:

{ﬁ}aﬂ = [Lt + (\) - M)Saﬂ] ® %\3’ (7)

where v and u are the intraband and interband components
of the impurity potential, respectively, trace Tr[...] is
taken over all subspaces (Nambu space and band indexes).
In equations (4)—(6), the values Q. (7) and Qi (T)
denote parts of the Luttinger—Ward functional related
to superconducting pairing and scattering on impurities,
respectively, calculated within the same diagrammatic ap-
proximation as the corresponding terms of the self-energy
used in calculating i@, and ¢, in equations (2) and (3).
Despite the designation, the term Q4 (7') is not exclusively
related to the superconducting state, since the effective
interaction between particles is also present in the normal
state, renormalizing the Matsubara frequencies.

In practice, it is more convenient to consider the
difference between free energies in the superconducting and
normal state:

AQ(T) = Qs(T) — n(T), (8)

where the expression for the Landau free energy of the
system in the normal state Qy has a form similar to the
expression (4), with the only difference that all values
are calculated under the condition ¢un = 0. Within the
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framework of the two-band model considered in this paper,
this difference has the following form:

AQ(T)=—-aT>» > Na

w, a=a,b

WypWan

\ @ + Din
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where @2, are the Matsubara frequencies renormalized by
superconducting interaction and impurity scattering in the
normal state,

+AQ(T), (9)
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n=v/u is the ratio of the intraband component of the
impurity potential to the interband component, o is the
effective cross section:

2N, Nyu?

= T NaVolt” 13
O T I+ 22N, N2 (13)

nimp 18 the impurity concentration, and I'; is the impurity
scattering rate,

2nimp0'

T,
N,

= 2NimprNpi* (1 — o), (14)
setting the presence of non-magnetic disorder in the sys-
tem. The effective cross-section shows the strength of the
scattering potential of impurities and varies from zero for
weak impurity scattering in the Born limit (wmulN, < 1) to
unity in the unitary limit of strong scattering impurities
(muNg > 1). In the Born limit, 0 — 0, the contribution
of AQ in the expression (9) is cancelled and AQ depends
on impurities implicitly through a self-consistent solution of
the equations (2) and (3).

4. Results and discussion

In the calculations below, we use the following values
for the elements of the matrix of coupling constants
{Aaa> Xabs Abas Aop} = {3.0, —0.2, —0.1, 0.5}. This combi-
nation leads to a superconducting state below the critical
temperature in the pure limit 7.0 = 40K with a s -order
parameter and a positive band-averaged coupling constant
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(1) = (NalAaa + Aap) + Nol[Apa + A6p])/ (N + Np). 1t is the
superconducting state with such an order parameter struc-
ture in which non-magnetic impurities cause the transition
s+ — S44. Here we assume that impurity scattering
occurs only in the interband channel (n=0), since, as
shown earlier, a nonzero value of the intraband component
of the impurity scattering potential does not affect the
superconducting state in the Born limit and only shifts
the transition point to higher values of T, at o # 0 [24].
The density of states in each of the bands is set such that
(N, = 1.0656 eV~! per unit cell and N, = 2N,,) the total
density of states is N = N, + N; being close to the values
obtained within the first-principle calculations [36,37].

4.1. Hysteresis of solutions to the Eliashberg
equations

It was previously shown that the transition between s -
and s, -states for the effective cross section o < 0.12 and
temperatures 0.03 < T < 0.17,9 occurs abrupt, i.e., the
order parameter within one of the bands sharply changes its
sign [24]. Here we show that the Eliashberg equations (2)
and (3) have two types of solutions within the range of
values 0 < 0 < 0.18 and temperatures 0.03 < T < 0.17.
They are obtained when moving in opposite directions along
the axis I',. In other words, to obtain the first type of
solutions, we solve the Eliashberg equations in the pure
limit, I'; = 0. Next, we add impurities, and the results of the
solution obtained in the pure limit are used as seed values.
In the following steps, we repeat the procedure: increase I',
and use the solutions from the previous step as seed values.
Thus, we construct the evolution of a superconductor from
pure to being in a ,impure/disordered” state. The second
set of solutions is obtained by reversing the direction of
the system’s evolution, i.e., we start with the ,dirty” limit
(T, = 6T,y) in calculations, and then reduce the disorder
in the system down to the clean limit by reducing I', and
using solutions for large I', as seed values for calculating
solutions at lower impurity scattering rates. These two types
of solutions are shown in Figure 1, where the function of
the superconducting gap

Ab,n = wn&b,n/d)b,m (15)

in the band b for the first Matsubara frequency (n = 0)
is represented for the Born limit for different temperatures
0.01 < T < 0.10T,¢ depending on I',. The superconduc-
ting gap function determines the superconducting order
parameter and corresponds to a gap in the spectrum of
electronic excitations in the band ». The behavior of the
function A, ,-¢ corresponds to the behavior of A, so
further in the discussion we can omit the subscript ,,0%,
talking about the behavior of the gap function in the band b
as a whole. We observe the effect of hysteresis between
solutions for a system evolving from a clean state to a ,,dirty*
one (denoted by lines with hollow symbols and the word
Hforward“) and in the opposite direction (denoted by shaded
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Figure 1. Graphs of the dependence of the superconducting

gap on [, in the Born limit for the first Matsubara frequency,
n =0, in the band b for various temperatures. The designation
Hforward“ indicates the evolution of the system from a pure limit
to a disordered state ,,backward“ indicates the reverse direction of
the evolution of the system. The black dotted lines show solutions
corresponding to the lowest free Landau energy. Hereafter, the
values of the gap function A,, the intensity of scattering by
impurities I'; and temperature 7' are given in units of the critical
temperature for a pure superconductor 7.
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Figure 2. Phase diagram for the superconducting slit A, in
the band b for the first Matsubara frequency, n = 0, in the axes
(T4, T). The colors correspond to the sign and amplitude of A o:
red — positive, blue — negative, green — zero values.

symbols and the word ,backward*). As the temperature
increases, the width of the hysteresis loop decreases until
it collapses at 7 ~ 0.077T.9, when the solutions for both
directions (,forward and ,backward“) begin to coincide
for all values of T',.

4.2. Phase diagram

In order to resolve the question of how to choose a
single set of solutions from two competing ones, the natural
approach is to choose the most energy-favourable solutions.
Comparing the Landau free energy differences AQ2 calcu-
lated using the equation (6), we select solutions with the
lowest value AQ2 and construct a phase diagram for the
superconducting gap A, o, shown in Figure 2.

The phase diagram is plotted in axes (I',,7T).
The intensity of scattering on impurities varies within
0 < T, < 2.5T,, the temperature: 0.01 < T < 1.17,9. The
sign and amplitude of the gap function, which determine
whether the system is in s1-, s4-, or the normal state, are
indicated by color gradations: blue indicates the negative
sign (opposite to the sign of the second gap A,, i.c.
s +-state), red indicates the positive sign (corresponding to
the sign A, o, i.e. s -state), green indicates values close to
zero Ap,o. Since below T, the gap in the second band (A, o)
does not vanish, the zero values of the gap A, o(T < T.)
correspond to the so-called ,,gapless” superconducting, but
not the normal state. That is, the superconducting gap in
the spectrum of single-electron excitations is closed only
within the band b, while it remains finite within the band a.
An almost vertical line is observed separating the si-
and s, -states from each other in the phase diagram at
low temperatures (T < 0.07T.9) and values T, close to
1.16T,, which results in a sudden color change from blue
to red without a smooth transition. Here A; o changes its
sign abruptly. At temperatures T > 0.077,¢, the transition
s+ — s+ is smooth and strong temperature-dependent (at
such temperatures, the line A, o = 0 has a more pronounced
slope than in the jump transition region).

We previously obtained a similar result only for the
~forward“ evolution of the system with a change in the
contribution of the non-magnetic disorder [25]. The main
difference is that the line of abrupt sign change A, at low
temperatures 7 < 0.17,( strongly depends on temperature,
i.e. it has a more pronounced slope due to the presence of
energy-unfavourable solutions. In this paper, we avoid this
by comparing the free energies and choosing a set with a
lower value, thereby refining the form of the phase diagram.

5. Conclusion

For a multi-band superconductor with non-magnetic
impurities in the region of a sharp transition between s -
and s, -states, the Eliashberg equations may have more
than one set of solutions near the Born limit (o < 0.18).
Two different sets of solutions are obtained for opposite
directions of the system’s evolution relative to changes in
the intensity of scattering by impurities. Such a hysteresis
exists in a limited range of temperatures and the impurity
scattering rates. In order to eliminate ambiguity in choosing
a solution, we calculated the Landau free energy difference
AQ = Qg — QN and, choosing solutions with the lowest
value of AQ2, we constructed the phase diagram displaying
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s+- and s, -states and the transition between them. The
phase diagram shows an almost straight line of sharp
transition s — s, directed along the temperature axis,
starting from Tyin = 0.017,9 and ending at T ~ 0.077o.
A sharp transition is characterized by a jump in the
gap A, when its sign changes. At temperatures above
T =~ 0.07T,9, the abrupt feature of the transition between
s+- and s, -states is interchanged to a smooth one, in
which the gap A, changes continuously with a change in
the impurity scattering rate. Our result refines the phase
diagram [25], which was obtained only for an increasing
amount of disorder in the system and temperatures limited
from below by the value T = 0.037.
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