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In multiband systems like iron pnictides and chalcogenides, the unconventional superconducting state can emerge.

Effect of disorder on this state may have unexpected consequences, such as, for instance, change of the s±

superconducting order parameter structure to the s++ one. Studying of a system behavior near such a transition

is very important. For this purpose, the grand thermodynamic potential for the normal, �N, and superconducting,

�S, states is calculated, as well as their difference 1� = �S −�N. An expression for 1� is derived for a two-band

model of iron-based superconductors with the nonmagnetic impurities. The presence of disorder is considered

within the T-matrix approximation for a multiband Eliashberg theory. Near the Born limit in the vicinity of

s± → s++ transition, two sets of solutions, which are obtained for opposite directions in changing of the impurity

scattering rate, are found to exist. Based on 1�, a phase diagram showing energetically favorable solutions for s±

and s++ states as well as the transition between them is plotted. At low temperatures within the region where two

sets of solutions coexist, the transition is abrupt and barely dependent on temperature. At higher temperatures, the

Eliashberg equations have a single set of solutions, with the transition between s± and s++ states being smooth.
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1. Introduction

The discovery of superconductivity in iron pnictides

stimulated the development of interest in multiband sys-

tems [1–5]. The ideas proposed decades ago for two-

band superconductivity [6,7] have gained new life with

the discovery of iron-based superconductors [8,9]. The

order parameter with s± gap function changing its sign

between different bands, was proposed as the dominant

instability in the Cooper channel, which was confirmed in

experiments on inelastic neutron scattering [10–12], quasi-
particle interference [13], and Andreev reflection measure-

ments [14].

A distinctive feature of iron-based superconductors,

which distinguishes them from a large family of unconven-

tional superconductors, is their robustness to superconduc-

tivity suppression by non-magnetic impurities [15–18]. This
property is related to the possibility of changing the structure

of the superconducting order parameter with the addition

of non-magnetic impurities [19,20]. Such a change is a

transition from a s±-state with a gap function that changes

its sign between bands to a state with a sign-preserving gap

function of the s++-type.

Experimentally, such a transition can be detected by

changing the London penetration depth for a superconduc-

tor with a nonmagnetic disorder [21]. There are at least two

independent reports on the experimental observation of this

transition [22,23].

The transition is significantly influenced by the strength

of the impurity potential [24,25], namely: for a weak

scattering potential, in the so-called Born limit, the tran-

sition (a change in the sign of a gap in one of the

bands) is characterized by a sharp change in the order

parameter, while for a larger impurity potential this change

is smooth and accompanied with gradual passing of one

of the gaps through zero. The multiband analogue of

Anderson’s theorem holds in the unitary limit of the strong

scattering potential of an impurity [6,26], and there is

no transition. The nature of the abrupt transition near

the Born limit is still unclear. There are a number

of studies [27–30], in which it is assumed that this

transition can pass through a state with broken time-

reversal symmetry and that this state has been observed

experimentally [31]. We showed in Ref. [32] that such

a state is not realized in the two-band model, unlike

the study in Ref. [30]. Comparison with the results

obtained in other studies is impossible without adding

the third band [27–29,31] to the model used here, or

without considering the external magnetic field induced by

superconducting currents [29].

In order to shed light on the details of the transition

s± → s++ near the Born limit, in this paper we use the

Grand thermodynamic potential (also called the Landau free

energy) �, calculated for a two-band model to refine the

phase diagram of the transition under consideration in the

disorder-temperature axes.
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2. Model

In this paper, we use a two-band model of iron-based

superconductors with non-magnetic impurities [19,20] in

terms of ξ -integrated Green functions ĝ(iωn) defined in a

combined band space (matrices are denoted with bold-face

font) and Nambu space (matrices are denoted with
”
̂ “),

and depending on the fermionic Matsubara frequency iωn,

[ĝ(iωn)]αβ =

[∫
Ĝ(k, iωn)dξ(k)

]

αβ

= −πNα

iω̃αnτ̂0 + φ̃αnτ̂2√
ω̃2
αn + φ̃2

αn

δαβ , (1)

where Nα is the density of states at the Fermi level in the

band with index α = (a, b) in the normal state, iω̃αn and

φ̃αn are the Matsubara frequency and the superconducting

order parameter, respectively, renormalized by supercon-

ducting interaction and nonmagnetic impurity scattering,

τ̂ j are Pauli matrices in Nambu space. The following

system of units is adopted here: ~ = kB = 1. Thus, the

temperature T and the frequency ωn = (2n + 1)πT are set

in energy units. It should be noted that there are no

terms proportional to the Pauli matrices τ̂1 and τ̂3. In the

first case, the summand is omitted, taking into account the

symmetry in the Nambu space of the equations on the order

parameter [33], while in the second case, the summand

vanishes due to the ξ -integration procedure.

The Matsubara frequencies and the order parameter are

self-consistently renormalized by the self-energy as follows:

iω̃αn = iωn − 6SC
0α (iω̃an, iω̃bn, φ̃an, φ̃bn)

− 6
imp
0α (iω̃an, iω̃bn, φ̃an, φ̃bn), (2)

φ̃αn = 6SC
2α (iω̃an, iω̃bn, φ̃an, φ̃bn)

+ 6
imp
2α (iω̃an, iω̃bn, φ̃an, φ̃bn), (3)

where the term 6SC
0,2α in the self-energy is related to the

pairing interaction and depends on the matrix 2× 2 of

coupling constants with elements in the band space. The

matrix λ is an analog of the electron-phonon coupling

constant, and, like the electron-phonon coupling constant,

it determines the critical temperature. The pairing is

determined by the spectral function B(�), reflecting the

frequency dependence of spin fluctuations [19]. The term

6
imp
0,2α refers to scattering by non-magnetic impurities and

is calculated within the T -matrix approximation, which is

equivalent to the approximation of noncrossing diagrams.

The indexes
”
0“ and

”
2“ point to the corresponding Pauli

matrices τ̂i . The equations (2) and (3) represent the system

of Eliashberg equations for a multiband superconductor with

nonmagnetic impurities [19].

3. Landau free energy

In the most general form, the Grand thermody-

namic potential or Landau free energy is given by the

Luttinger−Ward expression for a multi-band system [34,35]
with generalization to the case of a superconductor with

nonmagnetic impurities:

�S(T ) = −T
∑

ωnk

Tr

[
ln

{
−Ĝ−1(k, iωn)

}

+ 6̂(k, iωn)Ĝ(k, iωn)

]
+ �′

SC(T ) + �′

imp(T ), (4)

�′

SC(T ) =
T

2

∑

k,ωn

Tr
[
6̂SC(k, iωn)Ĝ(k, iωn)

]
, (5)

�′

imp(T ) = nimpT
∑

ωn,k

Tr

[
∞∑

t=1

1

t

(
ÛĜ(k, iωn)

)t

]
, (6)

where the Green’s function Ĝ and the self-energy 6̂

are written in general form and depend on both the

momentum k and the Matsubara frequency ωn, with the

sum over momenta,
∑

k denoting integration over the entire

first Brillouin zone,
∑

k ↔
∫
IBZ

d3k/(2π)3, leading to the

expression (1) for the Green’s function and for the self-

energy, included in the equations (2) and (3). The explicit

form of latter is given in Ref. [19]. The matrix of the

scattering potential of impurities Û has the following form:

{
Û

}
αβ

= [u + (ν − u)δαβ ] ⊗ τ̂3, (7)

where ν and u are the intraband and interband components

of the impurity potential, respectively, trace Tr[. . .] is

taken over all subspaces (Nambu space and band indexes).
In equations (4)−(6), the values �′

SC(T ) and �′

imp(T )
denote parts of the Luttinger−Ward functional related

to superconducting pairing and scattering on impurities,

respectively, calculated within the same diagrammatic ap-

proximation as the corresponding terms of the self-energy

used in calculating iω̃ωn and φ̃αn in equations (2) and (3).
Despite the designation, the term �′

SC(T ) is not exclusively

related to the superconducting state, since the effective

interaction between particles is also present in the normal

state, renormalizing the Matsubara frequencies.

In practice, it is more convenient to consider the

difference between free energies in the superconducting and

normal state:

1�(T ) = �S(T ) −�N(T ), (8)

where the expression for the Landau free energy of the

system in the normal state �N has a form similar to the

expression (4), with the only difference that all values

are calculated under the condition φ̃αn = 0. Within the
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framework of the two-band model considered in this paper,

this difference has the following form:

1�(T ) = − πT
∑

ωn

∑

α=a,b

Nα

[
ωnω̃αn√
ω̃2
αn + φ̃2

αn

+

√
ω̃2
αn + φ̃2

αn − |ωn| − |ω̃N
αn|

]
+ 1�̃(T ), (9)

where ω̃N
αn are the Matsubara frequencies renormalized by

superconducting interaction and impurity scattering in the

normal state,

1�̃(T ) = πT NaŴa

∑

ωn

[
2σ (1 − η2)2 + (1− σ )κ

2D

−
2σ (1− η2)2 + (1− σ )κN

2DN

]
− nimpT

∑

ωn

ln(D/DN),

(10)

κ = η2
N2

a + N2
b

Na Nb

+ 2
ω̃anω̃bn + φ̃anφ̃bn√

ω̃2
an + φ̃2

an

√
ω̃2

bn + φ̃2
bn

, (11)

D = (1− σ )2 + σ 2(1− η2)2 + σ (1− σ )κ, (12)

κN = κ
∣∣
φ̃αn=0

, DN = D
∣∣
φ̃αn=0

,

η = ν/u is the ratio of the intraband component of the

impurity potential to the interband component, σ is the

effective cross section:

σ =
π2Na Nbu2

1 + π2Na Nbu2
, (13)

nimp is the impurity concentration, and Ŵa is the impurity

scattering rate,

Ŵa =
2nimpσ

πNa

= 2NimpπNbu2(1− σ ), (14)

setting the presence of non-magnetic disorder in the sys-

tem. The effective cross-section shows the strength of the

scattering potential of impurities and varies from zero for

weak impurity scattering in the Born limit (πuNα ≪ 1) to

unity in the unitary limit of strong scattering impurities

(πuNα ≫ 1). In the Born limit, σ → 0, the contribution

of 1�̃ in the expression (9) is cancelled and 1� depends

on impurities implicitly through a self-consistent solution of

the equations (2) and (3).

4. Results and discussion

In the calculations below, we use the following values

for the elements of the matrix of coupling constants

{λaa , λab, λba , λbb} = {3.0,−0.2,−0.1, 0.5}. This combi-

nation leads to a superconducting state below the critical

temperature in the pure limit Tc0 = 40K with a s±-order

parameter and a positive band-averaged coupling constant

〈λ〉 = (Na [λaa + λab] + Nb[λba + λbb])/(Na + Nb). It is the

superconducting state with such an order parameter struc-

ture in which non-magnetic impurities cause the transition

s± → s++ . Here we assume that impurity scattering

occurs only in the interband channel (η = 0), since, as

shown earlier, a nonzero value of the intraband component

of the impurity scattering potential does not affect the

superconducting state in the Born limit and only shifts

the transition point to higher values of Ŵa at σ 6= 0 [24].
The density of states in each of the bands is set such that

(Na = 1.0656 eV−1 per unit cell and Nb = 2Na) the total

density of states is N = Na + Nb being close to the values

obtained within the first-principle calculations [36,37].

4.1. Hysteresis of solutions to the Eliashberg
equations

It was previously shown that the transition between s±-

and s++-states for the effective cross section σ < 0.12 and

temperatures 0.03 < T < 0.1Tc0 occurs abrupt, i. e., the

order parameter within one of the bands sharply changes its

sign [24]. Here we show that the Eliashberg equations (2)
and (3) have two types of solutions within the range of

values 0 < σ < 0.18 and temperatures 0.03 < T < 0.1Tc0.

They are obtained when moving in opposite directions along

the axis Ŵa . In other words, to obtain the first type of

solutions, we solve the Eliashberg equations in the pure

limit, Ŵa = 0. Next, we add impurities, and the results of the

solution obtained in the pure limit are used as seed values.

In the following steps, we repeat the procedure: increase Ŵa

and use the solutions from the previous step as seed values.

Thus, we construct the evolution of a superconductor from

pure to being in a
”
impure/disordered“ state. The second

set of solutions is obtained by reversing the direction of

the system’s evolution, i. e., we start with the
”
dirty“ limit

(Ŵa = 6Tc0) in calculations, and then reduce the disorder

in the system down to the clean limit by reducing Ŵa and

using solutions for large Ŵa as seed values for calculating

solutions at lower impurity scattering rates. These two types

of solutions are shown in Figure 1, where the function of

the superconducting gap

1b,n = ωnφ̃b,n/ω̃b,n, (15)

in the band b for the first Matsubara frequency (n = 0)
is represented for the Born limit for different temperatures

0.01 < T < 0.10Tc0 depending on Ŵa . The superconduc-

ting gap function determines the superconducting order

parameter and corresponds to a gap in the spectrum of

electronic excitations in the band b. The behavior of the

function 1b,n>0 corresponds to the behavior of 1b,0, so

further in the discussion we can omit the subscript
”
0“,

talking about the behavior of the gap function in the band b

as a whole. We observe the effect of hysteresis between

solutions for a system evolving from a clean state to a
”
dirty“

one (denoted by lines with hollow symbols and the word

”
forward“) and in the opposite direction (denoted by shaded

Physics of the Solid State, 2025, Vol. 67, No. 7



1212 XXIX International Symposium
”
Nanophysics and Nanoelectronics“

Γ /Ta c0

1.05 1.10 1.15 1.20

–0.1

0.1

0

–0.2

0.2

∆
/T

b
, 
n

c
0

 =
 0

'Forward'

T = 0.01Tc0

T = 0.07Tc0

T = 0.06Tc0

T = 0.03Tc0

T = 0.10Tc0

'Backward'

T = 0.01Tc0

T = 0.07Tc0

T = 0.06Tc0

T = 0.03Tc0

T = 0.10Tc0

1.25

Figure 1. Graphs of the dependence of the superconducting

gap on Ŵa in the Born limit for the first Matsubara frequency,

n = 0, in the band b for various temperatures. The designation

”
forward“ indicates the evolution of the system from a pure limit

to a disordered state
”
backward“ indicates the reverse direction of

the evolution of the system. The black dotted lines show solutions

corresponding to the lowest free Landau energy. Hereafter, the

values of the gap function 1b,0, the intensity of scattering by

impurities Ŵa and temperature T are given in units of the critical

temperature for a pure superconductor Tc0 .
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Figure 2. Phase diagram for the superconducting slit 1b,0 in

the band b for the first Matsubara frequency, n = 0, in the axes

(Ŵa , T ). The colors correspond to the sign and amplitude of 1b,0 :

red — positive, blue — negative, green — zero values.

symbols and the word
”
backward“). As the temperature

increases, the width of the hysteresis loop decreases until

it collapses at T ≈ 0.07Tc0, when the solutions for both

directions (
”
forward“ and

”
backward“) begin to coincide

for all values of Ŵa .

4.2. Phase diagram

In order to resolve the question of how to choose a

single set of solutions from two competing ones, the natural

approach is to choose the most energy-favourable solutions.

Comparing the Landau free energy differences 1� calcu-

lated using the equation (6), we select solutions with the

lowest value 1� and construct a phase diagram for the

superconducting gap 1b,0, shown in Figure 2.

The phase diagram is plotted in axes (Ŵa , T ).
The intensity of scattering on impurities varies within

0 < Ŵa < 2.5Tc0, the temperature: 0.01 < T < 1.1Tc0. The

sign and amplitude of the gap function, which determine

whether the system is in s±-, s++-, or the normal state, are

indicated by color gradations: blue indicates the negative

sign (opposite to the sign of the second gap 1a,0, i. e.

s±-state), red indicates the positive sign (corresponding to

the sign 1a,0, i. e. s++-state), green indicates values close to

zero 1b,0. Since below Tc the gap in the second band (1a,0)
does not vanish, the zero values of the gap 1b,0(T < Tc)
correspond to the so-called

”
gapless“ superconducting, but

not the normal state. That is, the superconducting gap in

the spectrum of single-electron excitations is closed only

within the band b, while it remains finite within the band a .

An almost vertical line is observed separating the s±-

and s++-states from each other in the phase diagram at

low temperatures (T < 0.07Tc0) and values Ŵa close to

1.16Tc0, which results in a sudden color change from blue

to red without a smooth transition. Here 1b,0 changes its

sign abruptly. At temperatures T > 0.07Tc0, the transition

s± → s++ is smooth and strong temperature-dependent (at
such temperatures, the line 1b,0 = 0 has a more pronounced

slope than in the jump transition region).
We previously obtained a similar result only for the

”
forward“ evolution of the system with a change in the

contribution of the non-magnetic disorder [25]. The main

difference is that the line of abrupt sign change 1b at low

temperatures T < 0.1Tc0 strongly depends on temperature,

i. e. it has a more pronounced slope due to the presence of

energy-unfavourable solutions. In this paper, we avoid this

by comparing the free energies and choosing a set with a

lower value, thereby refining the form of the phase diagram.

5. Conclusion

For a multi-band superconductor with non-magnetic

impurities in the region of a sharp transition between s±-

and s++-states, the Eliashberg equations may have more

than one set of solutions near the Born limit (σ < 0.18).
Two different sets of solutions are obtained for opposite

directions of the system’s evolution relative to changes in

the intensity of scattering by impurities. Such a hysteresis

exists in a limited range of temperatures and the impurity

scattering rates. In order to eliminate ambiguity in choosing

a solution, we calculated the Landau free energy difference

1� = �S −�N and, choosing solutions with the lowest

value of 1�, we constructed the phase diagram displaying

Physics of the Solid State, 2025, Vol. 67, No. 7



XXIX International Symposium
”
Nanophysics and Nanoelectronics“ 1213

s±- and s++-states and the transition between them. The

phase diagram shows an almost straight line of sharp

transition s± → s++, directed along the temperature axis,

starting from Tmin = 0.01Tc0 and ending at T ≈ 0.07Tc0.

A sharp transition is characterized by a jump in the

gap 1b when its sign changes. At temperatures above

T ≈ 0.07Tc0, the abrupt feature of the transition between

s±- and s++-states is interchanged to a smooth one, in

which the gap 1b changes continuously with a change in

the impurity scattering rate. Our result refines the phase

diagram [25], which was obtained only for an increasing

amount of disorder in the system and temperatures limited

from below by the value T = 0.03Tc0 .
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