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1. Introduction

The existence of the mode of self-oscillations of polymer
neck front (NF) in the process of cold drawing was detected
in independent papers [1-3]. The first theoretical model [4]
explained this dynamic effect by the presence of the positive
feedback causing thermomechanical instability.

The multiple subsequent experiments thoroughly studied
the terms necessary for the occurrence of the effect,
depending on the specified values of deformation rate,
temperature, dimensions and geometry of samples, and
also compliance of the experimental setup [5-31]. It was
found that the effect is observed in some polymers having
a qualitatively different initial internal structure. In most
materials it is accompanied with temperature increase by
several dozens of degrees in the narrow zone of NF. The
contributory factor is the occurrence of the pores, the
concentration of which may be significant. Inside the self-
oscillation area the bifurcation points were found, which,
when passed, changed the periods of self-oscillations by a
multiple number of times.

Compared to the broad set of the accumulated experi-
mental data, the progress in the theoretical studies was of
much more limited nature. Further development of the
knowingly strongly simplified model [4] was carried out
in papers [12,14,25,26]. At the same time they maintained
the main assumption of the dominant effect of thermal
positive feedback for occurrence of the self-oscillatory mode
known as a ,thermal® model (TM).

Besides, the strong nonlinearity of the currently long-
present version of TM resulted in the fact that it was only
possible to analytically calculate the stationary motion mode
of NF within its framework [12,25], whereas the calculation

of the boundary of its instability region was implemented
inconsistently, which led to the wrong definition of its
position in [22] (see formula (4) in [22]).

For the quantitative calculations of the non-linear stage
of front advancement, and the time dependences of the
stress and temperature thereon, only the numerical methods
had to be used [19,20]. The results of the latter are
obviously useful when compared to the data obtained
for a specific polymer with the fixed parameters of the
experiment realization, but they will not say much about the
universal applicability or inapplicability of the TM in general
in virtue of multiple initial parameters included therein.

As for the alternative proposal on the leading role of
the formation of shear bands and pores in their vicinity
in the occurrence of the self-oscillatory mode, no adequate
mathematical model has yet been offered [31]. In this article
we will not consider the self-oscillations provided for by
non-thermal mechanisms.

From the above it is clear that the deep understanding
of the combination of available experimental results and the
mechanisms they are based upon, is delayed by the absence
of the analytical calculations of the non-stationary dynamics
of the neck advancement, with which the quantitative com-
parison of experimental data could be done. It is evident that
such calculations will also be useful for the interpretation of
the results produced purely by the computer-aided method.

In this paper we will show that in the most typical
experimental situation, when it is necessary to artificially
increase the system compliance for excitation of self-
oscillations, the TM dynamics may be precisely described
by the ordinary differential equation for the non-linear
oscillator that has negative friction. The coefficients of
this oscillator containing the alternating effective mass and
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friction force may be fully expressed via the parameters
known experimentally.

2. Formulation of the model

,»The canonical® TM of the polymer film is described by
the system made of 3 equations [12,13]:
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In the thermal conductivity equation (1) T(x, r) — local
temperature of the film, 7o — ambient air temperature,
o — elastic stress, V(1) = X(t) — NF velocity, X(t) —

coordinate of its current position, n — thermal diffusivity
coefficient, I' — coefficient of the film heat transfer into
the environment, p and ¢ — density and heat capacity,
8(x) — Dirac’s delta function. Modelling of the source
in the equation (1) by this function reflects the experimental
fact that the width of the transition zone of heat release is
much smaller than the remaining lengths of the task.
Equation (2) expresses the condition that the sum of the
deformation rates of the elastic (non-oriented) part of the
film and its plastically deformed (oriented) part is equal to
the specified constant tensile speed V,. In (2) the point
above the stress o (¢) indicates the differentiation by time 7,
coefficient D — elastic compliance of the machine + sample
system (for,the rigid“ machine D = L/E, where L — film
length, E — modulus of elasticity), coefficient 1 describes
the extent of the polymer drawing in the neck. Its value, as
well as the value of the free volume a in equation (3),
increases noticeably with the temperature after the film
heating beyond the glass transition temperature, but to
simplify the formulas, let us assume that 1 and a are the
constant parameters, and we will cover the influence of
temperature dependence briefly in the end of the article.
The phenomenological equation (3) describes the rate of
the plastic deformation selected as the Arrhenius formula.

3. Transition to dimensionless variables
and parameters

To simplify the appearance of the formulas in the
subsequent calculations, and also for greater clarity of the
below common results and to detect the small parameters, it
is feasible to use some dimensionless parameters and func-
tions.

Let us introduce the dimensionless coordinate x, time 7,
stress and temperature:

X=, =—, 0=

o
o;

S| =
g =

Then the dimensionless speed is V= %, where

Vs = — NF speed in the stationary mode.
Let us also introduce the dimensionless parameters:
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The system (1) in the dimensionless variables and
parameters (4), (5) has the following appearance:
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4. Approach to the effective solution to
the non-stationary equation of thermal
conductivity in polymers

The main difficulty that until now prevented the genera-
tion of analytical results for calculation of the non-stationary
dynamics of system (6), was due to the fact that the trajec-
tory X (7) for NF advancement is not known in beforehand,
therefore it was necessary to search for the solution to the
thermal conductivity equation at the arbitrary dynamics of
the source in (6;). We will demonstrate how this difficulty
may be overcome, and how the analytical solution of the
system (6) may be obtained in that practically important
case, when the parameter 6 must be decreased to excite
the self-oscillations. As it follows from (5), the small
parameter § complies with the high values of compliance
and/or tensile speed, when the self-oscillations are usually
observed.

Let us write the solution to the thermal conductivity equa-
tion (6;) in the form of the Green’s function convolution
with the heat source. Temperature at NF with coordinate
X (f) is equal to:

where the Green’s function is determined as:

GR () - X(T), T~ ) = —e

X exp{— 5 (r—
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In the right part of the formula (7) we neglected the
additional contribution related to the temperature variation
due to the difference in the tensile speed of the neck
material and the NF spread. A simple estimate shows that
the relative value of this contribution is equal to %
and is only several percents at all speeds, except for the
lowest ones. But in the last case the film heating becomes
insignificant, and it no longer makes sense to use the

activation TM.

We make it clear that the formula (7) as such is not a real
solution to the task, since the time trajectory of NF X (7) still
remains unknown, so (7) — is an integral equation.

To overcome this fundamental difficulty, let us apply the
method that was first proposed and used by us previously to
calculate the dynamics of melt—crystal and crystal—crystal
fronts in the dilute metallic alloys at their fast directional so-
lidification, and also to calculate the dynamics of amorphous
material (glass) — crystal fronts at directional explosive
directional explosive crystallization (EC) [32-40].

The first step of this method is the decomposition of all
values included into the integrand in (7) into the Taylor’s
series. In particular, for the NF coordinate we have the
following:

K(0) K@) = V@i~ )~ 5 V@)~
+ %\’7(;)(;_;/)3 o 9)

The advantage to this mathematical approach is the fact
that the speed, acceleration and all hyperaccelerations of
the NF trajectory in (7) become taken at one and the same
fixed moment of time 7 and do not depend on the alternating
integration time 7’. With account of (6,) the same is related
to the derivatives of the stress & (f) by time. Therefore, they
all play a role of constant parameters and may be factored
outside the integrand. The functions in the integrand are
rather simple. From equations (7)—(9) it is evident that
they are expressed via the gamma functions (with arguments
n=1/2,3/2,5/2,...), which makes it possible to calculate
all integrals in the explicit form.

As a result the precise solution to the thermal conductivity
equation (61) will be recorded in the form of an infinite
series, which becomes dependent only on the stress and its
derivatives by time:

T(E=X(7),7)— (1—%) — doG +d\G+dro+dsG + .. ..
(10)
Note now that if the Arrhenius equation is used (63), the
left part (10) may be presented as the function of stress and

speed. Then, using the equation (6;), we exclude speed,
so that the left part (10) becomes the function of only the
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stress and its first derivative by time:
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Thus (10) becomes a closed differential equation, which
fully determines the stress dynamics. In its turn, its
solution & () may be used in (6;), in order to find the
dependence of V(7) NF speed. Then, using the known
functions ¢ (7) and V(f) we can find the time dependence
of the temperature at NF T (¥ = X(f), 7) using Arrhenius
equation (63), which will complete the solution of the
system (6).

The success of the next, the decisive structural step, is
due to the fact that in many cases there is experimental
information available on the nature of the front dynamics.
In particular, it is known that NF self-oscillations in process
of deformation of polymer films and fibers — both in
extension in process of cold drawing and in compression
in process of rolling — have the nature of relaxation
oscillations.

The period of relaxation oscillations consists of a short
time interval, where the front speed changes quickly,
and a much longer interval, where it changes smoothly,
i.e. accelerations of any order become concentrated in a
relatively small fraction of the period. Thus, when analyzing
the self-oscillations of NF in polymers, it becomes possible
to use a dimensionless small parameter — the ratio of the
interval of ,explosive® movement of the front to the full
period of oscillations.

Sure, if the task contains a clear small dimensionless
parameter, with the following proportionate to its degrees
,mass® — the function that depends on speed prior to
wordinary® acceleration, and ,hypermasses“ — functions
prior to accelerations of higher orders, the series ,,by accel-
erations” in (10) with the guarantee becomes asymptotic,
and its finite section may be used for calculations with the
controlled degree of precision.

Below we will show that in plastic deformation of
polymers such parameter in TM (6) exists and has the
following appearance:

_ 2n A-1)
- Vio, D

It becomes small at high compliance of sample D
and/or high speed of NF drawing V;. It is important
that both of these conditions may be met, since both the
compliance degree and the drawing speed value are the
control parameters in standard measurements of the plastic
deformation of polymers.

Thus, we planned a workable way to build the general
solution to the system (6), occurring in the self-oscillatory
mode. In the next paragraph we will find out which values
of dimensionless parameters introduced in paragraph 3
contribute to its rather simple implementation.

. (12)
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Figure 1. Diagram with lines of instability for the value of

parameters § = 107>, y = 1. Line I/ — line of instability of the
system (6), determined by the exact equation (16), line 2 —
line of instability of equation (19), defined by the approximate
equation (22), line 3 — line of instability compliant with the
Davidenkov’s criterion (18).

5. Definition of the area of the
parameters of existence and the value
of the initial self-oscillation frequency

To solve this subtask, the method is applicable for the
analysis of the linear stability of the stationary condition of
the system (6). The variables of the system (6) at small
deviation from the steady state may be presented as follows:

T=1+6T, 6=1+65,

X@)=686X+i+1, V=146V, (13)
where the stationary values of the neck front spread speed,

temperature and stress are equal to 1. Small deviations in
equations (13) will be recorded as follows:

8T = rexp(Qt), 66 = hexp(Qt), 8V = pSaexp(u).
(14)
Substitute (13)—(14) into the system (6) and get its
characteristic equation after the calculations that we added
to Annex 1:

Q—a[%—l] +5[y+ﬁ} —0. (15)

The neutral line delineating damped and undamped
oscillations is specified by equation (A4):

aM — M?

p= a+ oy

and the values of oscillation frequencies in this line of
instability are defined by the expression (A9):

VM2 —1

The development of the formulas (16), (17) is provided
in Annex 1.

As we already wrote above, the most interesting from
the experimental point of view is the case of high compli-
ances D and/or high tensile speeds V). Therefore, it makes
sense to first consider the case § < 1.

Note that at § =0 TM (6) changes to a model that
describes the dynamics of the self-sustained glass—crystal
front in process of solid phase explosive EC [39]. In this
case the line (17) decomposes into two lines that cross with
the finite angle in the point (@ =3, 8 =2/3). However,
remember that the limit § = 0 is singular, i.e. in this case,
as you can easily see, the range of the system (6) is reduced.

In the area of non-zero, but small values §, TM for
polymers becomes close to the task of the forced EC, when
the support with the heat from the mobile source is required
for the front advancement (in practice — from the laser
beam). From (15) it is evident that this analogy becomes
fullest, if the frequency of oscillations is low.

Figure 1 presents the lines of instability at low value of
the parameter 6. The line / determines the exact boundary
of the system (6) self-oscillations area. If the value of

v >, the system solution will

parameter 3 is lower that
be self-oscillatory.

The behavior of the frequencies for the small parameter
6 < 1 demonstrates the specific nature of the dependence
on the parameter «, Figure 2. In this mode that is relevant
for the dynamics of the polymers, a sharp boundary is
observed in the values of the frequencies that are higher and
lower than the ,.critical“ value o = 3. Therefore, in the next
paragraph we will remind the corresponding experimental
facts and will propose their interpretation in light of the
above theoretical calculations of the oscillation frequencies.

6. About the Davidenkov’s criterion

It is commonly known that the experiments for the
extension of the polymer film with the specified speed
of movable grip V, measure the time dependence of
stress 0 = o (¢). The combination of the measurement
results obtained at different values V,, makes it possible
to build dependence oy = o, (V;). The self-oscillation mode
is observed if such dependence has N-shaped appearance,
i.e. it includes an interval where j{‘,ﬁ < 0.

In some experiments the existence of self-oscillations was
found precisely in this interval. Therefore, their appear-
ance was interpreted as the evident effect of compliance
with the Davidenkov’s criterion equivalent to meeting the
condition Z‘é < 0, for the occurrence of the non-stationary
dynamics [41]. However, in the subsequent experiments
performed with a higher resolution, it was clearly found
that self-oscillations occur at speeds V), as well in a much
wider interval that it is expected from the Davidenkov’s
criterion. In particular, in polyethylene-terephthalate (PETP)
they were observed even at the highest extension speeds, up
to the maximum speed, at which the films cracked [3,19,20].

Physics of the Solid State, 2025, Vol. 67, No. 7
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Figure 2. Dependence of the oscillation frequencies in the insta-
bility line that separates the damped and undamped oscillations.
The line / complies with the exact formula (17), the line 2 — to
the formula (21) at the parameter values § = 107>, p = 1.

To clarify the connection to our results obtained in sec-

tion 5, let us write the expression for the derivative j‘;f in
dimensionless parameters: '
dIn oy 1—a(l -
dInV; a+y

From equation (18) it follows that the Davidenkov’s
criterion 335 < 0 corresponds to the condition g < ¢=1
Having compared it with the lines of instability for the
initial system (6), we can see that the negative derivative
in (18) corresponds to the part of the line of instability
at 1 <a <3, 6§ =0, Figure 1. Le. in this segment the
Davidenkov’s criterion is very close to the results obtained
for small §. However, at @ > 3 the line of instability of the
system (6) ,turns left“ from the line § = O‘T’l, and the sign
of the derivative in (18) in this segment becomes positive.
Accordingly, in this part of the line of instability, despite
the fact that when it is crossed ,to the right*, i.e. to the
large values «, the oscillations arise, and the Davidenkov’s
criterion is not met. High-frequency oscillations at a > 3
or B >2/3 correspond to high extension speeds. It is
exactly for the high extension speeds that the Davidenkov’s
criterion will not predict the oscillations that are observed
experimentally.

Besides, the results of this analysis make it possible
to understand why in some experiments the machine
stopped recording the oscillations upon achievement of the
maximum speed predicted by the Davidenkov’s criterion
(even though it sometimes recorded them a bit higher than
this value [23]). There are two reasons here: first, a very
sharp growth of the frequency already when this speed is
somewhat exceeded, Figure 2. The second cause — is the
decrease of the dimensions of the stable limit cycle with the
speed increase. If the experimental setup resolution is not
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high enough, these both causes made it impossible to find
the presence of the high frequency self-oscillations at high
speeds, but recorded them at low speeds, when both the
oscillation frequencies are ,,convenient”, and their oscillation
amplitudes are maximum.

Qualitatively one may say that the dynamics of NF
(and also of the stress and temperature) disintegrates
into two different modes, ,,mechanical® (Davidenkov’s) —
with small frequencies and large amplitudes and ,,thermo-
dynamic“ — with high frequencies and small amplitudes.
We will discuss the principal difference in the classification
of the mechanisms that each of these modes is based on in
the final part of the article.

From the given results it is clear that the analysis
of the non-linear dynamics of NF must be carried out
differently for areas 1 <o <3 and a > 3. Besides, the
program planned in section 4 for the approximate non-linear
differential equation is easiest to be completed in the first
region, where the frequency of self-oscillations is expected
to be low (at least at shallow advancement beyond the line
of instability), and the series mentioned in section 4 ,by
accelerations” in equation (10) is asymptotic and has the
evident small parameter at § < 1.

Considering that from the experimental point of view as
well the case of small values § is of great interest, in the
next paragraph we will develop a differential equation that
describes the non-linear dynamics in the area 1 < a <3
and will analyze its solutions.

7. Solution to task (1)—(3)
in the approximation of the
non-linear oscillator

In the area of the small values of the equation (17)
frequencies you can ,break” the series in (10), leaving
only the contributions of not higher than the 2nd derivative
by time. As a result, using equations (63), (63), (7)—(9),
after the corresponding calculations given in Annex 2, we
get the ordinary non-linear differential equation for the
deviation of the dimensionless stress from its stationary
value h(t) = o (t)—1 in the form of:

M(h, h)h + F (h, h) + 6h = 0, (19)
where the effective mass and friction force are equal to:

M(h, i) = a e —In(V)

& <00 @] 4+ 0 [2 - 36070

+ %[30(\7) [28 +h(=3+ 5,30(‘7)(‘7)2)} }

Fh by =% (ﬂo(V)) e _in(v)

o
7 . {—Eﬁo(v)‘/h

+V(h41) - b }—éln(\7). (20)

Bo(V) Y
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Figure 3. Phase diagrams of equation (19) at values of parameters
§=10"5y=1,e=10.

In this equation ,the friction force“ F(h, ) has non-
monotonic dependence. Note that at small § its linear part is
dF _ doy

dh |y dVs

+ 0(8),

which provides for the occurrence of the stable limit cycle
in the phase plane (a,8). It is clear therefore that the
self-oscillations provided for by the presence of the limit
cycle, already at the relatively small advancement into the
area of instability, shall assume the character of relaxation
oscillations.

Linearization of equation (19) makes it possible to obtain
the estimate of the oscillation frequency :

a y+a
Q:\/S(S(I—S)a_l Cp—

, (21)

— B =0.49999
—— B =0.500002

I5F

r, 1073

Dimensionless time

L 1 L 1 L 1 L 1
0 250 500 750 1000

in the corresponding line of instability:

a—1

Figure 3 shows the considerable increase of the cycles
in the phase plane when advancing into the area of self-
oscillations. Figure 4,a,b shows the corresponding time
dependences of temperature and stress deviations from their
stationary values.

From the curves in Figures 3—4 it is evident that
the solutions to the equation (19) stop being sinusoidal
and become more relaxational further from the line of
instability (22).

8. Conclusion

Having reformulated the thermal conductivity equation
for the polymer film extended with the constant speed, in
the form of a differential equation of infinite order ,by
accelerations”, we were able to ask the question: «is
it possible under certain conditions to obtain the good
approximation of self-oscillatory solutions to the initial task
by cutting the series”, i.e. solving the differential equation
of the finite order?>.

Besides, we, first of all, were interested in a situation
when it is necessary to increase the system compliance to
initiate the self-oscillations, decreasing the parameter 6. This
is true for most studied polymers, where self-oscillations
were observed.

Having identified a rather small number of dimensionless
parameters from the multiple size parameters of the model,
we demonstrated that within the limit of the infinitely high
compliance ,the polymer* model reduces to the solution of
a much simpler model of spontaneous solid-phase explosive
solidification of glasses.

In the real case, then the compliance is not infinite, but
high (and/or the film cold drawing speed is high), the

Lk — B=0.49999
— B A0.500002

_ L 1 L 1 L 1 L 1
0 250 500 750 1000
Dimensionless time

Figure 4. Dependence in self-oscillatory mode a) between stress and time h(7), b) temperature and time r (7).
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calculation of the ,,polymer”“ dynamics becomes equivalent
to the solution of the task on the advancement of the
inorganic glass-crystal front induced by the laser beam
»pushing® it. At the same time it was rather unexpected
that the reverse compliance of the film plays the same role
as the temperature gradient from the laser backlighting [39].

Note that both these analogies are interesting as such,
since they enable the comparison of the known results in
two totally different at first sight types of experiments.

The results of the analysis of the polymer film linear
stability in the article, where the film moves with the same
(constant) speed ad the movable grip, fully agree with this
analogy. Besides, it was found that at not so intense heating
of the neck front, the frequency of the arising oscillations is
low, which makes it possible to reasonably approximate the
calculation of the film dynamics by solving of an ordinary
differential equation of the 2nd order, i.e. the non-linear
oscillator.

Whereas in the case of intense heating, the self-oscillation
frequency increases sharply, and the size of the stable limit
cycle decreases. This pattern shows clearly in the change of
the time dependence of stress on drawing speed observed
experimentally.

Finally, in connection with the general form of the
developed equation (10), it is appropriate to pay attention to
the fundamental distinctive feature in the description of self-
oscillation dynamics in the polymers from self-oscillations
in some macroscopic models widely used in mechanics,
electrical engineering, and chemistry. Indeed, the latter are
described by differential equations of the 2nd order (classic
Van-der-Pol and Rayleigh with the permanent coefficients
or more general equations (such as Lienard equations),
containing the variable coefficients). For the unambiguous
definition of their solutions, it is possible to specify only
2 initial values. At the same time the presentation of
the thermal conductivity equation (1) in the form of a
differential equation of infinite order (10) to determine the
trajectory requires setting the infinite number of the initial
values. It is evident that this circumstance may potential
cause the occurrence of the non-linear dynamics, which
is much more complex than self-oscillations ,,of ordinary*
macromodel.

Physically speaking, the difference in ,classification of
mechanisms“ of self-oscillations (predictable in [19]) in
polymers and simple macromechanical models (such as the
mechanical clock model) consists in the infinite or finite
number of degrees of freedom that is the minimum nec-
essary for reasonable specification of the model equations.
From here the cause is intuitively clear for the increase of the
period of self-oscillations the integer number of times with
the very small change in the control parameters, which was
observed many times in deformation of polymers [3,14] —
because it is ,,much more difficult for the dynamic state of
the neck front to return for the period to the same point in
the infinite phase space compared to the same for the point
in the plane, therefore ,.the polymer” trajectory has to make

Physics of the Solid State, 2025, Vol. 67, No. 7

several ,,nearly successful“ attempts before it finally hits the
~mark® and the period time expires.

Therefore, the results obtained in the article made it
possible to also name the common cause for the occurrence
of self-oscillations in the polymers as in the relatively narrow
area of compliance with the mechanical Davidenkov’s
criterion and their sudden appearance in a much wider area
of the speeds, where this criterion is not met.

The approach specified in the article may be used for
the calculation of the non-stationary dynamics of polymer
films with account of the increase in the free volume and
the degree of drawing arising with the transition of the neck
temperature through the glass transition temperature. In
virtue of the substantial complication of the formulas such
calculations will be provided in the next publication.

Annex 1

To solve the system (6) it is especially interesting to solve
the characteristic equation (15) with purely imaginary roots
Q =iQ;,. Lets represent the (15) for such roots in the
following form:

V1 +2BiQ, =

The value of the left and right parts will be recorded as
complex numbers:

[Qim+1-08 .
1+2ﬂ191m:a(l + ):M+IN,

iQim + (a+8p)

a(iQm +1—9)
iQm + (@ +8p)’

where M and N are real numbers.
From the condition +/1+ 28i€2;,, =M +iN it fol-

lows that
MN

im — ﬁ
Since M and N € R then |M| > 1follows.
From the condition
(i Qi+ 1-8,)
iQim + (a+8y)

N =M*—-1, Q (A1)

=M +iN,

it follows that
aliy = MQjy, + N(a + 67})’
a(l—6) =M(a+38y) — NQjp.

Let us use the equations (Al), and this system will look
as follows:

a%:%z+(a+8y),
M(M?* -1 (A2)
a(l—S):M(a—i—(Sy)—(T_).

Having excluded B from the equations of the sys-
tem (A2), we will get the condition in M via the parameters
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a, § and p:
2(a + 8y)M?* — al(a +8y) + (1 - 8)M
+ [@?*(1 = 8) — (@ +8y)] =0.

Let us write the explicit expression for M from parame-
ters a, 8, v as the solution to the square equation:

_a[(1=8)+ (a+8y)|£VDu

M= 4(a +5y) (A3)

where
Dy = &?[(1=8) + (a+8p))?
—8(a+68y)[@*(1—68) — (a +8p)],

The corresponding value of the frequency according
to (Al) is:
MvVM? -1
Qip=—"7757—. (A4)
B
Let us write the expression for the parameter 8 from the
system (A2)
aM — M?

p= a+déy

(AS)

The ratio (A5) defines the line of instability separating
damped and non-damped oscillations. The value of fre-
quency (A4) at values 8 (AS5) is:

VM2 —1

Qim =
a—M

(a+dy). (A6)

Annex 2

The solution to the thermal conductivity equation (6;)
will be written via the Green’s function:

T(X().17) - (1 - %) = e\(;[_i / dr’ \/Jﬁ
_ v Y (F\]2
X exp [—1 5 P (f—1")— 7[)((% _)tf,()t ) ]
X 5(\7(5’), T(;?(f')))f/(f'). (A7)

Let us write the functions X (7), &(7), V(7') in the form
of Taylor’s series:

Let us substitute the contributions that are substantial at
low frequencies and written in equations (AS), to the right
part (A7) and get the following ratio:

T—(l—%)zah—f—b, (A9)
where .
a .1 N
h=- / 4 —— 1(7). (A10)
1-8 - 121~ =
fl(f):exp[— 5 f—f[V—in]][V—Vf],
a 7 .1 N
12 = Jo/dr = fz(T), (All)

. 1;¢N2 ad =
X —O'T—I—EO'T [V -V7],

where  — argument in the sought functions &, V and their
derivatives, it is omitted for brevity of the record. Let’s
represent the exponent in the integrand as follows:

B

where the insignificant contributions were omitted because
of the low value of oscillation frequency.

The functions f(7) and f(7) in accordance with (A12)
will look like:

f1(7) = eXp[— (1’%13 —H~/2>f}

exp [—<ﬂ + \72>f] [1 FVVER - %\72?3}, (A12)

~ 1 2 ~
X [1 +VVE?— Al fﬂ [V -Vi]l.  (A13)

(A14)

Let us open the brackets in (A13), (A14), imagine f(7)
and f»(7) as the products of the polynomials by degrees 7

per exponent
1-5 ~2H
exp|—|——+V|7]|.
p[ ( B

Besides, in (A13), (A14) we will leave only those members
that contain the non-linear members relative to the deriva-
tives of not higher than the second degree by time and the
linear members including the second derivative. The cause
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for such simplification is the fact that in this article we study
the mode with low frequencies of self-oscillations

F1(E) = (V= VE + VIV exp {_ (%ﬁ +V ) }
pior= [wae s (v Yoo @]
XeXp[_( ﬂﬂ +V2) } (Al6)

Integrals () and I(7) (A10), (All) with account
of (A15)—(A16) are calculated easily, since they are the
sums of the gamma functions. The value /;(¢) and I,(7) are
equal to:

) _
Il(t)=i<g/2v 5 2y 42 /35/2v V)

VB
L(7) = 1 Ve 4 2 /35/2 Ve 4 L&
e\/— 2
15 SoS
— §ﬂg/z‘/z‘/o.) ,
where the function
~ 1
== V = T =
Bo=Po(V) [

B

Imagine /; and [, in the form of the function of
deviation from the stationary value of stress h(f) = o (f)—1,
with account of (65) I; and I, will look like:

) = 2 (B + g B BT,
- 1 oo,
Iz(h,h,h)_%<_§ 327
+ 387 (<5 30V ) — 15 807V b
25 2 165 "° ’

where V =1 — 4 h.
Then the right part of the equation (A9) depends only on
the unknown function A:

T — (1 - %) = (h+ V)Iy(h, h, ) + I(h, b, h).  (A17)

The left part of the ratio (A9) T — (1—-2) will be
expressed from the equation (6 + 3):
In(V) «a

s a\  yh-— a
T(X(0),1) - (1—2) =)< + (A18)

Having combined (A17) and (AlS),
differential equation at A:

vh —~1n(\7) L@
In(V) —e€

we will get the
= (h+ VIy(h, h, h) + I2(h, h, h). (A19)
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The equation (A19), which is an ordinary differential
equation of the second order, may be written briefly in the
form of an equation for a non-linear oscillator:

M (h, h)h + F(h, h) + 8h = 0, (A20)

where the effective mass and friction force are equal to:

apo [Bo € —In(V)
8\ B €

X [(h +1)(2 - 3B0V?) + %Bo (28 + (-3 + 5135\72)1'1)} ,

Bo € —In(V)
P by = V\/;f
,30] 8

x [(h+ 1)V — %,80\7;'1— 5l In(V).

The solution to the equation (A20) defines the dimen-
smnless stress o =h+1, the speed of the neck front
=1- h and the temperature at the neck front:

-1+ \/%{(h—i— 1)<v+ g—g( - 3ﬂ0\72)ﬁ)

B <_% Vi 0 (254 (<34 sﬁmh)h)]
(A21)

M(h, h) =

7-1=2
€
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