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1. Introduction

The existence of the mode of self-oscillations of polymer

neck front (NF) in the process of cold drawing was detected

in independent papers [1–3]. The first theoretical model [4]
explained this dynamic effect by the presence of the positive

feedback causing thermomechanical instability.

The multiple subsequent experiments thoroughly studied

the terms necessary for the occurrence of the effect,

depending on the specified values of deformation rate,

temperature, dimensions and geometry of samples, and

also compliance of the experimental setup [5–31]. It was

found that the effect is observed in some polymers having

a qualitatively different initial internal structure. In most

materials it is accompanied with temperature increase by

several dozens of degrees in the narrow zone of NF. The

contributory factor is the occurrence of the pores, the

concentration of which may be significant. Inside the self-

oscillation area the bifurcation points were found, which,

when passed, changed the periods of self-oscillations by a

multiple number of times.

Compared to the broad set of the accumulated experi-

mental data, the progress in the theoretical studies was of

much more limited nature. Further development of the

knowingly strongly simplified model [4] was carried out

in papers [12,14,25,26]. At the same time they maintained

the main assumption of the dominant effect of thermal

positive feedback for occurrence of the self-oscillatory mode

known as a
”
thermal“ model (TM).

Besides, the strong nonlinearity of the currently long-

present version of TM resulted in the fact that it was only

possible to analytically calculate the stationary motion mode

of NF within its framework [12,25], whereas the calculation

of the boundary of its instability region was implemented

inconsistently, which led to the wrong definition of its

position in [22] (see formula (4) in [22]).

For the quantitative calculations of the non-linear stage

of front advancement, and the time dependences of the

stress and temperature thereon, only the numerical methods

had to be used [19,20]. The results of the latter are

obviously useful when compared to the data obtained

for a specific polymer with the fixed parameters of the

experiment realization, but they will not say much about the

universal applicability or inapplicability of the TM in general

in virtue of multiple initial parameters included therein.

As for the alternative proposal on the leading role of

the formation of shear bands and pores in their vicinity

in the occurrence of the self-oscillatory mode, no adequate

mathematical model has yet been offered [31]. In this article

we will not consider the self-oscillations provided for by

non-thermal mechanisms.

From the above it is clear that the deep understanding

of the combination of available experimental results and the

mechanisms they are based upon, is delayed by the absence

of the analytical calculations of the non-stationary dynamics

of the neck advancement, with which the quantitative com-

parison of experimental data could be done. It is evident that

such calculations will also be useful for the interpretation of

the results produced purely by the computer-aided method.

In this paper we will show that in the most typical

experimental situation, when it is necessary to artificially

increase the system compliance for excitation of self-

oscillations, the TM dynamics may be precisely described

by the ordinary differential equation for the non-linear

oscillator that has negative friction. The coefficients of

this oscillator containing the alternating effective mass and
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friction force may be fully expressed via the parameters

known experimentally.

2. Formulation of the model

”
The canonical“ TM of the polymer film is described by

the system made of 3 equations [12,13]:

∂T

∂t
= η

∂2T

∂x2
− Ŵ(T −T0) +

λ − 1

ρc
σ (V, T )V (t)δ

(
x−X(t)

)
,

(1)

σ̇ =
Vp − (λ − 1)V

D
, (2)

V = V0 exp

(
aσ −U

RT

)
. (3)

In the thermal conductivity equation (1) T (x , t) — local

temperature of the film, T0 — ambient air temperature,

σ — elastic stress, V (t) ≡ Ẋ(t) — NF velocity, X(t) —
coordinate of its current position, η — thermal diffusivity

coefficient, Ŵ — coefficient of the film heat transfer into

the environment, ρ and c — density and heat capacity,

δ(x) — Dirac’s delta function. Modelling of the source

in the equation (1) by this function reflects the experimental

fact that the width of the transition zone of heat release is

much smaller than the remaining lengths of the task.

Equation (2) expresses the condition that the sum of the

deformation rates of the elastic (non-oriented) part of the

film and its plastically deformed (oriented) part is equal to

the specified constant tensile speed Vp. In (2) the point

above the stress σ (t) indicates the differentiation by time t,

coefficient D — elastic compliance of the machine+ sample

system (for
”
the rigid“ machine D = L/E , where L — film

length, E — modulus of elasticity), coefficient λ describes

the extent of the polymer drawing in the neck. Its value, as

well as the value of the free volume a in equation (3),
increases noticeably with the temperature after the film

heating beyond the glass transition temperature, but to

simplify the formulas, let us assume that λ and a are the

constant parameters, and we will cover the influence of

temperature dependence briefly in the end of the article.

The phenomenological equation (3) describes the rate of

the plastic deformation selected as the Arrhenius formula.

3. Transition to dimensionless variables
and parameters

To simplify the appearance of the formulas in the

subsequent calculations, and also for greater clarity of the

below common results and to detect the small parameters, it

is feasible to use some dimensionless parameters and func-

tions.

Let us introduce the dimensionless coordinate x̃ , time t̃,

stress and temperature:

x̃ =
x
4η
Vs

, t̃ =
t
4η
V 2

s

, σ̃ =
σ

σs

, T̃ =
T

Ts

. (4)

Then the dimensionless speed is Ṽ = V
Vs
, where

Vs =
Vp

λ−1
— NF speed in the stationary mode.

Let us also introduce the dimensionless parameters:

α = C
σs

Ts

ln

(
V0

Vs

)√
β, β =

V 2
s

V 2
s + 4ηŴ

, γ = a
σs

RTs

,

δ =
2η

Vsσs

(λ − 1)

D
, ǫ = ln

(
V0

Vs

)
. (5)

The system (1) in the dimensionless variables and

parameters (4), (5) has the following appearance:




˙̃
T =

1

4

∂2 T̃

∂ x̃2
− 1− β

β

(
T̃ −

(
1− α

ǫ

))

+
α

ǫ
√
β
σ̃ Ṽδ(x̃ − X̃),

˙̃σ = 2δ(1− Ṽ ),

ln(Ṽ ) − ǫ =
γσ̃ − (γ + ǫ)

T̃
.

(6)

4. Approach to the effective solution to
the non-stationary equation of thermal
conductivity in polymers

The main difficulty that until now prevented the genera-

tion of analytical results for calculation of the non-stationary

dynamics of system (6), was due to the fact that the trajec-

tory X̃(t̃) for NF advancement is not known in beforehand,

therefore it was necessary to search for the solution to the

thermal conductivity equation at the arbitrary dynamics of

the source in (61). We will demonstrate how this difficulty

may be overcome, and how the analytical solution of the

system (6) may be obtained in that practically important

case, when the parameter δ must be decreased to excite

the self-oscillations. As it follows from (5), the small

parameter δ complies with the high values of compliance

and/or tensile speed, when the self-oscillations are usually

observed.

Let us write the solution to the thermal conductivity equa-

tion (61) in the form of the Green’s function convolution

with the heat source. Temperature at NF with coordinate

X̃(t̃) is equal to:

T̃ −
(
1− α

ǫ

)
=

α

ǫ
√
β

t̃∫

−∞

dt̃ ′ G
(
X̃(t̃) − X̃(t̃ ′), t̃ − t̃ ′

)

× σ̃
(

Ṽ (t̃ ′), T̃
(
X̃(t̃ ′)

))
Ṽ (t̃ ′),

(7)
where the Green’s function is determined as:

G
(
X̃(t̃) − X̃(t̃ ′), t̃ − t̃ ′

)
=

1√
π(t̃ − t̃ ′)

× exp

{
−1− β

β
(t̃ − t̃ ′) − [X̃(t̃) − X̃(t̃ ′)]2

(t̃ − t̃ ′)

}
. (8)
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In the right part of the formula (7) we neglected the

additional contribution related to the temperature variation

due to the difference in the tensile speed of the neck

material and the NF spread. A simple estimate shows that

the relative value of this contribution is equal to 1−β

4β(λ−1)

and is only several percents at all speeds, except for the

lowest ones. But in the last case the film heating becomes

insignificant, and it no longer makes sense to use the

activation TM.

We make it clear that the formula (7) as such is not a real

solution to the task, since the time trajectory of NF X̃(t̃) still

remains unknown, so (7) — is an integral equation.

To overcome this fundamental difficulty, let us apply the

method that was first proposed and used by us previously to

calculate the dynamics of melt−crystal and crystal−crystal

fronts in the dilute metallic alloys at their fast directional so-

lidification, and also to calculate the dynamics of amorphous

material (glass) — crystal fronts at directional explosive

directional explosive crystallization (EC) [32–40].

The first step of this method is the decomposition of all

values included into the integrand in (7) into the Taylor’s

series. In particular, for the NF coordinate we have the

following:

X̃(t̃) − X̃(t̃ ′) = Ṽ (t̃)(t̃ − t̃ ′) − 1

2

˙̃
V (t̃)(t̃ − t̃ ′)2

+
1

6

¨̃
V (t̃)(t̃ − t̃ ′)3 + . . . . (9)

The advantage to this mathematical approach is the fact

that the speed, acceleration and all hyperaccelerations of

the NF trajectory in (7) become taken at one and the same

fixed moment of time t̃ and do not depend on the alternating

integration time t̃ ′ . With account of (62) the same is related

to the derivatives of the stress σ̃ (t̃) by time. Therefore, they

all play a role of constant parameters and may be factored

outside the integrand. The functions in the integrand are

rather simple. From equations (7)−(9) it is evident that

they are expressed via the gamma functions (with arguments

n = 1/2, 3/2, 5/2, . . .), which makes it possible to calculate

all integrals in the explicit form.

As a result the precise solution to the thermal conductivity

equation (61) will be recorded in the form of an infinite

series, which becomes dependent only on the stress and its

derivatives by time:

T̃
(
x̃ = X̃(t̃), t̃

)
−

(
1− α

ǫ

)
= d0σ̃ +d1

˙̃σ +d2
¨̃σ +d3

...
σ̃ + . . . .

(10)

Note now that if the Arrhenius equation is used (63), the

left part (10) may be presented as the function of stress and

speed. Then, using the equation (62), we exclude speed,

so that the left part (10) becomes the function of only the

stress and its first derivative by time:

T̃
(
x̃ = X̃(t̃), t̃

)
−

(
1− α

ǫ

)

=
γ + α + 1

ǫ

(
1− α

ǫ

)
− γσ̃ (t̃)

ǫ − ln
(
Ṽ (t̃)

) −
(
1− α

ǫ

)
. (11)

Thus (10) becomes a closed differential equation, which

fully determines the stress dynamics. In its turn, its

solution σ̃ (t̃) may be used in (62), in order to find the

dependence of Ṽ (t̃) NF speed. Then, using the known

functions σ (t̃) and Ṽ (t̃) we can find the time dependence

of the temperature at NF T̃
(
x̃ = X̃(t̃), t̃

)
using Arrhenius

equation (63), which will complete the solution of the

system (6).
The success of the next, the decisive structural step, is

due to the fact that in many cases there is experimental

information available on the nature of the front dynamics.

In particular, it is known that NF self-oscillations in process

of deformation of polymer films and fibers — both in

extension in process of cold drawing and in compression

in process of rolling — have the nature of relaxation

oscillations.

The period of relaxation oscillations consists of a short

time interval, where the front speed changes quickly,

and a much longer interval, where it changes smoothly,

i. e. accelerations of any order become concentrated in a

relatively small fraction of the period. Thus, when analyzing

the self-oscillations of NF in polymers, it becomes possible

to use a dimensionless small parameter — the ratio of the

interval of
”
explosive“ movement of the front to the full

period of oscillations.

Sure, if the task contains a clear small dimensionless

parameter, with the following proportionate to its degrees

”
mass“ — the function that depends on speed prior to

”
ordinary“ acceleration, and

”
hypermasses“ — functions

prior to accelerations of higher orders, the series
”
by accel-

erations“ in (10) with the guarantee becomes asymptotic,

and its finite section may be used for calculations with the

controlled degree of precision.

Below we will show that in plastic deformation of

polymers such parameter in TM (6) exists and has the

following appearance:

δ =
2η

Vsσs

(λ − 1)

D
. (12)

It becomes small at high compliance of sample D

and/or high speed of NF drawing Vs . It is important

that both of these conditions may be met, since both the

compliance degree and the drawing speed value are the

control parameters in standard measurements of the plastic

deformation of polymers.

Thus, we planned a workable way to build the general

solution to the system (6), occurring in the self-oscillatory

mode. In the next paragraph we will find out which values

of dimensionless parameters introduced in paragraph 3

contribute to its rather simple implementation.
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Figure 1. Diagram with lines of instability for the value of

parameters δ = 10−5, γ = 1. Line 1 — line of instability of the

system (6), determined by the exact equation (16), line 2 —
line of instability of equation (19), defined by the approximate

equation (22), line 3 — line of instability compliant with the

Davidenkov’s criterion (18).

5. Definition of the area of the
parameters of existence and the value
of the initial self-oscillation frequency

To solve this subtask, the method is applicable for the

analysis of the linear stability of the stationary condition of

the system (6). The variables of the system (6) at small

deviation from the steady state may be presented as follows:

T̃ = 1 + δT̃ , σ̃ = 1 + δσ̃ ,

X̃(t̃) = δX̃ + t̃ + 1, Ṽ = 1 + δṼ , (13)

where the stationary values of the neck front spread speed,

temperature and stress are equal to 1. Small deviations in

equations (13) will be recorded as follows:

δT̃ = r exp(�t), δσ̃ = h exp(�t), δṼ = p� exp(�t).
(14)

Substitute (13)−(14) into the system (6) and get its

characteristic equation after the calculations that we added

to Annex 1:

�− α

[
(� + 1)√
1 + 2β�

− 1

]
+ δ

[
γ +

α√
1 + 2β�

]
= 0. (15)

The neutral line delineating damped and undamped

oscillations is specified by equation (A4):

β =
αM − M2

α + δγ
, (16)

and the values of oscillation frequencies in this line of

instability are defined by the expression (A9):

� =

√
M2 − 1

α − M
(α + δγ). (17)

The development of the formulas (16), (17) is provided

in Annex 1.

As we already wrote above, the most interesting from

the experimental point of view is the case of high compli-

ances D and/or high tensile speeds Vp. Therefore, it makes

sense to first consider the case δ ≪ 1.

Note that at δ = 0 TM (6) changes to a model that

describes the dynamics of the self-sustained glass−crystal

front in process of solid phase explosive EC [39]. In this

case the line (17) decomposes into two lines that cross with

the finite angle in the point (α = 3, β = 2/3). However,

remember that the limit δ = 0 is singular, i. e. in this case,

as you can easily see, the range of the system (6) is reduced.
In the area of non-zero, but small values δ, TM for

polymers becomes close to the task of the forced EC, when

the support with the heat from the mobile source is required

for the front advancement (in practice — from the laser

beam). From (15) it is evident that this analogy becomes

fullest, if the frequency of oscillations is low.

Figure 1 presents the lines of instability at low value of

the parameter δ . The line 1 determines the exact boundary

of the system (6) self-oscillations area. If the value of

parameter β is lower that αM−M2

α+δγ
, the system solution will

be self-oscillatory.

The behavior of the frequencies for the small parameter

δ ≪ 1 demonstrates the specific nature of the dependence

on the parameter α, Figure 2. In this mode that is relevant

for the dynamics of the polymers, a sharp boundary is

observed in the values of the frequencies that are higher and

lower than the
”
critical“ value α ≈ 3. Therefore, in the next

paragraph we will remind the corresponding experimental

facts and will propose their interpretation in light of the

above theoretical calculations of the oscillation frequencies.

6. About the Davidenkov’s criterion

It is commonly known that the experiments for the

extension of the polymer film with the specified speed

of movable grip Vp measure the time dependence of

stress σ = σ (t). The combination of the measurement

results obtained at different values Vp, makes it possible

to build dependence σs = σs(Vs). The self-oscillation mode

is observed if such dependence has N-shaped appearance,

i. e. it includes an interval where dσs

dVs
< 0.

In some experiments the existence of self-oscillations was

found precisely in this interval. Therefore, their appear-

ance was interpreted as the evident effect of compliance

with the Davidenkov’s criterion equivalent to meeting the

condition dσs

dVs
< 0, for the occurrence of the non-stationary

dynamics [41]. However, in the subsequent experiments

performed with a higher resolution, it was clearly found

that self-oscillations occur at speeds Vp as well in a much

wider interval that it is expected from the Davidenkov’s

criterion. In particular, in polyethylene-terephthalate (PETP)
they were observed even at the highest extension speeds, up

to the maximum speed, at which the films cracked [3,19,20].
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Analytical calculation of self-oscillatory dynamics of neck propagation in polymers 1149

a
0 1 2 3 4

0 2.

0.8

0.4

0.6

1.0

0

W

1

2

Figure 2. Dependence of the oscillation frequencies in the insta-

bility line that separates the damped and undamped oscillations.

The line 1 complies with the exact formula (17), the line 2 — to

the formula (21) at the parameter values δ = 10−5, γ = 1.

To clarify the connection to our results obtained in sec-

tion 5, let us write the expression for the derivative dσs

dVs
in

dimensionless parameters:

d lnσs

d lnVs

=
1− α(1− β)

α + γ
. (18)

From equation (18) it follows that the Davidenkov’s

criterion dσs

dVs
< 0 corresponds to the condition β < α−1

α
.

Having compared it with the lines of instability for the

initial system (6), we can see that the negative derivative

in (18) corresponds to the part of the line of instability

at 1 < α < 3, δ → 0, Figure 1. I. e. in this segment the

Davidenkov’s criterion is very close to the results obtained

for small δ . However, at α > 3 the line of instability of the

system (6)
”
turns left“ from the line β = α−1

α
, and the sign

of the derivative in (18) in this segment becomes positive.

Accordingly, in this part of the line of instability, despite

the fact that when it is crossed
”
to the right“, i. e. to the

large values α, the oscillations arise, and the Davidenkov’s

criterion is not met. High-frequency oscillations at α ≥ 3

or β ≥ 2/3 correspond to high extension speeds. It is

exactly for the high extension speeds that the Davidenkov’s

criterion will not predict the oscillations that are observed

experimentally.

Besides, the results of this analysis make it possible

to understand why in some experiments the machine

stopped recording the oscillations upon achievement of the

maximum speed predicted by the Davidenkov’s criterion

(even though it sometimes recorded them a bit higher than

this value [23]). There are two reasons here: first, a very

sharp growth of the frequency already when this speed is

somewhat exceeded, Figure 2. The second cause — is the

decrease of the dimensions of the stable limit cycle with the

speed increase. If the experimental setup resolution is not

high enough, these both causes made it impossible to find

the presence of the high frequency self-oscillations at high

speeds, but recorded them at low speeds, when both the

oscillation frequencies are
”
convenient“, and their oscillation

amplitudes are maximum.

Qualitatively one may say that the dynamics of NF

(and also of the stress and temperature) disintegrates

into two different modes,
”
mechanical“ (Davidenkov’s) —

with small frequencies and large amplitudes and
”
thermo-

dynamic“ — with high frequencies and small amplitudes.

We will discuss the principal difference in the classification

of the mechanisms that each of these modes is based on in

the final part of the article.

From the given results it is clear that the analysis

of the non-linear dynamics of NF must be carried out

differently for areas 1 < α < 3 and α > 3. Besides, the

program planned in section 4 for the approximate non-linear

differential equation is easiest to be completed in the first

region, where the frequency of self-oscillations is expected

to be low (at least at shallow advancement beyond the line

of instability), and the series mentioned in section 4
”
by

accelerations“ in equation (10) is asymptotic and has the

evident small parameter at δ ≪ 1.

Considering that from the experimental point of view as

well the case of small values δ is of great interest, in the

next paragraph we will develop a differential equation that

describes the non-linear dynamics in the area 1 < α < 3

and will analyze its solutions.

7. Solution to task (1)−(3)
in the approximation of the
non-linear oscillator

In the area of the small values of the equation (17)
frequencies you can

”
break“ the series in (10), leaving

only the contributions of not higher than the 2nd derivative

by time. As a result, using equations (62), (63), (7)−(9),
after the corresponding calculations given in Annex 2, we

get the ordinary non-linear differential equation for the

deviation of the dimensionless stress from its stationary

value h(t) ≡ σ̃ (t)−1 in the form of:

M(h, ḣ)ḧ + F(h, ḣ) + δh = 0, (19)

where the effective mass and friction force are equal to:

M(h, ḣ) =
α

8γ

ǫ − ln(Ṽ )

ǫ
β0(Ṽ )

{
(h + 1)

[
2− 3β0(Ṽ )(Ṽ )2

]

+
3

2
β0(Ṽ )

[
2δ + ḣ

(
−3 + 5β0(Ṽ )(Ṽ )2

)]}
,

F(h, ḣ) =
αδ

γ

(
β0(Ṽ )

β

)1/2
ǫ − ln(Ṽ )

ǫ

{
−1

2
β0(Ṽ )Ṽ ḣ

+ Ṽ (h + 1) −
√

β

β0(Ṽ )

}
− δ

γ
ln(Ṽ ). (20)

Physics of the Solid State, 2025, Vol. 67, No. 7
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Figure 3. Phase diagrams of equation (19) at values of parameters

δ = 10−5, γ = 1, ǫ = 10.

In this equation
”
the friction force“ F(h, ḣ) has non-

monotonic dependence. Note that at small δ its linear part is

dF

dḣ

∣∣∣∣
h=ḣ=0

=
dσs

dVs

+ O(δ),

which provides for the occurrence of the stable limit cycle

in the phase plane (α, β). It is clear therefore that the

self-oscillations provided for by the presence of the limit

cycle, already at the relatively small advancement into the

area of instability, shall assume the character of relaxation

oscillations.

Linearization of equation (19) makes it possible to obtain

the estimate of the oscillation frequency �:

� =

√
8δ(1 − δ)

α

α − 1

γ + α

3− α
, (21)

b = 0.49999

b = 0.500002

b = 0.49999

b = 0.500002

0 250 500 750 1000
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h
, 
1
0

–
6
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5

10
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0

1

–1

Dimensionless time

r
, 
1
0

–
3

Figure 4. Dependence in self-oscillatory mode a) between stress and time h(t̃), b) temperature and time r(t̃).

in the corresponding line of instability:

β =
α − 1

α(1− δ)
. (22)

Figure 3 shows the considerable increase of the cycles

in the phase plane when advancing into the area of self-

oscillations. Figure 4, a, b shows the corresponding time

dependences of temperature and stress deviations from their

stationary values.

From the curves in Figures 3−4 it is evident that

the solutions to the equation (19) stop being sinusoidal

and become more relaxational further from the line of

instability (22).

8. Conclusion

Having reformulated the thermal conductivity equation

for the polymer film extended with the constant speed, in

the form of a differential equation of infinite order
”
by

accelerations“, we were able to ask the question: ≪is

it possible under certain conditions to obtain the good

approximation of self-oscillatory solutions to the initial task

”
by cutting the series“, i. e. solving the differential equation

of the finite order?≫.

Besides, we, first of all, were interested in a situation

when it is necessary to increase the system compliance to

initiate the self-oscillations, decreasing the parameter δ . This

is true for most studied polymers, where self-oscillations

were observed.

Having identified a rather small number of dimensionless

parameters from the multiple size parameters of the model,

we demonstrated that within the limit of the infinitely high

compliance
”
the polymer“ model reduces to the solution of

a much simpler model of spontaneous solid-phase explosive

solidification of glasses.

In the real case, then the compliance is not infinite, but

high (and/or the film cold drawing speed is high), the
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calculation of the
”
polymer“ dynamics becomes equivalent

to the solution of the task on the advancement of the

inorganic glass-crystal front induced by the laser beam

”
pushing“ it. At the same time it was rather unexpected

that the reverse compliance of the film plays the same role

as the temperature gradient from the laser backlighting [39].

Note that both these analogies are interesting as such,

since they enable the comparison of the known results in

two totally different at first sight types of experiments.

The results of the analysis of the polymer film linear

stability in the article, where the film moves with the same

(constant) speed ad the movable grip, fully agree with this

analogy. Besides, it was found that at not so intense heating

of the neck front, the frequency of the arising oscillations is

low, which makes it possible to reasonably approximate the

calculation of the film dynamics by solving of an ordinary

differential equation of the 2nd order, i. e. the non-linear

oscillator.

Whereas in the case of intense heating, the self-oscillation

frequency increases sharply, and the size of the stable limit

cycle decreases. This pattern shows clearly in the change of

the time dependence of stress on drawing speed observed

experimentally.

Finally, in connection with the general form of the

developed equation (10), it is appropriate to pay attention to

the fundamental distinctive feature in the description of self-

oscillation dynamics in the polymers from self-oscillations

in some macroscopic models widely used in mechanics,

electrical engineering, and chemistry. Indeed, the latter are

described by differential equations of the 2nd order (classic
Van-der-Pol and Rayleigh with the permanent coefficients

or more general equations (such as Lienard equations),
containing the variable coefficients). For the unambiguous

definition of their solutions, it is possible to specify only

2 initial values. At the same time the presentation of

the thermal conductivity equation (1) in the form of a

differential equation of infinite order (10) to determine the

trajectory requires setting the infinite number of the initial

values. It is evident that this circumstance may potential

cause the occurrence of the non-linear dynamics, which

is much more complex than self-oscillations
”
of ordinary“

macromodel.

Physically speaking, the difference in
”
classification of

mechanisms“ of self-oscillations (predictable in [19]) in

polymers and simple macromechanical models (such as the

mechanical clock model) consists in the infinite or finite

number of degrees of freedom that is the minimum nec-

essary for reasonable specification of the model equations.

From here the cause is intuitively clear for the increase of the

period of self-oscillations the integer number of times with

the very small change in the control parameters, which was

observed many times in deformation of polymers [3,14] —
because it is

”
much more difficult“ for the dynamic state of

the neck front to return for the period to the same point in

the infinite phase space compared to the same for the point

in the plane, therefore
”
the polymer“ trajectory has to make

several
”
nearly successful“ attempts before it finally hits the

”
mark“ and the period time expires.

Therefore, the results obtained in the article made it

possible to also name the common cause for the occurrence

of self-oscillations in the polymers as in the relatively narrow

area of compliance with the mechanical Davidenkov’s

criterion and their sudden appearance in a much wider area

of the speeds, where this criterion is not met.

The approach specified in the article may be used for

the calculation of the non-stationary dynamics of polymer

films with account of the increase in the free volume and

the degree of drawing arising with the transition of the neck

temperature through the glass transition temperature. In

virtue of the substantial complication of the formulas such

calculations will be provided in the next publication.

Annex 1

To solve the system (6) it is especially interesting to solve

the characteristic equation (15) with purely imaginary roots

� = i�im. Let’s represent the (15) for such roots in the

following form:

√
1 + 2βi�im =

α(i�im + 1− δ)

i�im + (α + δγ)
.

The value of the left and right parts will be recorded as

complex numbers:

√
1 + 2βi�im =

α(i�im + 1− δ)

i�im + (α + δγ)
= M + iN,

where M and N are real numbers.

From the condition
√
1 + 2βi�im = M + iN it fol-

lows that

N2 = M2 − 1, �im =
MN

βp

. (A1)

Since M and N ∈ R then |M| ≥ 1follows.

From the condition

α(i�im + 1− δp)

i�im + (α + δγ)
= M + iN,

it follows that
{
α�im = M�im + N(α + δγ),

α(1− δ) = M(α + δγ) − N�im.

Let us use the equations (A1), and this system will look

as follows:





α
M

β
=

M2

β
+ (α + δγ),

α(1− δ) = M(α + δγ) − M(M2 − 1)

β
.

(A2)

Having excluded β from the equations of the sys-

tem (A2), we will get the condition in M via the parameters
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α, δ and γ :

2(α + δγ)M2 − α[(α + δγ) + (1− δ)]M

+ [α2(1− δ) − (α + δγ)] = 0.

Let us write the explicit expression for M from parame-

ters α, δ, γ as the solution to the square equation:

M =
α[(1 − δ) + (α + δγ)] ±

√
DM

4(α + δγ)
, (A3)

where

DM = α2[(1− δ) + (α + δγ)]2

− 8(α + δγ)[α2(1− δ) − (α + δγ)],

The corresponding value of the frequency according

to (A1) is:

�im =
M
√

M2 − 1

β
. (A4)

Let us write the expression for the parameter β from the

system (A2)

β =
αM − M2

α + δγ
. (A5)

The ratio (A5) defines the line of instability separating

damped and non-damped oscillations. The value of fre-

quency (A4) at values β (A5) is:

�im =

√
M2 − 1

α − M
(α + δγ). (A6)

Annex 2

The solution to the thermal conductivity equation (61)
will be written via the Green’s function:

T̃
(
X̃(t̃), t̃

)
−

(
1− α

ǫ

)
=

α

ǫ
√
β

t̃∫

−∞

dt′
1√

π(t̃ − t̃ ′)

× exp

[
−1− β

β
(t̃ − t̃ ′) − [X̃(t̃) − X̃(t̃ ′)]2

(t̃ − t̃ ′)

]

× σ̃
(

Ṽ (t̃ ′), T̃
(
X̃(t̃ ′)

))
Ṽ (t̃ ′). (A7)

Let us write the functions X̃(t̃), σ̃ (t̃), Ṽ (t̃ ′) in the form

of Taylor’s series:

X̃(t̃ ′) = X̃(t̃) − Ṽ (t̃)τ̃ +
1

2

˙̃
V (t̃)τ̃ 2 − 1

6

¨̃
V (t̃)τ̃ 3 + . . .

σ̃ (t̃ ′) = σ̃ (t̃) − ˙̃σ (t̃)τ̃ +
1

2
¨̃σ (t̃)τ̃ 2 − 1

6

...
σ̃ (t̃)τ̃ 3 + . . . ,

(A8)
where τ̃ = t̃ − t̃ ′.

Let us substitute the contributions that are substantial at

low frequencies and written in equations (A8), to the right

part (A7) and get the following ratio:

T̃ −
(
1− α

ǫ

)
= σ̃ I1 + I2, (A9)

where

I1 =
α

ǫ
√
β

∞∫

0

d τ̃
1√
πτ̃

f 1(τ̃ ), (A10)

f 1(τ̃ ) = exp

[
−1− β

β
τ̃ − τ̃

[
Ṽ − 1

2

˙̃
V τ̃

]2]
[Ṽ − ˙̃

V τ̃ ],

I2 =
α

ǫ
√
β

∞∫

0

d τ̃
1√
πτ̃

f 2(τ̃ ), (A11)

f 2(τ̃ ) = exp

[
−1− β

β
τ̃ − τ̃

[
Ṽ − 1

2

˙̃
V τ̃

]2]

×
[
− ˙̃σ τ̃ +

1

2
¨̃σ τ̃ 2

]
[Ṽ − ˙̃

V τ̃ ],

where t̃ — argument in the sought functions σ̃ , Ṽ and their

derivatives, it is omitted for brevity of the record. Let’s

represent the exponent in the integrand as follows:

exp

[
−

(
1− β

β
+ Ṽ 2

)
τ̃

][
1 + Ṽ

˙̃
V τ̃ 2 − 1

4

˙̃
V

2

τ̃ 3

]
, (A12)

where the insignificant contributions were omitted because

of the low value of oscillation frequency.

The functions f 1(τ̃ ) and f 1(τ̃ ) in accordance with (A12)
will look like:

f 1(τ̃ ) = exp

[
−

(
1− β

β
+ Ṽ 2

)
τ̃

]

×
[
1 + Ṽ

˙̃
V τ̃ 2 − 1

4

˙̃
V

2

τ̃ 3

]
[Ṽ − ˙̃

V τ̃ ]. (A13)

f 2(τ̃ ) = exp

[
−

(
1− β

β
+ Ṽ 2

)
τ̃

][
1 + Ṽ

˙̃
V τ̃ 2 − 1

4

˙̃
V

2

τ̃ 3

]

×
[
− ˙̃σ τ̃ +

1

2
¨̃σ τ̃ 2

]
[Ṽ − ˙̃

V τ̃ ]. (A14)

Let us open the brackets in (A13), (A14), imagine f 1(τ̃ )
and f 2(τ̃ ) as the products of the polynomials by degrees τ̃

per exponent

exp

[
−

(
1− β

β
+ Ṽ 2

)
τ̃

]
.

Besides, in (A13), (A14) we will leave only those members

that contain the non-linear members relative to the deriva-

tives of not higher than the second degree by time and the

linear members including the second derivative. The cause
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for such simplification is the fact that in this article we study

the mode with low frequencies of self-oscillations

f 1(τ̃ ) = (Ṽ − ˙̃
V τ̃ + Ṽ 2 ˙̃

V τ̃ 2) exp

[
−

(
1− β

β
+ Ṽ 2

)
τ̃

]
,

(A15)

f 2(τ̃ ) =

[
−Ṽ ˙̃σ τ̃ +

(
˙̃
V ˙̃σ +

1

2
¨̃σ Ṽ

)
τ̃ 2 −

(
Ṽ 2 ˙̃

V ˙̃σ
)
τ̃ 3

]

× exp

[
−

(
1− β

β
+ Ṽ 2

)
τ̃

]
. (A16)

Integrals I1(t̃) and I2(t̃) (A10), (A11) with account

of (A15)−(A16) are calculated easily, since they are the

sums of the gamma functions. The value I1(t̃) and I2(t̃) are

equal to:

I1(t̃) =
α

ǫ
√
β

(
β
1/2
0 Ṽ − 1

2
β
3/2
0

˙̃
V +

3

4
β
5/2
0 Ṽ 2 ˙̃

V

)
,

I2(t̃) =
α

ǫ
√
β

(
−1

2
β
3/2
0 Ṽ ˙̃σ +

3

4
β
5/2
0

(
˙̃
V ˙̃σ +

1

2
¨̃σ Ṽ

)

− 15

8
β
7/2
0 Ṽ 2 ˙̃

V ˙̃σ

)
,

where the function

β0 = β0(Ṽ ) =
1

1−β

β
+ Ṽ 2

.

Imagine I1 and I2 in the form of the function of

deviation from the stationary value of stress h(t̃) = σ̃ (t̃)−1,

with account of (62) I1 and I2 will look like:

I1(h, ḣ, ḧ) =
α

ǫ
√
β

(
β
1/2
0 Ṽ +

1

4δ
β
3/2
0 ḧ − 3

8δ
β
5/2
0 Ṽ 2 ḧ

)
,

I2(h, ḣ, ḧ) =
α

ǫ
√
β

(
−1

2
β
3/2
0 Ṽ ḣ

+
3

4
β
5/2
0

(
− 1

2δ
ḣḧ +

1

2
ḧṼ

)
− 15

16δ
β
7/2
0 Ṽ 2 ḧḣ

)
,

where Ṽ = 1− 1
2δ

ḣ.

Then the right part of the equation (A9) depends only on

the unknown function h:

T̃ −
(
1− α

ǫ

)
= (h + 1)I1(h, ḣ, ḧ) + I2(h, ḣ, ḧ). (A17)

The left part of the ratio (A9) T̃ −
(
1− α

ǫ

)
will be

expressed from the equation (6 + 3):

T̃
(
X̃(t̃), t̃

)
−

(
1− α

ǫ

)
=

γh − ln(Ṽ )

ln(Ṽ ) − ǫ
+

α

ǫ
. (A18)

Having combined (A17) and (A18), we will get the

differential equation at h:

γh − ln(Ṽ )

ln(Ṽ ) − ǫ
+

α

ǫ
= (h + 1)I1(h, ḣ, ḧ) + I2(h, ḣ, ḧ). (A19)

The equation (A19), which is an ordinary differential

equation of the second order, may be written briefly in the

form of an equation for a non-linear oscillator:

M(h, ḣ)ḧ + F(h, ḣ) + δh = 0, (A20)

where the effective mass and friction force are equal to:

M(h, ḣ) =
αβ0

8γ

√
β0

β

ǫ − ln(Ṽ )

ǫ

×
[
(h + 1)(2− 3β0Ṽ

2) +
3

2
β0

(
2δ + (−3 + 5β2

0Ṽ 2)ḣ
)]
,

F(h, ḣ) =
αδ

γ

√
β0

β

ǫ − ln(Ṽ )

ǫ

×
[
(h + 1)Ṽ − 1

2
β0Ṽ ḣ −

√
β0

β

]
− δ

γ
ln(Ṽ ).

The solution to the equation (A20) defines the dimen-

sionless stress σ̃ = h + 1, the speed of the neck front

Ṽ = 1− 1
2δ

ḣ and the temperature at the neck front:

T̃ − 1 =
α

ǫ

[
−1 +

√
β0

β

[
(h + 1)

(
Ṽ +

β0

8δ
(2− 3β0Ṽ

2)ḧ

)

+ β0

(
−1

2
Ṽ ḣ +

3β0

16δ

(
2δ + (−3 + 5β0Ṽ

2)ḣ
)
ḧ

)]]
.

(A21)
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