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Relaxation of double quantum dot qutrit
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Introduction

One of intensely developing fields of science is quantum

computations. In the future, quantum computers which

form the basis of this field will be able to solve practical

tasks that can not be solved by the most powerful classic

supercomputers [1,2].

The common-architecture quantum computer is a system

that consists of a large number of elementary logic quantum

cells with several discrete states, most often, two-level

ones — qubits or, for example, three-level ones — qutrits

that are considered in the present study. In order to

process information more effectively than the classical

computer, a system of multiple qutrits is required not

to lose coherency when performing thousand of logic

operations. One of the attractive systems for creating

complete scalable quantum processors is systems based on

electron states in double semiconductor quantum dots [3–5].
An important problem that prevents fast progress in creating

the quantum computers, including quantum computers

based on spatial electron states in the semiconductor

quantum dots, is errors that originate during performing

the quantum logic operations due to noises in the qubits

and inaccuracies of execution. As a result, one of

the principal tasks in constructing practically useful full-

scale quantum information processors is reduction of a

value of hardware errors to the level, below which their

influence can be neutralized by algorithmic methods by,

for example, procedures of quantum error correction. That

is why it is absolutely necessary to evaluate the systems

that are candidates for quantum information processers

by a degree of influence of interaction with the external

environment on the level of hardware faults that occur in

them.

The present study is aimed at considering decoherence

processes in qutrits that use the three lower energy states

of spatial quantization of charge carriers in double dot

nanostructures.

1. Qutrit design

We have considered a silicon nanostructure that consists

of two quantum dots separated by a tunnel barrier, with one

electron, and is shown in Fig. 1.

A proposed diagram of manufacturing our studied struc-

ture uses technological steps which are similar to stages of

manufacturing of the FinFET transistor: off-etching of the

so-called fin (rib), which is an active area that will include

our electron, is followed by formation of a composite layer

and a dielectric with a high permittivity index. After that,

thin metal shutters are applied to be used for forming

boundaries of quantum dots and a barrier between them and

to be capable of being utilized later for adjusting parameters

of the qutrit and controlling it. It results in forming a

First dot
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Figure 1. Qutrit diagram.
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Figure 2. Lower energy levels in the system of two tunnel-

coupled semiconductor quantum dots.

potential profile along the structure and electron spatial

quantization levels that are qualitatively shown in Fig. 2.

2. Calculation of the relaxation rates

The qutrit relaxation rate was calculated in the low-

temperature limit. It was assumed that the energy required

for transitions to the higher levels was much higher than

the lattice temperature and the energy distance between

the three basic levels of spatial electron quantization in

the two-well potential of two adjacent quantum dots. The

influence of the lattice temperature on the relaxation rates

in the structures of the qubits based on double quantum

dots was evaluated in the study [6]. It was shown that at

the temperatures of at most several Kelvins the influence

of the temperature does not result in significant changes

of the relaxation rate. In our case, the energies of

interlevel transitions by more than an order exceed the

energies of interlevel transitions, which are considered in

the article [6], and therefore the influence of heating to the

helium temperatures will not all the more have a substantial

effect.

The electron wave functions in the three lower spatial

states ψ j(x), where j = 0, 1, 2, were searched from solving

a one-dimensional stationary Schrödinger equation. Lo-

calization of the electron in the two transverse directions

y and z was considered to be constant and much less

than longitudinal distribution along the axis x . The two-

well potential used for calculating the wave functions was

considered to be rectangular as shown in Fig. 3.

A matrix element of a dipole moment operator dab

between the electron wave functions in the a -th and b-th
energy levels of our system ψa(x) and ψb(x):

dab =

width/2
∫

−width/2

ψa · qx · ψbdx , (1)

U0

Width

Bound

Figure 3. Profile of the potential along the axis x and a progress

of the wave functions of the two lower energy states of the electron

ψ0(x) and ψ1(x).

where width is a width of the quantum dot under our

consideration.

Due to the dipole moment, the qutrit, being at the excited

levels 1 and 2, can execute a radiative transition and change

its state, which at a computational level will cause a fault in

quantum information that processed and stored in it.

Probabilities of the radiative transitions were calculated

in the Markov approximation. The vector potential A(r, t)
of the field emitted by the dipole in a medium with

permittivity ε:

Â(r, t) =
1√
εε0V

∑

k

∑

s

√

~

2ω

(

âksεks eikr + â†
ksε

∗
ks e−ikr

)

.

(2)
Here, V — the volume of the medium, k — the wave vector

of an emitted flat wave, s — polarization of radiation, ω —
the radiation frequency, εks — the directing vector of wave

polarization.

Interaction of the electron with the radiation field is

described by a standard Hamiltonian

Ĥ =
p̂2

2m
− e

2m
(p̂ Â + Âp̂) +

e2Â2

2m
+ U(r) = Ĥ0 + Ĥ ′.

(3)
Here, m — the effective mass of the electron in the

semiconductor, U(r) — the potential of the double quantum

dot. The matrix element of the transition in a dipole

approximation

〈

j|Ĥ ′| f
〉

= − e
m

∑

ks

√

~

2ε0εVω

×
〈

i
∣

∣

∣â†
ksεeikr p + âks ε̂ks e−ikr p

∣

∣

∣ f
〉

. (4)

The complete probability of photon radiation per unit

time:

Ŵab =
ω3

abd2
ab

3πc3~ε0

√
ε. (5)

Final probabilities of spontaneous relaxation with photon

radiation Ŵab were calculated by the Fermi golden rule

according to the formula (5).
Let us consider a dependence of the complete probability

of photon radiation per unit time with the transitions
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Figure 4. Profile of the two-dot structure with the barrier width

of 2 nm with shift in relation to the center and the barrier height

of V1 eV and the second (right) well’s height of V2 .

between the three lower energy electron states ψ0, ψ1 and

ψ2 from the potential profile along the axis x .
We will shift the potential along the barrier axis and

watch variation of Ŵ10, Ŵ21, Ŵ20. We will raise the level

of the second well to the height V2 by assuming that the

level of the first well is 0, while V1 will denote a barrier

height. The following parameters of the system are selected:

the width of the whole quantum dot is 8 nm, the barrier

width is 2 nm, as shown in Fig. 4.

3. Dynamics of the quantum state of the
qutrit during relaxation

During relaxation of the qutrit, its state becomes coupled

to the environment and formalism of the density matrix

shall be used for description [7]. We designate the density

matrix of the three-level system as ρ. Let |0〉, |1〉, |2〉 be the

ground, first and second excited energy states of the system,

respectively. Then, in the first approximation without

relaxation the system Hamiltonian is written as follows:

H = ε0|0〉〈0| + ε1|1〉〈1| + ε2|2〉〈2|, (6)

where ε0, ε1, ε2 are the energies of the states |0〉, |1〉 and |2〉,
respectively.

In the Markov approximation, the dynamics of the state

is described by the Lindblad equation:

dρ(t)
dt

= − i
~

[H, ρ(t)] − 1

2

∑

α=1

(

L(α)†L(α)ρ(t)

+ ρ(t)L(α)†L(α) − 2L(α)ρ(t)L(α)
)

, (7)

where L(α) — the Lindblad operators that determine a

nonunitary part of evolution, ~ — the reduced Planck

constant, i — the imaginary unit, t — the time.

The density matrix of the qutrit can be expressed for the

relaxation process in an arbitrary moment of time in the

energy basis when t > 0:

ρ(t) =





ρ00(t) ρ01(t) ρ02(t)
ρ10(t) ρ11(t) ρ12(t)
ρ20(t) ρ21(t) ρ22(t)



 (8)

and due to awkwardness of the obtained expressions and

impossibility of further simplification we have to separately

write out components of the density matrix below:

ρ00(t) = ρ00(0) + ρ11(0)(1 − e−Ŵ10t)

+ ρ22(0)

(

1 +
−e(−Ŵ20−Ŵ21)t(Ŵ10 − Ŵ20) + Ŵ21e−Ŵ10t

Ŵ10 − Ŵ20 − Ŵ21

)

,

(9)
ρ01(t) = ρ01(0)e

(iε10/~−Ŵ10/2)t, (10)

ρ02(t) = ρ02(0)e
(iε20/~−(Ŵ20+Ŵ21)/2)t, (11)

ρ10(t) = ρ10(0)e
(−iε10/~−Ŵ10/2)t, (12)

ρ11(t) = ρ11(0)e
−Ŵ10t + ρ22(0)

Ŵ21(−e−Ŵ10t + e(−Ŵ20−Ŵ21)t)

Ŵ10 − Ŵ20 − Ŵ21
,

(13)
ρ12(t) = ρ12(0)e

(iε21/~−(Ŵ10+Ŵ20+Ŵ21)/2)t, (14)

ρ20(t) = ρ20(0)e
(−iε20/~−(Ŵ20+Ŵ21)/2)t, (15)

ρ21(t) = ρ21(0)e
(−iε21/~−(Ŵ10+Ŵ20+Ŵ21)/2)t, (16)

ρ22(t) = ρ22(0)e
−(Ŵ20+Ŵ21)t, (17)

where additional designations are introduced for compact-

ness

εi j = εi − ε j, (i, j) ∈ {(1, 0), (2, 0), (2, 1)}. (18)

By an ideal process, we mean unitary evolution of the

system (that effectively executes the phase operation of the

qutrit) under effect of the eigen Hamiltonian (6) without

taking into account interaction with an electromagnetic field.

We designate the matrix of the density that describes the

system in this case as ρideal .

Its dynamics complies with the Liouville’s quantum

equation:
dρideal(t)

dt
= − i

~
[H, ρideal(t)]. (19)

By repeating the similar actions as in the previous section

as well as using a condition for equality of the density

matrices at the initial moment of time in both the processes,

we obtain the expression for ρideal in the energy basis:

ρideal
00 (t) = ρideal

00 (0), (20)

ρideal
01 (t) = ρideal

01 (0)eiε10t/~, (21)

ρideal
02 (t) = ρideal

02 (0)eiε20t/~, (22)

ρideal
10 (t) = ρideal

10 (0)e−iε10t/~, (23)

ρideal
11 (t) = ρideal

11 (0), (24)

ρideal
12 (t) = ρideal

12 (0)eiε21t/~, (25)

ρideal
20 (t) = ρideal

20 (0)e−iε20t/~, (26)

ρideal
21 (t) = ρideal

21 (0)e−iε21t/~, (27)

ρideal
22 (t) = ρideal

22 (0). (28)

26 Technical Physics, 2025, Vol. 70, No. 9



1682 XXIX Symposium
”
Nanophysics and Nanoelectronics“, Nizhny Novgorod, March 10−14, 2025

x, nm
–4 –3 –2 –1 0 1 2 3 4

0.4

A
m

p
li

tu
d
e

–0.8

–0.6

–0.4

–0.2

0

0.2

0.6
a

V

ψ2

ψ1

ψ0

V  = 0.65, V  = 0.31, Shift = 01 2

,

Barrier s shift, nm
–1.0 –0.5 0 0.5 1.0

D

–610

–510

–410 b

1 – exp(–Γ τ)10

10

1
3

R
el

a
xa

ti
o
n
 f

re
q
u
en

cy
, 
1
0

 H
z

2

4

6

8

c

E /h10
E /h20
E /h21

0.6
E

n
er

g
y 

o
f 

ei
g
en

st
a
te

s,
 e

V

0.1

0.2

0.3

0.4

0.5

0.7
d

D

Shift, nm

–1.0 –0.5 0 0.5 1.0

Shift, nm

–1.0 –0.5 0 0.5 1.0

E0
E1
E2

1 – exp (–(Γ  +Γ )τ)20 21

Figure 5. a — the graph of the wave functions that correspond to activated discrete levels in the point (the parameters of the point are

shown in the figure. b — the graph of the dependence D (a qutrit decoherence measure) on the barrier shift for the well of the width of

8 nm and the barrier of the width of 2 nm, V2 = 0.31 eV, V1 = 0.65 eV. The relaxation was calculated for the typical time τ = 1000 ~π

ε10
,

where ε10 — the energy of the transition between 0 and 1 levels. c — the graph of the dependence of the relaxation frequencies between

the respective levels on the barrier shift. d — the graph of the dependence of the energy of the eigenstates on the barrier shift.

4. Measure of maximum deviation of the
qutrit

In order to evaluate the measure of the influence of

spontaneous relaxation on the quality of the qutrit-stored

quantum state, we have used a measure of maximum

deviation D, which is also called the decoherence measure

in the case if one of the processes is ideal and the

other is noisy [8,9]. We note that in our situation no

satisfactory results are derived from attempts to write out

an analytical expression for evaluating the influence of

spontaneous relaxation of the qutrit on accuracy of the

phase operations based on alternative approaches that use

calculation of the other parameters like, for example, fidelity,

randomized benchmarking, cross entropy, by using the

expressions for the elements of the density matrix, which

are given in Section 3. In the best case, the resultant

analytical expressions occupy several pages after maximum

simplification. We briefly characterize these parameters as

applied to our conditions.

Fidelity quantitatively determines
”
proximity“ between

the two density matrices and is defined as

F(ρ, σ ) =

(

Tr

√√
ρ σ

√
ρ

)2

, (29)

where ρ and σ are the density matrices of the two quantum

states [10]. Its definition requires, in particular, to calculate

square roots from the matrices and usually results in quite

bulk expressions.

If randomized benchmarking is applied, an average error

of the basic quantum operations in execution of multiple

random sequences of the basic operations is evaluated [11].
First, a set of arbitrarily selected sequences of the Clifford

gates is executed and they shall return the quantum

processor into the initial state. Then, the measurement is

performed at the end of each sequence in order to make

Technical Physics, 2025, Vol. 70, No. 9
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sure that the initial state is obtained, and a dependence of

fidelity between the obtained ψm and initial states ψ on the

sequence length m is plotted. In case of the errors that do

not depend on the parameters and the time the graph will

correspond to

F(ψm, ψ) = Apm + B, (30)

where the coefficients A and B take into account the errors

of state preparation and the measurement as well as a side

effect of the error on a final control element; p is a fidelity

decay parameter that characterizes average probability of

no error when executing one Clifford gate in the sequence.

Relaxation results in exponential decay

p ≈ e−tg/T1 , (31)

where tg — duration of the quantum operation, T1 — the

typical decay time. Thus, using randomized benchmarking

it is possible to evaluate a contribution by relaxation when

applying a randomized set of the operations. This method

does not always correctly evaluate the errors even by an

order of the magnitude, since in many cases the sequence

of the operations in practically useful intelligent algorithms

is not quite random for this method.

The cross entropy makes it possible to compare a

distribution of the measurement results with the ideal

distribution [12]. For this purpose, a set of random quantum

circuits is created and they are quite complex so that their

output state is close to the random one. Each execution

provides a bit sequence that is a state of the qubits after

application of the circuit. A frequency of occurrence

of these bit sequences forms an empirical distribution of

probabilities and then the classic computer simulates ideal

behavior of the circuit (without noises and errors).
By the calculated entropy between the real and ideal

distributions, it is possible to evaluate a level of the noises

and the errors in the system. Cross entropy:

FXEB = 2n〈P(x i)〉i − 1 =
2n

k

k
∑

i=1

|〈0n|C| x i 〉|2 − 1, (32)

where n — the number of the qubits, P(x i) — the

probability of obtaining a bit string x i in the ideal quantum

circuit C and averaging is taken across all the measured

results. In our case, it is also impossible to obtain a compact

analytical expression for the cross entropy.

These considerations led us to necessity of using a

maximum deviation metric D. At the same time, D is

not just one of the set of abstract mathematical metrics,

but it also has a direct physical meaning — it guarantees

that probability of extracting a desired value from the

quantum processor (the qutrit, in our case) will deteriorate

in absolute magnitude due to noise no more than by D,

wherein it is strictly proven that generally this estimate can

not be improved [9].
We note that the qutrit that is in the initial state pre-

defined by a nine-element density matrix ρ(0) in the ideal

(noiseless) case shall evolve by the law ρA(t), while in the

real situation it state varies by the law ρB(t). D(t) between

the two processes A and B , which are described by the

density matrices ρA(t) and ρB(t), respectively, and satisfy

the initial condition

ρA(0) = ρB(0) = ρ(0) (33)

is determined as follows:

D(t) = sup
ρ(0)

∥

∥ρA(t) − ρB(t)
∥

∥

λ
, (34)

where an exact upper bound is taken across all the possible

initial states of the processes, while ‖ · ‖λ designates an

operator norm that is generally determined as

‖A ‖λ = sup
ϕ 6=0

√

〈ϕ|A† A |ϕ〉
〈ϕ|ϕ〉 . (35)

In our case, since we calculate the norm of the operator

that is a difference between two density operators, the

operator norm always exists and is equal to a maximum

(in absolute magnitude) eigenvalue of the difference matrix.

‖A ‖λ = max
i

|λi(A)| . (36)

The supremum for the metric D is achieved when noise

action results in maximum deviation of the state of the qutrit

from its state in the ideal process.

In our case, the quite cumbersome calculations unexpect-

edly finally led to a compact and physically clear result —
the maximum deviation is achieved at the initial state |2〉, if
Ŵ10 ≤ Ŵ20 + Ŵ21 or at the initial state |1〉, if Ŵ10 > Ŵ20 + Ŵ21.

Thus, the sought decoherence measure of the qutrit:

D(t) = 1− e−max(Ŵ10,Ŵ20+Ŵ21)t . (37)

The calculations of the qutrit level positions, the relax-

ation rates and the decoherence measures are shown in

Fig. 5. It is clear that within the selected area of the

parameters the quality of the qutrit is better than 2 · 10−4

everywhere. The time of execution of the phase operation

τ is selected to be 1000 ~π/ε10, since during optical control

execution of the qutrit control operations for a shorter time

will result in non-resonant effect on the adjacent transitions

and the adjacent qutrits and can cause a control error

that exceeds about 10−3 . The parameters are specially

selected not for the most optimal case, but to demonstrate

a transition of the maximum from one process to another

as the barrier is shifted (a break on the graph of the

dependence of the maximum deviation measure on the

barrier position).

Conclusion

We have considered the design of the qutrit based on the

spatial electron states in the double semiconductor quantum

dot. For the processes of spontaneous relaxation of the

26∗ Technical Physics, 2025, Vol. 70, No. 9
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qutrit, we have determined the measure of decoherence D
that is introduced by these processes. The simple and clear

analytical expression that is obtained for the decoherence

measure makes it possible to evaluate the quality of the

qutrits in the dependence on their relaxation rates.
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