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Relaxation of double quantum dot qutrit
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Relaxation of qutrit in two tunnel-coupled quantum dots is considered. Infrared radiative transitions between
three energy levels of spatial quantization used for storage and processing of quantum information are investigated
as possible relaxation channels. It is proven that by using earlier proposed metric of quantum processes — maximal
deviation metric — in the case of qutrit the contribution of relaxation in the decrease of probability of sought
outcome of quantum computations is represented by compact analytic expression.
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Introduction

One of intensely developing fields of science is quantum
computations. In the future, quantum computers which
form the basis of this field will be able to solve practical
tasks that can not be solved by the most powerful classic
supercomputers [1,2].

The common-architecture quantum computer is a system
that consists of a large number of elementary logic quantum
cells with several discrete states, most often, two-level
ones — qubits or, for example, three-level ones — qutrits
that are considered in the present study. In order to
process information more effectively than the classical
computer, a system of multiple qutrits is required not
to lose coherency when performing thousand of logic
operations. One of the attractive systems for creating
complete scalable quantum processors is systems based on
electron states in double semiconductor quantum dots [3-5].
An important problem that prevents fast progress in creating
the quantum computers, including quantum computers
based on spatial electron states in the semiconductor
quantum dots, is errors that originate during performing
the quantum logic operations due to noises in the qubits
and inaccuracies of execution. As a result, one of
the principal tasks in constructing practically useful full-
scale quantum information processors is reduction of a
value of hardware errors to the level, below which their
influence can be neutralized by algorithmic methods by,
for example, procedures of quantum error correction. That
is why it is absolutely necessary to evaluate the systems
that are candidates for quantum information processers
by a degree of influence of interaction with the external
environment on the level of hardware faults that occur in
them.

The present study is aimed at considering decoherence
processes in qutrits that use the three lower energy states

of spatial quantization of charge carriers in double dot
nanostructures.

1. Qutrit design

We have considered a silicon nanostructure that consists
of two quantum dots separated by a tunnel barrier, with one
electron, and is shown in Fig. 1.

A proposed diagram of manufacturing our studied struc-
ture uses technological steps which are similar to stages of
manufacturing of the FinFET transistor: off-etching of the
so-called fin (rib), which is an active area that will include
our electron, is followed by formation of a composite layer
and a dielectric with a high permittivity index. After that,
thin metal shutters are applied to be used for forming
boundaries of quantum dots and a barrier between them and
to be capable of being utilized later for adjusting parameters
of the qutrit and controlling it. It results in forming a
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Figure 1. Qutrit diagram.
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Figure 2. Lower energy levels in the system of two tunnel-
coupled semiconductor quantum dots.

potential profile along the structure and electron spatial
quantization levels that are qualitatively shown in Fig. 2.

2. Calculation of the relaxation rates

The qutrit relaxation rate was calculated in the low-
temperature limit. It was assumed that the energy required
for transitions to the higher levels was much higher than
the lattice temperature and the energy distance between
the three basic levels of spatial electron quantization in
the two-well potential of two adjacent quantum dots. The
influence of the lattice temperature on the relaxation rates
in the structures of the qubits based on double quantum
dots was evaluated in the study [6]. It was shown that at
the temperatures of at most several Kelvins the influence
of the temperature does not result in significant changes
of the relaxation rate. In our case, the energies of
interlevel transitions by more than an order exceed the
energies of interlevel transitions, which are considered in
the article [6], and therefore the influence of heating to the
helium temperatures will not all the more have a substantial
effect.

The electron wave functions in the three lower spatial
states 1;(x), where j =0, 1, 2, were searched from solving
a one-dimensional stationary Schrodinger equation. Lo-
calization of the electron in the two transverse directions
y and z was considered to be constant and much less
than longitudinal distribution along the axis X. The two-
well potential used for calculating the wave functions was
considered to be rectangular as shown in Fig. 3.

A matrix element of a dipole moment operator dgp
between the electron wave functions in the a-th and b-th
energy levels of our system 1, (X) and ¥p(X):

width/2
Oab = Ya - OX - PudX, (1)
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Figure 3. Profile of the potential along the axis X and a progress
of the wave functions of the two lower energy states of the electron

Iﬁo (X) and 1/}1 (X)

where width is a width of the quantum dot under our
consideration.

Due to the dipole moment, the qutrit, being at the excited
levels 1 and 2, can execute a radiative transition and change
its state, which at a computational level will cause a fault in
quantum information that processed and stored in it.

Probabilities of the radiative transitions were calculated
in the Markov approximation. The vector potential A(r, t)
of the field emitted by the dipole in a medium with
permittivity &:

A _ 1 hoy. ikr AT % o—ikr
A(r,t) = \/TW ; ;M % (aksskse + ApsExs€ ) .
(2)

Here, V — the volume of the medium, k — the wave vector
of an emitted flat wave, S — polarization of radiation, @ —
the radiation frequency, exs — the directing vector of wave
polarization.

Interaction of the electron with the radiation field is
described by a standard Hamiltonian

N p? e . . e2A2 ,
H=—-—(pA+A — +U(r)=H H'.
m Zm(p +Ap) + m T (r) o+
(3)
Here, m — the effective mass of the electron in the

semiconductor, U (r) — the potential of the double quantum
dot. The matrix element of the transition in a dipole
approximation

af - € _h
(iRf) = m%: 2e0eV

X <i ’ 3] ,£€% p + Aysise p’ f > (4)

The complete probability of photon radiation per unit

time:
2

w3 d
Fab - 3.71‘?3;;() & (5)
Final probabilities of spontaneous relaxation with photon
radiation I';p were calculated by the Fermi golden rule
according to the formula (5).
Let us consider a dependence of the complete probability
of photon radiation per unit time with the transitions
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Figure 4. Profile of the two-dot structure with the barrier width
of 2nm with shift in relation to the center and the barrier height
of V; eV and the second (right) well’s height of V..

between the three lower energy electron states 1y, 1 and
¥, from the potential profile along the axis X.

We will shift the potential along the barrier axis and
watch variation of I'jg, I's1, I'y9. We will raise the level
of the second well to the height V, by assuming that the
level of the first well is 0, while V; will denote a barrier
height. The following parameters of the system are selected:
the width of the whole quantum dot is 8 nm, the barrier
width is 2nm, as shown in Fig. 4.

3. Dynamics of the quantum state of the
qutrit during relaxation

During relaxation of the qutrit, its state becomes coupled
to the environment and formalism of the density matrix
shall be used for description [7]. We designate the density
matrix of the three-level system as p. Let |0), |1), |2) be the
ground, first and second excited energy states of the system,
respectively.  Then, in the first approximation without
relaxation the system Hamiltonian is written as follows:

H = £0[0) (0] + &1[1)(1] 4 £2]2)(2], (6)

where &, €1, € are the energies of the states |0), |1) and |2),
respectively.

In the Markov approximation, the dynamics of the state
is described by the Lindblad equation:

P 0] 3 (L L)

a=1

+ (L@ L@ 2L<“)p(t)L<“)), (7)
where L@ — the Lindblad operators that determine a
nonunitary part of evolution, i — the reduced Planck
constant, i — the imaginary unit, t — the time.

The density matrix of the qutrit can be expressed for the
relaxation process in an arbitrary moment of time in the
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energy basis when t > 0:

poo(t)  poi1(t) poa(t)
pt) = [ pw®) pu) pnr(t) (8)
p(t) pa(t) pxnlt)

and due to awkwardness of the obtained expressions and
impossibility of further simplification we have to separately
write out components of the density matrix below:

p00(t) = poo(0) + p11(0)(1 — e~ o)
+ 01+ ’

p2( )( N s e .

9

po1(t) = po1 (0)eliew/n=Tw/2)t (10)

P02(t) = poa(0)elien/imCa+Ta)/2)t (11

p10(t) = pro(0)el—Tew/A=Tu/2t (12)

P11 (t) = P11 (O)G_Flot + /022(0) le (_e—Fu)t + e(_rzo—F21)t)

o — T2 —I'y1 ’

(13)
/012('[) = plz(0)e(i€21/h*(F10+FZO+F21)/2)t’ ( )
p2(t) = 0(0)6 —ig/h— F20+F21)/2)t (15)
pZI() 021 ( )e( ey /h— F10+I‘20+1“21)/2> ( )
)

p2(t) = pr(0)e~Totlat (17

where additional designations are introduced for compact-
ness

(i,]) € {(1,0),(2,0). (2. 1)}.  (18)

By an ideal process, we mean unitary evolution of the
system (that effectively executes the phase operation of the
qutrit) under effect of the eigen Hamiltonian (6) without
taking into account interaction with an electromagnetic field.
We designate the matrix of the density that describes the
system in this case as p'ded!,

Its dynamics complies with the Liouville’s quantum
equation:

&ij = & — &),

dp'*(t) ideal

g = 5T (19)

By repeating the similar actions as in the previous section

as well as using a condition for equality of the density

matrices at the initial moment of time in both the processes,
we obtain the expression for p'9' in the energy basis:

ideal ideal

Poo (1) =poo - (0),
) = ol

P ) = P 0, 2

PIEER (1) = plge () e, 2
P ()

pideal (t) _ pideal (O)eisﬂt/h, 25

PIER (1) = e (),

|deal( )

0} plcieal (O)e—isﬂt/h,

|deal( )

(20)

(21)

(22)

(23)

= i1 (0), (24)

(25)

(26)

(27)

P2 (28)

= AE0)
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Figure 5. a — the graph of the wave functions that correspond to activated discrete levels in the point (the parameters of the point are
shown in the figure. b — the graph of the dependence D (a qutrit decoherence measure) on the barrier shift for the well of the width of

8 nm and the barrier of the width of 2nm, V, =

0.31eV, Vi = 0.65¢V. The relaxation was calculated for the typical time 7 = 1000 ** ha

€10’

where €19 — the energy of the transition between 0 and 1 levels. ¢ — the graph of the dependence of the relaxation frequencies between
the respective levels on the barrier shift. 4 — the graph of the dependence of the energy of the eigenstates on the barrier shift.

4. Measure of maximum deviation of the
qutrit

In order to evaluate the measure of the influence of
spontaneous relaxation on the quality of the qutrit-stored
quantum state, we have used a measure of maximum
deviation D, which is also called the decoherence measure
in the case if one of the processes is ideal and the
other is noisy [8,9]. We note that in our situation no
satisfactory results are derived from attempts to write out
an analytical expression for evaluating the influence of
spontaneous relaxation of the qutrit on accuracy of the
phase operations based on alternative approaches that use
calculation of the other parameters like, for example, fidelity,
randomized benchmarking, cross entropy, by using the
expressions for the elements of the density matrix, which
are given in Section 3. In the best case, the resultant
analytical expressions occupy several pages after maximum

simplification. We briefly characterize these parameters as
applied to our conditions.

Fidelity quantitatively determines ,,proximity between
the two density matrices and is defined as

2
o) = (Try/VBo ) (29)
where p and o are the density matrices of the two quantum
states [10]. Its definition requires, in particular, to calculate
square roots from the matrices and usually results in quite
bulk expressions.

If randomized benchmarking is applied, an average error
of the basic quantum operations in execution of multiple
random sequences of the basic operations is evaluated [11].
First, a set of arbitrarily selected sequences of the Clifford
gates is executed and they shall return the quantum
processor into the initial state. Then, the measurement is
performed at the end of each sequence in order to make
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sure that the initial state is obtained, and a dependence of
fidelity between the obtained 1, and initial states 1 on the
sequence length mis plotted. In case of the errors that do
not depend on the parameters and the time the graph will
correspond to

F(¥m, ) = Ap™ + B, (30)

where the coefficients A and B take into account the errors
of state preparation and the measurement as well as a side
effect of the error on a final control element; p is a fidelity
decay parameter that characterizes average probability of
no error when executing one Clifford gate in the sequence.
Relaxation results in exponential decay

pre /T, (31)

where ty — duration of the quantum operation, T; — the
typical decay time. Thus, using randomized benchmarking
it is possible to evaluate a contribution by relaxation when
applying a randomized set of the operations. This method
does not always correctly evaluate the errors even by an
order of the magnitude, since in many cases the sequence
of the operations in practically useful intelligent algorithms
is not quite random for this method.

The cross entropy makes it possible to compare a
distribution of the measurement results with the ideal
distribution [12]. For this purpose, a set of random quantum
circuits is created and they are quite complex so that their
output state is close to the random one. Each execution
provides a bit sequence that is a state of the qubits after
application of the circuit. A frequency of occurrence
of these bit sequences forms an empirical distribution of
probabilities and then the classic computer simulates ideal
behavior of the circuit (without noises and errors).

By the calculated entropy between the real and ideal
distributions, it is possible to evaluate a level of the noises
and the errors in the system. Cross entropy:

k
2"
Fxes = 2"(P(xi))i — :?Z o"Clxi)P -1, (32)

where N — the number of the qubits, P(xj) — the
probability of obtaining a bit string X; in the ideal quantum
circuit C and averaging is taken across all the measured
results. In our case, it is also impossible to obtain a compact
analytical expression for the cross entropy.

These considerations led us to necessity of using a
maximum deviation metric D. At the same time, D is
not just one of the set of abstract mathematical metrics,
but it also has a direct physical meaning — it guarantees
that probability of extracting a desired value from the
quantum processor (the qutrit, in our case) will deteriorate
in absolute magnitude due to noise no more than by D,
wherein it is strictly proven that generally this estimate can
not be improved [9].

We note that the qutrit that is in the initial state pre-
defined by a nine-element density matrix p(0) in the ideal
(noiseless) case shall evolve by the law p”(t), while in the
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real situation it state varies by the law pB(t). D(t) between
the two processes A and B, which are described by the
density matrices p”(t) and pB(t), respectively, and satisfy
the initial condition

P(0) = p°(0) = p(0) (33)

is determined as follows:

- pB ()

I (34)

D(t) = sup|[p"(t)
p(0)
where an exact upper bound is taken across all the possible
initial states of the processes, while |- ||, designates an
operator norm that is generally determined as

(p| AT Ale)

(plo) (33)

IAllz = sup

In our case, since we calculate the norm of the operator
that is a difference between two density operators, the
operator norm always exists and is equal to a maximum
(in absolute magnitude) eigenvalue of the difference matrix.

I Allx = max|2i (A)] (36)

The supremum for the metric D is achieved when noise
action results in maximum deviation of the state of the qutrit
from its state in the ideal process.

In our case, the quite cumbersome calculations unexpect-
edly finally led to a compact and physically clear result —
the maximum deviation is achieved at the initial state |2), if
I'io < Ty + I’y or at the initial state |1>, if g > Ty + 1oy

Thus, the sought decoherence measure of the qutrit:

D(t) =1—e" maX(Fu),onJan)t. (37)

The calculations of the qutrit level positions, the relax-
ation rates and the decoherence measures are shown in
Fig. 5. It is clear that within the selected area of the
parameters the quality of the qutrit is better than 2 - 10~*
everywhere. The time of execution of the phase operation
7 is selected to be 1000 hsr /€19, since during optical control
execution of the qutrit control operations for a shorter time
will result in non-resonant effect on the adjacent transitions
and the adjacent qutrits and can cause a control error
that exceeds about 1073, The parameters are specially
selected not for the most optimal case, but to demonstrate
a transition of the maximum from one process to another
as the barrier is shifted (a break on the graph of the
dependence of the maximum deviation measure on the
barrier position).

Conclusion

We have considered the design of the qutrit based on the
spatial electron states in the double semiconductor quantum
dot. For the processes of spontaneous relaxation of the
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qutrit, we have determined the measure of decoherence D
that is introduced by these processes. The simple and clear
analytical expression that is obtained for the decoherence
measure makes it possible to evaluate the quality of the
qutrits in the dependence on their relaxation rates.
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