# Неустойчивость местных сверхзвуковых зон на профиле крыла с интерцептором

© А.Г. Кузьмин

Санкт-Петербургский государственный университет, 198504 Санкт-Петербург, Россия e-mail: a.kuzmin@spbu.ru

Поступило в Редакцию 17 апреля 2025 г. В окончательной редакции 15 июля 2025 г. Принято к публикации 25 июля 2025 г.

Проведено численное исследование турбулентного трансзвукового обтекания воздухом профиля NASA SC(2)-0710 с интерцептором. Решения осредненных по Рэйнольдсу уравнений Навье—Стокса получены с помощью программы, основанной на методе конечных объемов. Выявлена высокая чувствительность картины обтекания к углу поворота интерцептора, а также к изменениям числа Маха набегающего потока  $M_{\infty}$  и угла атаки  $\alpha$ . Продемонстрировано наличие гистерезиса подъемной силы в узких интервалах изменения  $M_{\infty}$  и  $\alpha$ . Показано, что положение местных сверхзвуковых зон может резко изменяться с увеличением  $M_{\infty}$  вследствие отрыва пограничного слоя от нижней стороны профиля, влияющего на картину обтекания через область ближнего следа.

Ключевые слова: аэродинамический профиль, обтекание, ударные волны.

#### DOI: 10.61011/JTF.2025.12.61799.216-25

### Введение

В предыдущие годы в ряде работ было выполнено численное моделирование обтекания закрылков и интерцепторов при фиксированных углах их поворота [1]. Кроме того, изучалась динамика аэродинамических сил, возникающих при нестационарном поведении поверхностей управления [2]. Вместе с тем структура течения в трансзвуковых условиях и его чувствительность к малым возмущениям не были исследованы достаточно полно.

Поворот интерцептора вызывает изменение профиля крыла, в результате которого кривизна его верхней стороны уменьшается или изменяет знак, образуя вогнутость вблизи начала интерцептора. Трансзвуковое обтекание профилей с участками малой кривизны изучалось в [3,4], где было показано возникновение неустойчивости вследствие слияния/расщепления формирующихся местных сверхзвуковых зон. В [5] численно исследовано трансзвуковое обтекание профиля NASA SC(2)-0710 с интерцептором/спойлером при его отклонениях от нейтрального положения на углы до 6° и числе Рэйнольдса  $\mathrm{Re} = 1.5 \cdot 10^7$ . Установлено существование гистерезиса подъемной силы в определенных интервалах изменения числа Маха набегающего потока  $M_{\infty}$  и угла атаки  $\alpha$ .

В настоящей работе проведено исследование аналогичных вопросов при меньшем числе Рэйнольдса  ${\rm Re}=9\cdot 10^6.$  Проанализирована зависимость коэффициента подъемной силы  $C_L$  от  $M_\infty$  и  $\alpha$  в диапазонах  $0.820 \le M_\infty \le 0.865, \, -0.55 \le \alpha \le -0.25^\circ$  при угле поворота интерцептора  $\theta=3^\circ.$ 

## 1. Метод расчета

Аэродинамический профиль NASA SC(2)-0710 толщины  $10\,\%$  задается таблицей безразмерных декартовых координат  $y_{\pm 0710}(x),\ 0 \le x \le 1$  [6], где "+" и "–" соответствуют верхней и нижней сторонам профиля. Выберем длину хорды равной  $l_x=2.5\,\mathrm{m}$  и будем считать, что обезразмеривание выполнено по  $l_x$ . Модель интерцептора, установленного на верхней стороне профиля в интервале  $0.55 \le x \le 0.77$ , описывается выражениями [5]:

$$y_{+0710}(x) + (x - 0.55) \tan \theta$$

— для внешней стороны интерцептора,

$$y_{+0710}(x) + (x - 0.55) \tan -0.0012$$

— для его внутренней стороны,

где  $\theta$  — угол отклонения от нейтрального положения (рис. 1). Внешними границами расчетной области являются дуги окружностей

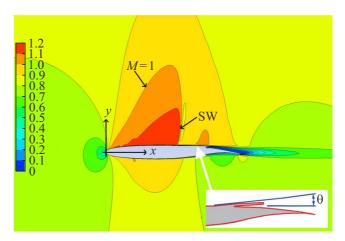
$$\Gamma_1$$
:  $x(y) = 105 - (145^2 - y^2)^{1/2}$ 

И

$$\Gamma_2: x(y) = -105 + (145^2 - y^2)^{1/2},$$
  
 $-100 \le y \le 100, -40 \le x \le 40,$ 

расположенные на достаточно большом расстоянии от профиля. На входной границе  $\Gamma_1$  задается статическая температура набегающего потока воздуха  $T_\infty=223.15$  K, уровень турбулентности 1 %, число Маха  $M_\infty<1$  и угол атаки  $\alpha$ , определяющие компоненты скорости  $U_\infty=M_\infty a_\infty\cos\alpha$ ,  $V_\infty=M_\infty a_\infty\sin\alpha$ , где  $a_\infty$ — скорость звука. Для исследования влияния числа

Рэйнольдса Re задается меньшее, чем в [5], давление  $p_{\infty}=13217\,\mathrm{Pa}$  на выходной границе  $\Gamma_2$ ; при этом Re  $=\rho_{\infty}M_{\infty}a_{\infty}l_x/\mu\approx9\cdot10^6$ , где  $\rho_{\infty}=0.2060\,\mathrm{kg/m^3}$  — плотность воздуха и  $\mu=1.5\cdot10^{-5}\,\mathrm{kg/(m\cdot s)}$  — динамическая вязкость. На твердых стенках канала ставятся условия прилипания и отсутствия теплового потока. Воздух рассматривается как совершенный газ с постоянной адиабаты 1.4 и удельной теплоемкостью при постоянном давлении 1004.4 J/(kg·K). Для расчета динамической вязкости используется формула Сазерленда. Начальными условиями являются параметры набегающего потока или поле течения, полученное при других значениях  $M_{\infty}$  и  $\alpha$ 

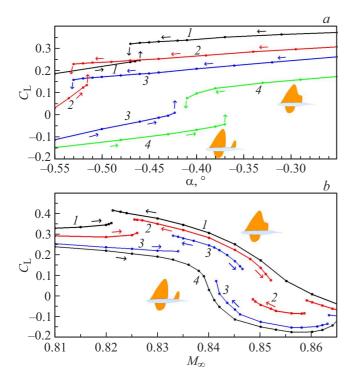

Численное моделирование двумерного турбулентного течения осуществлялось на основе системы нестационарных уравнений Навье—Стокса, осредненных по Рэйнольдсу. Использовалась модель турбулентности  $k-\omega$  SST [7]. Искомыми величинами являлись осредненные значения статического давления p(x,y,t), температуры T(x,y,t) и компонент скорости потока U(x,y,t), V(x,y,t). Решения были получены с помощью программного комплекса ANSYS-19.1 CFX, основанного на методе конечных объемов [8]. При этом для дискретизации конвективных слагаемых использовалась схема повышенной разрешающей способности [9], а дискретизация по времени осуществлялась с помощью неявной противопотоковой схемы Эйлера.

Расчеты выполнены на 3D-сетке, насчитывавшей 586 240 ячеек и состоявшей из 40 слоев параллелепипедов на стенках канала и призм с треугольными основаниями в остальной области. Во всей области в направлении оси z использовалась одна ячейка длиной  $l_z=0.01\,\mathrm{m}$ . Сеточные узлы сгущались вблизи ударных волн, в пограничном слое и в ближнем следе. Безразмерная толщина y+ первого сеточного слоя на профиле была менее единицы. Тестовые расчеты на разных сетках показали, что вышеуказанная сетка обеспечивает достаточно хорошую точность численных решений [5, рис. 3].

#### 2. Результаты

Полученные решения поставленной начально-краевой задачи при стационарных краевых условиях сходились во времени к стационарным распределениям параметров  $p(x,y),\ T(x,y),\ U(x,y),\ V(x,y)$ . В случае  $M_{\infty}=0.81,\ \alpha=0^{\circ}$  и нейтрального положения интерцептора  $\theta=0^{\circ}$  наблюдалось формирование местной сверхзвуковой зоны  $Z_{upper}$  значительных размеров на верхней стороне профиля. Интегрирование давления p(x,y) по профилю позволяет найти подъемную силу  $L=137.2\,\mathrm{N},\$ а также коэффициент подъемной силы  $C_L=0.594,\$ согласно формуле  $C_L=2L/[\rho_{\infty}(U^2)_{\infty}S],\$ где  $S=l_x\times l_z=2.5\times0.01\,\mathrm{m}=0.025\,\mathrm{m}^2-$  площадь проекции профиля толщины  $l_z$  на плоскость (x,z).

Отклонение интерцептора от нейтрального положения на угол  $\theta=3^\circ$  вызывает торможение потока вдоль



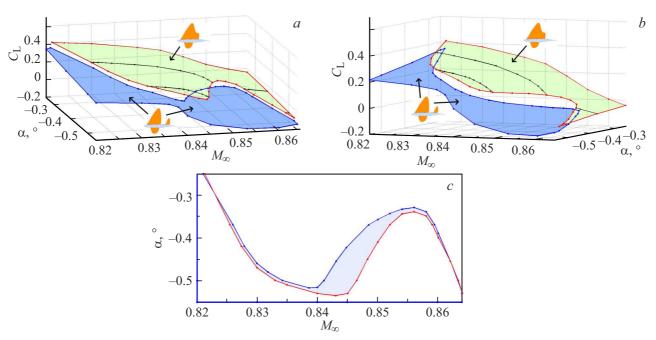

**Рис. 1.** Контуры числа Маха M(x,y)= const при  $M_{\infty}=0.81$ ,  $\alpha=0^{\circ}$  и отклонении интерцептора на угол  $\theta=3^{\circ}$ .

верхней стороны профиля, уменьшение размеров местной сверхзвуковой зоны  $Z_{upper}$  и ее расщепление на две части (рис. 1), где SW означает Shock Wave — ударная волна. Коэффициент подъемной силы при этом становится равным 0.417.

Дальнейшее увеличение угла поворота интерцептора  $\theta$  с 3 до 6° при  $M_\infty=0.81,~\alpha=0$ ° приводит к уменьшению значения  $C_L$  с 0.417 до 0.124. Импульсные переключения угла  $\theta$  во времени с 0 на 3° и обратно с периодом 0.5 s вызывают колебания коэффициента подъемной силы в пределах  $0.37 \le C_L \le 0.65$ ; при переключении  $\theta$  в качестве начального условия использовалось поле течения, полученное за время 0.5 s для предыдущего значения  $\theta$ .

Увеличение  $M_{\infty}$  и/или уменьшение угла атаки сопровождается формированием местной сверхзвуковой зоны  $Z_{lower}$  на нижней стороне профиля. Взаимодействие зон  $Z_{upper}$  и  $Z_{lower}$  приводит к весьма сложному поведению  $C_L$  при изменениях параметров набегающего потока в диапазонах  $-0.55^{\circ} \le \alpha \le -0.25^{\circ}$ ,  $0.852 \le M_{\infty} \le 0.864$ . На рис. 2, а показаны полученные зависимости коэффициента подъемной силы  $C_L$  от угла атаки lpha при  $\theta=3^\circ$  и разных значениях  $M_\infty$ . Стрелки около кривых указывают направления пошагового изменения а. При этом в качестве начального условия на каждом шаге использовалось поле течения, полученное на предыдущем шаге. Верхним ветвям кривых отвечают картины обтекания с одной сверхзвуковой зоной на профиле, а нижним ветвям — с двумя сверхзвуковыми зонами, что иллюстрируется схемами, расположенными около кривой 4. Переходы между ветвями сопровождаются скачками  $C_L$ , вызванными неустойчивостью процесса слияния/расщепления сверхзвуковых зон и резким изменением положения ударной волны SW, показанной на рис. 1. Как видно, существует гистерезис при переходе от нижних ветвей к верхним и обратно. Наибольшая ширина гистерезиса наблюдается при  $M_{\infty} = 0.845$ .




**Рис. 2.** Коэффициент подъемной силы  $C_L$  при угле отклонения интерцептора  $\theta=3^\circ$ : a — зависимость  $C_L$  от угла атаки  $\alpha$ , кривые I-4 соответствуют  $M_\infty=0.830,\ 0.840,\ 0.845,\ 0.850;$  b — зависимость  $C_L$  от числа Маха  $M_\infty$ , кривые I-4 соответствуют углам  $\alpha=-0.25^\circ,\ -0.37^\circ,\ -0.50^\circ,\ -0.55^\circ.$ 

На рис. 2,b представлены зависимости  $C_L$  от числа Маха  $M_{\infty}$  при разных значениях угла атаки. Переходы

с нижних ветвей кривых I-3 на верхние при увеличении  $M_{\infty}$  от 0.82 до 0.84 объясняются слиянием двух местных сверхзвуковых зон на верхней стороне профиля и формированием здесь обширной сверхзвуковой зоны  $Z_{upper}$  с пониженным статическим давлением. При дальнейшем увеличении  $M_{\infty}$  реализуется скачкообразное падение  $C_L$  в интервале 0.845  $< M_{\infty} < 0.853$ , вызванное расщеплением зоны  $Z_{upper}$  на две части. Расщепление происходит вследствие торможения потока у задней кромки профиля из-за смещения линий тока в ближнем следе "вверх" подобно повороту закрылка против часовой стрелки [5]. Смещение линий тока, в свою очередь, вызвано резким расширением сверхзвуковой зоны  $Z_{lower}$  на нижней стороне профиля и сдвигом точки отрыва пограничного слоя к задней кромке.

На рис. 3,a и b показана поверхность, иллюстрирующая зависимость коэффициента подъемной силы  $C_L$  от двух параметров —  $\alpha$  и  $M_\infty$  — при  $\theta=3^\circ$ . Поверхность состоит из нижней и верхней частей, проекции которых на плоскость  $(\alpha,M_\infty)$  перекрываются вследствие гистерезиса. Верхней части поверхности соответствуют картины обтекания с одной сверхзвуковой областью на верхней стороне профиля, а нижней — картины обтекания с двумя сверхзвуковыми областями на верхней стороне.

На рис. 3, c представлены бифуркационные кривые, полученные путем проецирования краев поверхности  $C_L(\alpha, M_\infty)$  на плоскость  $(\alpha, M_\infty)$ . В затененной области происходит пересечение проекций верхней и нижней частей поверхности  $C_L(\alpha, M_\infty)$ , поэтому для значений  $\alpha$  и  $M_\infty$  из этой области существуют два режима течения. Сравнение с результатами, полученными в [5],



**Рис. 3.** a,b — поверхности, иллюстрирующие зависимость коэффициента подъемной силы  $C_L$  от числа Маха  $M_\infty$  и угла атаки  $\alpha$  при  $\theta=3^\circ$ ; c — бифуркационные кривые на плоскости  $(\alpha,M_\infty)$ .

показывает, что ширина гистерезиса существенно увеличивается при уменьшении давления  $p_{\infty}$  и уменьшении числа Рэйнольдса; в частности, при  $M_{\infty}=0.845$  ширина гистерезиса по углу атаки составляет  $0.1^{\circ}$ .

#### Благодарности

Работа выполнена с использованием ресурсов вычислительного центра Санкт-Петербургского государственного университета (http://cc.spbu.ru).

#### Конфликт интересов

Автор заявляет, что у него нет конфликта интересов.

# Список литературы

- [1] A. Petrocchi, G.N. Barakos. AIAA Paper, 2023, 3527 (2023).
- [2] S. Geisbauer. AIAA Paper, 2023, 4316 (2023).
- [3] A.M. Chuen, M. Hafez. Int. J. Aerodynamics, 7 (2), 127 (2021).
- [4] A. Kuzmin. J. Phys. Conf. Ser., 1697, ID 012207 (2020).
- [5] A. Kuzmin. Int. J. Aeronautical Space Sci., 15 (3), 232 (2014).
- [6] Ch.D. Harris. NASA Technical Paper, 2969, Langley Research Center (1990).
- [7] F.R. Menter. https://turbmodels.larc.nasa.gov/sst.html (accessed April 15, 2025)
- [8] ANSYS Fluids Computational Fluid Dynamics. https://cae-expert.ru/product/ansys-cfd (accessed April 15, 2025)
- [9] T. Barth, D. Jespersen. AIAA Paper, 89, 0366 (1989).