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Determination of the proportions of platinum atoms in agglomerates of
bimetallic nanoparticles using machine learning methods
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In this paper, we consider the applicability of machine learning methods, in particular, artificial neural
networks, to obtain information on the distribution of target substance atoms in aggregates of bimetallic
nanoparticles of various architectures. To solve the problem, we use data on paired radial distribution functions
of atoms, the direct sources of which are experimental methods of X-ray diffraction and X-ray absorption
spectroscopy from an extended energy region of the spectrum. The trained model of the artificial neural
network demonstrates high accuracy in determining the proportions of platinum atoms in the composition of

nanoparticles of various architectures in the agglomerate (determination coefficient ~ 0.98).

To verify the

trained model, experimental data for catalysts containing bimetallic PtCu nanoparticles were used. Verification
showed a high generalisability of the model, which indicates the promising application of this approach to
the determination of platinum consumption efficiency in the synthesis of platinum-containing nanoparticle-based

catalysts.
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Introduction

Presently, platinum catalyzers are applied in many in-
dustries. In particular, platinum-containing nanoparticles
(NP) applied to a finely-dispersed carbon material are
actively used when designing fuel cells as catalyzers [1].
Due to high price of platinum, great attention is paid
to designing high-effective and stable platinum-containing
catalyzers with lower cost [2-6]. One of the ways
of solving this problem includes using bimetal platinum-
containing nanoparticles with addition of d-metals, for
example, nickel, cobalt or copper [1,7]. At the same
time, catalytic properties of these nanoparticles depend
both on a composition and their architecture, ie. spatial
distribution of the components across the nanoparticle
volume.

It is known that the bimetal nanoparticles with a core-
shell architecture with the platinum shell demonstrate
catalytic activity that can be compared with single-metal
platinum nanoparticles, but contain much less expensive
platinum [2-4]. However, it should be noted that dur-
ing operation the architecture of these nanoparticles can
change in time. For example, a boundary of transition
from the core to the shell can be less pronounced due
to thermal effects [8,9], which in case of a thin layer
of the shell can result in deterioration of the catalytic
properties of the nanoparticles. The recent studies have
shown that a smooth transitive layer between the core
and shell areas made it possible to achieve improved
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stability of a catalyst [10,11]. It was proposed to
name this architecture of the nanoparticles a ,gradi-
ent“ one [10,12,13].

Despite the entire promising potential of the ,gradient”
architecture of the nanoparticles, a process of multi-stage
synthesis can include formation of the nanoparticles of
other types, whether it is single- or bi-metal nanoparticles
of various architectures. That is why production of the
nanoparticles of a pre-defined architecture with certain prop-
erties necessitates significant optimization of the synthesis
conditions, which requires availability of structural infor-
mation on the nanoparticles. The most common sources
for obtaining this information include X-ray absorption
spectroscopy (XAS), methods of X-ray diffraction (XRD)
and high-resolution electron microscopy with elementary
mapping and some other methods [14,15].

Application of machine learning methods can significantly
simplify and accelerate extraction and analysis of the
structural information on nanoobjects. For example, it was
demonstrated that using the neuron networks can extract
information on coordination numbers and distances from
XAS data [16,17] and with high accuracy it can determine
the architecture of the nanoparticles from data on paired
radial distribution functions of atoms (PRDF) [18].

The present study is dedicated to investigating a funda-
mental determinability of efficiency of platinum consump-
tion during synthesis, ie. determination of a proportion of
platinum, which is consumed for forming the nanoparticle
with a specific architecture.
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Figure 1. Considered architectures of the bimetal nanoparticles: @ — core-shell, b — ,gradient“, ¢ — disordered and d — aggregated

alloys.

1. Methods and approaches

1.1. Sources for obtaining PRDF

The main methods for obtaining PRDF are analysis of
data of X-ray diffraction and X-ray absorption spectroscopy
from the extended energy region of the spectrum (EXAFS).
The method of extraction of PRDF from XRD is based
on a dependence of the radial distribution function of the
atomic density on intensity of coherent scattering of X
rays during diffraction [19]. Due to physical limitations of
measurement of scattering of X rays, extraction of the radial
distribution functions from XRD originates edge effects that
are manifested in appearance of false maximums in curves
of the distribution function. Extraction of data on PRDF
from the EXAFS data is based on multiparameter opti-
mization of the Fourier transform F(R) of an initial signal.
For the specimen-average representative nanoparticle, this
analysis allowed determining radii of coordination spheres
(~ 0.01A) [20] with high accuracy and coordination num-
bers (the error ~ 10 %) with much less accuracy as well as a
parameter of temperature and structure disordering [21,22].
It should be separately noted that a EXAFS-analysis process
can substantially differ depending on a studied material and
that reliability of determining structure parameters decreases
when considering more remote coordination spheres. The
present study uses PRDFs directly calculated for molecular
nanoclusters. Therefore, when comparing with experimental
data, correctness of the results necessitates additional nor-
malization of the coordination numbers determined from the
EXAFS analysis. It is due to the fact that metal atoms can
be in two states belonging to two components: nanoparticles
and an oxide:

\%
NEpB — . NEXAFS (1)
- EXAFS "A-B >
V — N2y
where NEX&FS — the coordination number of the atoms of

the sort B in relation to the sort A, as obtained from the
EXAFS-analysis; V — the assumed coordination number
for atoms of the metal of the sort A in an oxidized state,

which can be in the material not in the composition of the
nanoparticle (it is assumed in the present paper that V = 6);
NEXAFS — the coordination number of the oxygen atoms in
relation to the atoms of the sort A The expression (1) is
derived with more details in Appendix 1.

1.2. Machine learning methods. Introduction to
the problem, used metrics

The set problem for determining efficiency of platinum
consumption during synthesis of the nanoparticles of the
pre-defined architecture can be reduced to determining the
proportions of platinum that were consumed for formation
of the nanoparticles of the various architectures in their
agglomerate. Probability of formation of a specific architec-
ture of the nanoparticle substantially depends on a synthesis
procedure [6,9-11,23] and, therefore, we limited ourselves
to consideration of the most probable nanoparticle archi-
tectures formed during synthesis of the platinum-containing
catalysts. Thus, the present study has considered single-
metal nanoparticles of platinum and bimetal nanoparticles
of the PtCu composition with the following architectures:
the copper core and the platinum shell, the platinum-copper
with the structure of the alloy and the aggregated alloy
and the gradient nanoparticle with the copper core and the
platinum shell. Images of the considered architectures of the
bimetal nanoparticles are shown in Fig. 1.

Thus, the set problem is reduced to a problem of multi-
purpose regression on tabular data, which can be solved by
the machine learning methods with a teacher. Formally, the
model operation can be presented as follows:

. I
q)(xl ) ®) - {CPt’ CPtCu, CCu@Pt’ CPtCuaggr’ CCuPtgmd} )

where x' — the PRDF for i-th data copy,
® — the array of the model parameters,
{Cpt, CPtCus CCu@Pts CPtCuyy » CCuPty ) — the model-predicted
vector of the platinum proportions in the composition of
the nanoparticles of the considered architectures in the
agglomerate. Teaching of the model includes selection
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of values of the parameter array © in such a way as to
approximate the model-predicted and the reference values
of the proportion of the platinum atoms as per a certain
loss function. In the present study, the loss function
was a function of the mean squared error (MSE) that is
determined by the expression:

1 .
MSE = —ZiLi (i —Vi )%,

where y; and y;* are the real and the model-predicted vector
of target values, respectively.

2. Results and discussion

2.1. Formation of a learning data set

The present study considers PRDFs of the platinum
single-metal and platinum-copper bimetal nanoparticles of a
spherical form with the four different architectures (Fig. 1).
The atomic models of the nanoparticles were obtained by
cutting the spherical area from an infinite FCC crystal with
subsequent molecular-dynamic simulation, as described in
the paper [18].  Totally, we obtained 1456 different
platinum-copper bimetal nanoparticles with sixteen different
sizes (from 1.3 to 6nm) and thirteen ratios of the Pt:Cu
components (from 20:80 to 80:20) and 22 platinum single-
metal nanoparticles of the sizes from 1.4 to 9.5 nm.

The assembly of the five nanoparticles of the different
architectures is characterized by PRDF obtained by the
formula (2), where Cacn — the proportion of a contri-
bution of the nanoparticles of a given architecture in the
assembly, nft , — the number of the platinum atoms in the
nanoparticle of a given architecture, PRDFgrch — PRDF of
the specific nanoparticle of the pre-defined architecture

z:archcarch : PRDFarch ' ngtrch

PRDF = =
ZarchCarch * Narch

(2)

To form a data set of this type, it is necessary to
randomly generate a set of concentrations carch, whose
sum will be unity within one assembly. These coefficient
were generated by means of the Dirichlet function with the
parameters a; = [0.6, 0.6, 0.6, 0.6, 0.6]. The distribution
of carch obtained as a result of this operation is shown
in Fig. 2,a. The obtained data have a high density in the
neighborhood of the point A , which is a proportion of
platinum in the composition of the single-metal platinum
nanoparticle (Fig. 2,b). Tt is related to the fact that we
have a limited set of single-metal nanoparticles with a high
average value of the number of the platinum atoms in the
nanoparticles. When summing the PRDFs (the formula (2))
of the nanoparticles of the different architectures, with
greater probability we select large single-metal platinum
nanoparticles. Accordingly, the proportion of platinum,
which is ,,consumed” for their formation is larger than all
others. This distribution was corrected by combining two
data sets that obtained as a result of generation of the
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coefficients Carcn by means of the Dirichlet functions with
the parameters a, = [0.2, 0.6, 0.6, 0.6, 0.6] and a3 = [0.5,
3, 3, 3, 3] (Fig. 2,¢).

For each set of the five concentrations carch, 208
nanoparticles of each architecture with the different sizes
and the different ratios of the Pt:Cu components are
randomly selected and the assembly PRDF is calculated
by the formula (2). Thus, a learning sample is formed and
totally consists of 208 000 lines.

The data, which are of interest to us, on the proportions
of the platinum atoms, which are consumed to form the
nanoparticle of a certain architecture in the assembly, cft .,
is determined as

Pt
Pt Carch * Narch
Carch = Pt - (3)
ZarchCarch * Ny eh

The resulted distribution of ¢!, is shown in Fig. 2,d. The
resultant set of the learning data was divided into 3 parts:
the coaching set — 60 % of the entire sample; the validation
set — 15% of the sample and the test set — 25 % of the
sample. According to the common paradigm, the coaching
data set was used for training the parameter matrix © of
the used machine learning models, the validation sample
was used to select hyperparameters of the models and to
determine a time when training stops and the test sample
was used for unbiased evaluation of the quality of model
operation.

2.2. Selection of models

When constructing the matrix of correlations of the input
data, it was found that there were significant correlations
between many features. These correlations are caused
by a structure of the input structure, which is Gaussian
peaks. There is multicollinearity of the data and it imposes
limitations on selection of possible models or pre-processing
of the data. Fig. 3 shows the matrix of correlations between
the input and output parameters.

Taking into account specific features of the input data,
a ridge regression model was used as the basic machine
learning model. High average values of the determination
coefficient were achieved for it, and they were ~ 0.98
on average. However, when checking the model on the
experimental data, the predicted proportions of the platinum
atoms in agglomerates of the bimetal nanoparticles have
no physical meaning. Besides, the distribution of residuals
contained significant ejections. In this regard, a perceptron
model was considered and it realized linear regression with
additional application of a sigmoid function to the output
data. This enabled to avoid negative values when predicting
the target parameters. But at the same time the values
of the determination coefficient dropped to 0.58, 0.23 and
0.12 for the models that determine the PROP ORTION of
the platinum atoms in the composition of the disordered,
aggregated and ,.gradient” nanoparticles, respectively. Fig. 4
shows the matrix of the perceptron model coefficients with
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Figure 2. a,c — the distribution of proportions of the nanoparticles of the various architectures; b, d — the distribution of proportions
of the platinum atoms in an assembly the five nanoparticles. A — Pt, B — PtCu, C — Cu@Pt, D — PtCuagqgr, E — CuPtyrag.

a form of the typical paired radial distribution functions of
atoms for these architectures of the nanoparticles.

It is known than the models based on gradient boosting
on solving trees can demonstrate both high accuracy and
high generalizability when operating the tabular data [24].
Therefore, in this study we limited ourselves to considera-
tion of the gradient boosting and artificial neuron networks
(ANN) when solving the set problem.

The model of gradient boosting on the solving trees
was CatBoostRegressor (CBR) realized in the CatBoost
library [25,26], while an alternative approach was a fully
connected neuron network with the architecture of Fig. 5.
Details of tuning the hyperparameters of the used models
are given in Appendix 2.

The described model of the neuron network receives
a vector of the four serial PRDFs at the input: Pt-Pt,
Pt-Cu, Cu-Pt, Cu-Cu and after that the data subsequently
pass through the fully connected layers with an activation
function ReLU and a regularization layer Dropout, which

zeros 25 % of the output values. At the last layer, after the
activation function ReLU, the function Softmax is applied to
renormalize the output vector so as a sum of its components
is equal to unity.

The model based on gradient boosting consisted of the
solution trees of the depth of 10 and a number of boosting
steps, which was 1000, the L2 regularization coefficient was
3 and the loss function was MultiRMSE [26].

It is known that some machine learning methods can
be sensitive to a scale of the input data or presence of
correlation. Therefore, when coaching the model, additional
standardization of the input data was considered to bring
them to a unified scale, so was application of a principal
component analysis method to reduce the dimensionality
of the input data and to obtain uncorrelated input features.
However, these modifications of the input data have not
resulted in any noticeable improvement of the quality of
operation of ANN or the gradient boosting model in relation
to the set problem.

Technical Physics, 2025, Vol. 70, No. 8
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Figure 3. Matrix of correlations between the input and output parameters. Each architecture has a typical set of paired radial distribution

functions of atoms, which is the input data.

Cpe

CPtCu

Ccu@pt

CPtCu, g

———

CeuPtyay

1x ALI M

ﬂ R2=0093 .

“ R?=0.58 0.1
2 _

" . o ’

i

1

1

1

1

Pt-Pt

Cu-Pt

Figure 4. Matrix of the perceptron model coefficients. Each architecture has a typical set of paired radial distribution functions of atoms,

which is the input data.

3. Learning results

3.1. Synthetic data

The results of operation of the trained models on the
synthetic test data are shown in Fig. 6, while the error
distribution statistics is shown in Fig. 7. Comparison of
distribution of residuals for the ANN models that are
trained on the data set corresponding to the generation
parameters «; and the extended data set are shown in Fig. 8.

Technical Physics, 2025, Vol. 70, No. 8

Even though both the models demonstrate an almost
identical quality of description of the synthetic data, when
comparing with the experimental data, the ANN shows
systematically higher generalizability.

3.2. Comparison with the experimental data

In order to check applicability of the trained models
based on ANN and CBR to the real data, consideration
was additionally given to results of the study [10], in
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Figure 5. Diagram of the neuron network.
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Figure 6. Comparison of the true and predicted values of the proportions of the platinum atoms in the assembly of the five nanoparticles

for ANN (NN) and CBR.

which the authors used a multi-stage synthesis procedure
for producing the ,gradient” platinum-copper nanoparticles.
The synthesis procedure is schematically presented in Fig. 9
borrowed from the article [10).

The materials produced at the 2-nd, 3-d and 4-th
stages are denoted as ,,PtCu_stage2“, ,PtCu_stage3“ and
»PtCu_stage4“ respectively. Besides, the study by S.V. Be-
lenov et al. [11] has additionally investigated both simul-
taneous deposition of the atoms of platinum and copper
with expected formation of the nanoparticles with the solid
solution architecture, which are designated as ,,PtCu_sim®
and subsequent two-stage deposition of copper and platinum
with expected formation of the particles with the copper

core and the platinum shell, which were designated as
»PtCu_seq”.

For correct operation of the trained models, these PRDFs
obtained from the EXAFS analysis in the papers [10,11]
were normalized according to the formula (1). The results
of operation of the models are shown in Fig. 10.

It can be seen from the given results that the CBR model
indicates presence of the significant proportion of the Pt
atoms in the composition of the single-metal nanoparticles
in all the studied specimens. On the other hand, the
ANN model indicates an insignificant proportion of the
single-metal Pt nanoparticles in the PtCu_sim and PtCu_seq
specimens. For the PtCu_sim specimen, the CBR indicates

Technical Physics, 2025, Vol. 70, No. 8
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Figure 7. Comparison of distribution of residuals for ANN (NN) and CBR: @ — the models trained on the data set that corresponds to
the generation parameters @; b — the models trained on the extended data set.

an approximately uniform content of the Pt atoms in the
composition of the considered architectures, except for the
architecture of the disordered alloy, for which the model
predicts the lesser Pt content. The architectures of the
disordered alloy may really turn out to be unstable, since
the FCC structures of the Pt and Cu volume specimens are
characterized by clearly different lattice parameters, thereby
making the aggregated-alloy architecture more probable
in relation to the architecture of the disordered solution.
Therefore, it is expected that with subsequent deposition
of the components in the PtCu_seq specimen probability
of formation of the nanoparticles with the disordered-alloy
architecture will be not higher as compared to simultaneous
deposition of the components in the PtCu_sim specimen.

Technical Physics, 2025, Vol. 70, No. 8

However, according to the results of using the CBR model,
the proportion of the Pt atoms in the composition of the
nanoparticles of the disordered-alloy architecture (32 %) is
the greatest and significantly exceeds the similar value for
PtCu_sim. At the same time, for the PtCu_seq specimen the
CBR model indicates relative smallness of the proportion
of the Pt atoms in the composition of the nanoparticles
with the architectures ,core-shell“ and ,gradient“. And
taking into account the synthesis procedure and the above-
discussed results, it indicates insufficient generalizability of
the CBR model in relation to the experimental data.

At the same time, for the PtCu_sim specimen the ANN
model indicates that the large portion of the platinum atoms
(~ 88%) is consumed for forming the nanoparticles with
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nanoparticles that are formed in each of the four stages of successive synthesis of the PtCu/C gradient catalyst.
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Figure 10. Result of use of the CBR model (a) and the ANN model () on the experimental data.
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the aggregated-alloy architecture. In the PtCu_seq specimen,
the large portion of platinum is in the composition of
the nanoparticles with the core-shell architecture (~ 66 %)
and the significant portion thereof (~ 30%) is in the
composition of the nanoparticles with the aggregated-alloy
architecture. For the specimens produced at the 2-nd,
3-d and 4-th synthesis stages, the ANN model indicates
monotonic increase of the proportion of the Pt atoms
in the composition of the ,gradient“ architecture with
simultaneous monotonic decrease of the nanoparticles with
the ,core-shell“ architecture. At this, these synthesis
stages exhibit a significant contribution of the single-metal
platinum nanoparticles. The observed results of application
of the ANN model for all the considered specimens are
expected and logical and fully comply with the results of
the study [10,11].

Conclusion

The study has demonstrated the fundamental deter-
minability of the proportions of the atoms of a target
substance in the composition of the aggregates of the
nanoparticles of the various architectures using the ma-
chine learning methods, in particular, the artificial neuron
networks, as per data of the paired radial distribution
functions of atoms. The trained ANN model demonstrates
high accuracy of determination of the proportions of the
platinum atoms in the composition of the nanoparticles
of the various architectures in the agglomerate with the
determination coefficient R2 of more than 0.98 and the
standard error deviation of 2.6%. The trained model
has been tested on the experimental data to show its
high generalizability, thereby indicating the prospects of
application of this approach to determination of efficiency
of platinum consumption when synthesizing the platinum-
containing nanoparticle-based catalysts.
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Appendix 1

Derivation of the formula (1)

The equation associates the metal’s coordination numbers
(CN) obtained from EXAFS with the coordination numbers
in the material with taking into account the fact that the
metal atoms can be in the two states belonging to the two
components: the nanoparticles (hereinafter referred to as
NP) and the oxide (hereinafter referred to as Ox).

The coordination numbers are designated as N, the phase
to which it belongs is designated by a superscript in brackets
NNP)N(OX) The subscript contains information on the pair
of atoms M —X, the central atom M — the surrounding
atom X (M=Cu, Pt, X=Cu, Pt, O). The coordination
number is not an additive magnitude along the states of
atoms, but it can be expressed via the additive ones — the
number of bonds nyx and the number of atoms ny as

Nv-x
Npm_x = e

Let us write the coordination numbers of the metals
taking into account that oxygen may be bonded to the metal
atoms both of the oxide and the nanoparticle:

n(NP) n(Ox n(NP)

N<NP) _ MM N(OX) _ Mo N(ONP)_ TIMO

M-M — (NP)’ M-O — (0x) M-O — (NP)
My My My

The number of the oxygen bonds on the surface of the
nanoparticle nf\l/f_ P) depends on the number of the metal
atoms on the surface of the nanoparticle and is expected
to be a small value for the large nanoparticles, with a small

proportion of the surface atoms.

The respective coordination number Nf\i Ig shall also be
small.

In EXAFS, all the states are averaged by the metal atoms,
ie.

NP (NP) | (Ox)
NEXAFS _ N NEXAFS _ Mo T Mo
g+ ngpY ng" + nigY

Let us transit from the number of the bonds to the
coordination number:

(NP) | \(NP)
NEXAFS — L VENSE) VE I
n® 4 {0
(NP) (NB) (0% (O%)
NEXAFS _ My -Nyo +u - Nyo
MO =

n® 4+ n(O

and designate a ratio of the atom numbers (concentrations):
)
£ = —pt o7- The magnitude £ has a meaning of the

(NP) | (
Ny Ny

proportion of the platinum atoms in the composition of the
(0%)
nanoparticle. At this, 1 —& = W is a proportion of
M M
the platinum atoms in the oxide. Then, the coordination
numbers obtained from EXAFS:

NP
NESA™S = & - NI (A1)

NRES™ = & NGO +(1-8) N5, (A2)
For the equality (A2) we find &:

(0x)
£ Mg - g

- Ox NP) °’
NWo — Nuro

then, from (A1) we obtain a relation between the coordi-
nation numbers of the metal atoms in the nanoparticle and
those obtained from EXAFS:

(0x)
NLOY) — NEXAFS

NEXAFS _ M0 NNP)
M-M N(Ox) N(NP) M-M-
M-0 — M0

And, finally, by neglecting oxidation of the atoms on the

surface of the nanoparticle N1<\,[O_ )8 > Nf\i I())), we obtain:
(0%)
NP Num-o EXAFS
MM ™ (0x)  \EXAFs MM
Nivo — Niio

Appendix 2

Selection of the hyperparameters of the used
models

For the CatBoostRegressor model, the following hyper-
parameters were selected within the limits:

e iterations: [50, 100, 500, 1000, 1500],

e depth: [5, 6, 7, 8, 10, 12],

e learning rate: [0.001, 0.01, 0.05, 0.1, 0.5],

e 12 leaf_reg: [1, 3, 5, 10].

Using a grid search method, the following values of the
hyperparameters were found: iterations =100, depth=7,
learning_rate = 0.5, 12_leaf_reg = 5.

The hyperparameters of the neuron networks were tuned
by applying a combined approach that includes rough
selection and step-by-step complication of the architecture.
We have started from simple configurations and gradually
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increased the model complexity by adding a layer by a
layer and correcting other parameters until we observed
overlearning features at a small subsample of the coaching
data (20%). It allowed determining an optimal balance
between the model complexity and its generalizability.

Besides, various types of the architectures were tested,
including the multi-layer perceptron (MLP) and the convo-
lutional neural network (CNN). The comparative analysis
has shown that the multi-layer perceptron demonstrated
higher efficiency for solving the set problem, which was
confirmed by the quality metrics on the validation and test
data.
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