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Determination of the proportions of platinum atoms in agglomerates of

bimetallic nanoparticles using machine learning methods
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In this paper, we consider the applicability of machine learning methods, in particular, artificial neural

networks, to obtain information on the distribution of target substance atoms in aggregates of bimetallic

nanoparticles of various architectures. To solve the problem, we use data on paired radial distribution functions

of atoms, the direct sources of which are experimental methods of X-ray diffraction and X-ray absorption

spectroscopy from an extended energy region of the spectrum. The trained model of the artificial neural

network demonstrates high accuracy in determining the proportions of platinum atoms in the composition of

nanoparticles of various architectures in the agglomerate (determination coefficient ∼ 0.98). To verify the

trained model, experimental data for catalysts containing bimetallic PtCu nanoparticles were used. Verification

showed a high generalisability of the model, which indicates the promising application of this approach to

the determination of platinum consumption efficiency in the synthesis of platinum-containing nanoparticle-based

catalysts.
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Introduction

Presently, platinum catalyzers are applied in many in-

dustries. In particular, platinum-containing nanoparticles

(NP) applied to a finely-dispersed carbon material are

actively used when designing fuel cells as catalyzers [1].
Due to high price of platinum, great attention is paid

to designing high-effective and stable platinum-containing

catalyzers with lower cost [2–6]. One of the ways

of solving this problem includes using bimetal platinum-

containing nanoparticles with addition of d-metals, for

example, nickel, cobalt or copper [1,7]. At the same

time, catalytic properties of these nanoparticles depend

both on a composition and their architecture, i.e. spatial

distribution of the components across the nanoparticle

volume.

It is known that the bimetal nanoparticles with a core-

shell architecture with the platinum shell demonstrate

catalytic activity that can be compared with single-metal

platinum nanoparticles, but contain much less expensive

platinum [2–4]. However, it should be noted that dur-

ing operation the architecture of these nanoparticles can

change in time. For example, a boundary of transition

from the core to the shell can be less pronounced due

to thermal effects [8,9], which in case of a thin layer

of the shell can result in deterioration of the catalytic

properties of the nanoparticles. The recent studies have

shown that a smooth transitive layer between the core

and shell areas made it possible to achieve improved

stability of a catalyst [10,11]. It was proposed to

name this architecture of the nanoparticles a
”
gradi-

ent“ one [10,12,13].
Despite the entire promising potential of the

”
gradient“

architecture of the nanoparticles, a process of multi-stage

synthesis can include formation of the nanoparticles of

other types, whether it is single- or bi-metal nanoparticles

of various architectures. That is why production of the

nanoparticles of a pre-defined architecture with certain prop-

erties necessitates significant optimization of the synthesis

conditions, which requires availability of structural infor-

mation on the nanoparticles. The most common sources

for obtaining this information include X-ray absorption

spectroscopy (XAS), methods of X-ray diffraction (XRD)
and high-resolution electron microscopy with elementary

mapping and some other methods [14,15].
Application of machine learning methods can significantly

simplify and accelerate extraction and analysis of the

structural information on nanoobjects. For example, it was

demonstrated that using the neuron networks can extract

information on coordination numbers and distances from

XAS data [16,17] and with high accuracy it can determine

the architecture of the nanoparticles from data on paired

radial distribution functions of atoms (PRDF) [18].
The present study is dedicated to investigating a funda-

mental determinability of efficiency of platinum consump-

tion during synthesis, i.e. determination of a proportion of

platinum, which is consumed for forming the nanoparticle

with a specific architecture.
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Figure 1. Considered architectures of the bimetal nanoparticles: a — core-shell, b —
”
gradient“, c — disordered and d — aggregated

alloys.

1. Methods and approaches

1.1. Sources for obtaining PRDF

The main methods for obtaining PRDF are analysis of

data of X-ray diffraction and X-ray absorption spectroscopy

from the extended energy region of the spectrum (EXAFS).
The method of extraction of PRDF from XRD is based

on a dependence of the radial distribution function of the

atomic density on intensity of coherent scattering of X

rays during diffraction [19]. Due to physical limitations of

measurement of scattering of X rays, extraction of the radial

distribution functions from XRD originates edge effects that

are manifested in appearance of false maximums in curves

of the distribution function. Extraction of data on PRDF

from the EXAFS data is based on multiparameter opti-

mization of the Fourier transform F(R) of an initial signal.

For the specimen-average representative nanoparticle, this

analysis allowed determining radii of coordination spheres

(∼ 0.01 Å) [20] with high accuracy and coordination num-

bers (the error ∼ 10%) with much less accuracy as well as a

parameter of temperature and structure disordering [21,22].
It should be separately noted that a EXAFS-analysis process

can substantially differ depending on a studied material and

that reliability of determining structure parameters decreases

when considering more remote coordination spheres. The

present study uses PRDFs directly calculated for molecular

nanoclusters. Therefore, when comparing with experimental

data, correctness of the results necessitates additional nor-

malization of the coordination numbers determined from the

EXAFS analysis. It is due to the fact that metal atoms can

be in two states belonging to two components: nanoparticles

and an oxide:

NN p
A−B =

V

V − NEXAFS
A−O

· NEXAFS
A−B , (1)

where NEXAFS
A−B — the coordination number of the atoms of

the sort B in relation to the sort A, as obtained from the

EXAFS-analysis; V — the assumed coordination number

for atoms of the metal of the sort A in an oxidized state,

which can be in the material not in the composition of the

nanoparticle (it is assumed in the present paper that V = 6);
NEXAFS

A−O — the coordination number of the oxygen atoms in

relation to the atoms of the sort A. The expression (1) is

derived with more details in Appendix 1.

1.2. Machine learning methods. Introduction to
the problem, used metrics

The set problem for determining efficiency of platinum

consumption during synthesis of the nanoparticles of the

pre-defined architecture can be reduced to determining the

proportions of platinum that were consumed for formation

of the nanoparticles of the various architectures in their

agglomerate. Probability of formation of a specific architec-

ture of the nanoparticle substantially depends on a synthesis

procedure [6,9–11,23] and, therefore, we limited ourselves

to consideration of the most probable nanoparticle archi-

tectures formed during synthesis of the platinum-containing

catalysts. Thus, the present study has considered single-

metal nanoparticles of platinum and bimetal nanoparticles

of the PtCu composition with the following architectures:

the copper core and the platinum shell, the platinum-copper

with the structure of the alloy and the aggregated alloy

and the gradient nanoparticle with the copper core and the

platinum shell. Images of the considered architectures of the

bimetal nanoparticles are shown in Fig. 1.

Thus, the set problem is reduced to a problem of multi-

purpose regression on tabular data, which can be solved by

the machine learning methods with a teacher. Formally, the

model operation can be presented as follows:

8(x i , 2) →
{

cPt, cPtCu, cCu@Pt, cPtCuaggr , cCuPtgrad

}i
,

where x i — the PRDF for i-th data copy,

2 — the array of the model parameters,

{cPt, cPtCu, cCu@Pt, cPtCuaggr , cCuPtgrad} — the model-predicted

vector of the platinum proportions in the composition of

the nanoparticles of the considered architectures in the

agglomerate. Teaching of the model includes selection
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of values of the parameter array 2 in such a way as to

approximate the model-predicted and the reference values

of the proportion of the platinum atoms as per a certain

loss function. In the present study, the loss function

was a function of the mean squared error (MSE) that is

determined by the expression:

MSE =
1

n
6n

i=1(y i − y∗

i )2,

where y i and y∗

i are the real and the model-predicted vector

of target values, respectively.

2. Results and discussion

2.1. Formation of a learning data set

The present study considers PRDFs of the platinum

single-metal and platinum-copper bimetal nanoparticles of a

spherical form with the four different architectures (Fig. 1).
The atomic models of the nanoparticles were obtained by

cutting the spherical area from an infinite FCC crystal with

subsequent molecular-dynamic simulation, as described in

the paper [18]. Totally, we obtained 1456 different

platinum-copper bimetal nanoparticles with sixteen different

sizes (from 1.3 to 6 nm) and thirteen ratios of the Pt:Cu

components (from 20 : 80 to 80 : 20) and 22 platinum single-

metal nanoparticles of the sizes from 1.4 to 9.5 nm.

The assembly of the five nanoparticles of the different

architectures is characterized by PRDF obtained by the

formula (2), where carch — the proportion of a contri-

bution of the nanoparticles of a given architecture in the

assembly, nPt
arch — the number of the platinum atoms in the

nanoparticle of a given architecture, PRDFarch — PRDF of

the specific nanoparticle of the pre-defined architecture

PRDF =
6archcarch · PRDFarch · nPt

arch

6archcarch · nPt
arch

. (2)

To form a data set of this type, it is necessary to

randomly generate a set of concentrations carch, whose

sum will be unity within one assembly. These coefficient

were generated by means of the Dirichlet function with the

parameters α1 = [0.6, 0.6, 0.6, 0.6, 0.6]. The distribution

of carch obtained as a result of this operation is shown

in Fig. 2, a. The obtained data have a high density in the

neighborhood of the point A , which is a proportion of

platinum in the composition of the single-metal platinum

nanoparticle (Fig. 2, b). It is related to the fact that we

have a limited set of single-metal nanoparticles with a high

average value of the number of the platinum atoms in the

nanoparticles. When summing the PRDFs (the formula (2))
of the nanoparticles of the different architectures, with

greater probability we select large single-metal platinum

nanoparticles. Accordingly, the proportion of platinum,

which is
”
consumed“ for their formation is larger than all

others. This distribution was corrected by combining two

data sets that obtained as a result of generation of the

coefficients carch by means of the Dirichlet functions with

the parameters α2 = [0.2, 0.6, 0.6, 0.6, 0.6] and α3 = [0.5,
3, 3, 3, 3] (Fig. 2, c).
For each set of the five concentrations carch, 208

nanoparticles of each architecture with the different sizes

and the different ratios of the Pt : Cu components are

randomly selected and the assembly PRDF is calculated

by the formula (2). Thus, a learning sample is formed and

totally consists of 208 000 lines.

The data, which are of interest to us, on the proportions

of the platinum atoms, which are consumed to form the

nanoparticle of a certain architecture in the assembly, cPt
arch,

is determined as

cPt
arch =

carch · nPt
arch

6archcarch · nPt
arch

. (3)

The resulted distribution of cPt
arch is shown in Fig. 2, d. The

resultant set of the learning data was divided into 3 parts:

the coaching set — 60% of the entire sample; the validation

set — 15% of the sample and the test set — 25% of the

sample. According to the common paradigm, the coaching

data set was used for training the parameter matrix 2 of

the used machine learning models, the validation sample

was used to select hyperparameters of the models and to

determine a time when training stops and the test sample

was used for unbiased evaluation of the quality of model

operation.

2.2. Selection of models

When constructing the matrix of correlations of the input

data, it was found that there were significant correlations

between many features. These correlations are caused

by a structure of the input structure, which is Gaussian

peaks. There is multicollinearity of the data and it imposes

limitations on selection of possible models or pre-processing

of the data. Fig. 3 shows the matrix of correlations between

the input and output parameters.

Taking into account specific features of the input data,

a ridge regression model was used as the basic machine

learning model. High average values of the determination

coefficient were achieved for it, and they were ∼ 0.98

on average. However, when checking the model on the

experimental data, the predicted proportions of the platinum

atoms in agglomerates of the bimetal nanoparticles have

no physical meaning. Besides, the distribution of residuals

contained significant ejections. In this regard, a perceptron

model was considered and it realized linear regression with

additional application of a sigmoid function to the output

data. This enabled to avoid negative values when predicting

the target parameters. But at the same time the values

of the determination coefficient dropped to 0.58, 0.23 and

0.12 for the models that determine the PROP ORTION of

the platinum atoms in the composition of the disordered,

aggregated and
”
gradient“ nanoparticles, respectively. Fig. 4

shows the matrix of the perceptron model coefficients with
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Figure 2. a, c — the distribution of proportions of the nanoparticles of the various architectures; b, d — the distribution of proportions

of the platinum atoms in an assembly the five nanoparticles. A — Pt, B — PtCu, C — Cu@Pt, D — PtCuaggr , E — CuPtgrad .

a form of the typical paired radial distribution functions of

atoms for these architectures of the nanoparticles.

It is known than the models based on gradient boosting

on solving trees can demonstrate both high accuracy and

high generalizability when operating the tabular data [24].
Therefore, in this study we limited ourselves to considera-

tion of the gradient boosting and artificial neuron networks

(ANN) when solving the set problem.

The model of gradient boosting on the solving trees

was CatBoostRegressor (CBR) realized in the CatBoost

library [25,26], while an alternative approach was a fully

connected neuron network with the architecture of Fig. 5.

Details of tuning the hyperparameters of the used models

are given in Appendix 2.

The described model of the neuron network receives

a vector of the four serial PRDFs at the input: Pt-Pt,

Pt-Cu, Cu-Pt, Cu-Cu and after that the data subsequently

pass through the fully connected layers with an activation

function ReLU and a regularization layer Dropout, which

zeros 25% of the output values. At the last layer, after the

activation function ReLU, the function Softmax is applied to

renormalize the output vector so as a sum of its components

is equal to unity.

The model based on gradient boosting consisted of the

solution trees of the depth of 10 and a number of boosting

steps, which was 1000, the L2 regularization coefficient was

3 and the loss function was MultiRMSE [26].
It is known that some machine learning methods can

be sensitive to a scale of the input data or presence of

correlation. Therefore, when coaching the model, additional

standardization of the input data was considered to bring

them to a unified scale, so was application of a principal

component analysis method to reduce the dimensionality

of the input data and to obtain uncorrelated input features.

However, these modifications of the input data have not

resulted in any noticeable improvement of the quality of

operation of ANN or the gradient boosting model in relation

to the set problem.

Technical Physics, 2025, Vol. 70, No. 8
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Figure 4. Matrix of the perceptron model coefficients. Each architecture has a typical set of paired radial distribution functions of atoms,

which is the input data.

3. Learning results

3.1. Synthetic data

The results of operation of the trained models on the

synthetic test data are shown in Fig. 6, while the error

distribution statistics is shown in Fig. 7. Comparison of

distribution of residuals for the ANN models that are

trained on the data set corresponding to the generation

parameters α1 and the extended data set are shown in Fig. 8.

Even though both the models demonstrate an almost

identical quality of description of the synthetic data, when

comparing with the experimental data, the ANN shows

systematically higher generalizability.

3.2. Comparison with the experimental data

In order to check applicability of the trained models

based on ANN and CBR to the real data, consideration

was additionally given to results of the study [10], in

Technical Physics, 2025, Vol. 70, No. 8
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Figure 5. Diagram of the neuron network.
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Figure 6. Comparison of the true and predicted values of the proportions of the platinum atoms in the assembly of the five nanoparticles

for ANN (NN) and CBR.

which the authors used a multi-stage synthesis procedure

for producing the
”
gradient“ platinum-copper nanoparticles.

The synthesis procedure is schematically presented in Fig. 9

borrowed from the article [10].

The materials produced at the 2-nd, 3-d and 4-th

stages are denoted as
”
PtCu stage2“,

”
PtCu stage3“ and

”
PtCu stage4“ respectively. Besides, the study by S. V. Be-

lenov et al. [11] has additionally investigated both simul-

taneous deposition of the atoms of platinum and copper

with expected formation of the nanoparticles with the solid

solution architecture, which are designated as
”
PtCu sim“

and subsequent two-stage deposition of copper and platinum

with expected formation of the particles with the copper

core and the platinum shell, which were designated as

”
PtCu seq“.

For correct operation of the trained models, these PRDFs

obtained from the EXAFS analysis in the papers [10,11]
were normalized according to the formula (1). The results

of operation of the models are shown in Fig. 10.

It can be seen from the given results that the CBR model

indicates presence of the significant proportion of the Pt

atoms in the composition of the single-metal nanoparticles

in all the studied specimens. On the other hand, the

ANN model indicates an insignificant proportion of the

single-metal Pt nanoparticles in the PtCu sim and PtCu seq

specimens. For the PtCu sim specimen, the CBR indicates
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an approximately uniform content of the Pt atoms in the

composition of the considered architectures, except for the

architecture of the disordered alloy, for which the model

predicts the lesser Pt content. The architectures of the

disordered alloy may really turn out to be unstable, since

the FCC structures of the Pt and Cu volume specimens are

characterized by clearly different lattice parameters, thereby

making the aggregated-alloy architecture more probable

in relation to the architecture of the disordered solution.

Therefore, it is expected that with subsequent deposition

of the components in the PtCu seq specimen probability

of formation of the nanoparticles with the disordered-alloy

architecture will be not higher as compared to simultaneous

deposition of the components in the PtCu sim specimen.

However, according to the results of using the CBR model,

the proportion of the Pt atoms in the composition of the

nanoparticles of the disordered-alloy architecture (32%) is

the greatest and significantly exceeds the similar value for

PtCu sim. At the same time, for the PtCu seq specimen the

CBR model indicates relative smallness of the proportion

of the Pt atoms in the composition of the nanoparticles

with the architectures
”
core-shell“ and

”
gradient“. And

taking into account the synthesis procedure and the above-

discussed results, it indicates insufficient generalizability of

the CBR model in relation to the experimental data.

At the same time, for the PtCu sim specimen the ANN

model indicates that the large portion of the platinum atoms

(∼ 88%) is consumed for forming the nanoparticles with

Technical Physics, 2025, Vol. 70, No. 8
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the aggregated-alloy architecture. In the PtCu seq specimen,

the large portion of platinum is in the composition of

the nanoparticles with the core-shell architecture (∼ 66%)
and the significant portion thereof (∼ 30%) is in the

composition of the nanoparticles with the aggregated-alloy

architecture. For the specimens produced at the 2-nd,

3-d and 4-th synthesis stages, the ANN model indicates

monotonic increase of the proportion of the Pt atoms

in the composition of the
”
gradient“ architecture with

simultaneous monotonic decrease of the nanoparticles with

the
”
core-shell“ architecture. At this, these synthesis

stages exhibit a significant contribution of the single-metal

platinum nanoparticles. The observed results of application

of the ANN model for all the considered specimens are

expected and logical and fully comply with the results of

the study [10,11].

Conclusion

The study has demonstrated the fundamental deter-

minability of the proportions of the atoms of a target

substance in the composition of the aggregates of the

nanoparticles of the various architectures using the ma-

chine learning methods, in particular, the artificial neuron

networks, as per data of the paired radial distribution

functions of atoms. The trained ANN model demonstrates

high accuracy of determination of the proportions of the

platinum atoms in the composition of the nanoparticles

of the various architectures in the agglomerate with the

determination coefficient R2 of more than 0.98 and the

standard error deviation of 2.6%. The trained model

has been tested on the experimental data to show its

high generalizability, thereby indicating the prospects of

application of this approach to determination of efficiency

of platinum consumption when synthesizing the platinum-

containing nanoparticle-based catalysts.
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Appendix 1

Derivation of the formula (1)

The equation associates the metal’s coordination numbers

(CN) obtained from EXAFS with the coordination numbers

in the material with taking into account the fact that the

metal atoms can be in the two states belonging to the two

components: the nanoparticles (hereinafter referred to as

NP) and the oxide (hereinafter referred to as Ox).

The coordination numbers are designated as N, the phase

to which it belongs is designated by a superscript in brackets

N(NP), N(Ox). The subscript contains information on the pair

of atoms M −X, the central atom M — the surrounding

atom X (M=Cu, Pt, X=Cu, Pt, O). The coordination

number is not an additive magnitude along the states of

atoms, but it can be expressed via the additive ones — the

number of bonds nM-X and the number of atoms nM as

NM−X =
nM-X

nM

.

Let us write the coordination numbers of the metals

taking into account that oxygen may be bonded to the metal

atoms both of the oxide and the nanoparticle:

N(NP)
M-M =

n(NP)
M-M

n(NP)
M

, N(Ox)
M-O =

n(Ox)
M-O

n(Ox)
M

N(NP)
M-O =

n(NP)
M-O

n(NP)
M

.

The number of the oxygen bonds on the surface of the

nanoparticle n(NP)
M-O depends on the number of the metal

atoms on the surface of the nanoparticle and is expected

to be a small value for the large nanoparticles, with a small

proportion of the surface atoms.

The respective coordination number N(NP)
M-O shall also be

small.

In EXAFS, all the states are averaged by the metal atoms,

i.e.

NEXAFS
M-M =

n(NP)
M-M

n(NP)
M + n(Ox)

M

, NEXAFS
M-O =

n(NP)
M-O + n(Ox)

M-O

n(NP)
M + n(Ox)

M

.

Let us transit from the number of the bonds to the

coordination number:

NEXAFS
M-M =

n(NP)
M · N(NP)

M-M

n(NP)
M + n(Ox)

M

,

NEXAFS
M-O =

n(NP)
M · N(NP)

M-O + n(Ox)
M · N(Ox)

M-O

n(NP)
M + n(Ox)

M

and designate a ratio of the atom numbers (concentrations):

ξ =
n(NP)

M

n(NP)

M
+n(Ox)

M

. The magnitude ξ has a meaning of the

proportion of the platinum atoms in the composition of the

nanoparticle. At this, 1− ξ =
n(Ox)
M

n(NP)

M
+n(Ox)

M

is a proportion of

the platinum atoms in the oxide. Then, the coordination

numbers obtained from EXAFS:

NEXAFS
M-M = ξ · N(NP)

M-M (A1)

NEXAFS
M-O = ξ · N(NP)

M-O + (1− ξ) · N(Ox)
M-O . (A2)

For the equality (A2) we find ξ :

ξ =
N(Ox)

M-O − NEXAFS
M-O

N(Ox)
M-O − N(NP)

M-O

,

then, from (A1) we obtain a relation between the coordi-

nation numbers of the metal atoms in the nanoparticle and

those obtained from EXAFS:

NEXAFS
M-M =

N(Ox)
M-O − NEXAFS

M-O

N(Ox)
M-O − N(NP)

M-O

N(NP)
M-M.

And, finally, by neglecting oxidation of the atoms on the

surface of the nanoparticle N(Ox)
M-O ≫ N(NP)

M-O , we obtain:

N(NP)
M-M =

N(Ox)
M-O

N(Ox)
M-O − NEXAFS

M-O

NEXAFS
M-M .

Appendix 2

Selection of the hyperparameters of the used
models

For the CatBoostRegressor model, the following hyper-

parameters were selected within the limits:

• iterations: [50, 100, 500, 1000, 1500],
• depth: [5, 6, 7, 8, 10, 12],
• learning rate: [0.001, 0.01, 0.05, 0.1, 0.5],
• l2 leaf reg: [1, 3, 5, 10].
Using a grid search method, the following values of the

hyperparameters were found: iterations= 100, depth= 7,

learning rate= 0.5, l2 leaf reg= 5.

The hyperparameters of the neuron networks were tuned

by applying a combined approach that includes rough

selection and step-by-step complication of the architecture.

We have started from simple configurations and gradually
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increased the model complexity by adding a layer by a

layer and correcting other parameters until we observed

overlearning features at a small subsample of the coaching

data (20%). It allowed determining an optimal balance

between the model complexity and its generalizability.

Besides, various types of the architectures were tested,

including the multi-layer perceptron (MLP) and the convo-

lutional neural network (CNN). The comparative analysis

has shown that the multi-layer perceptron demonstrated

higher efficiency for solving the set problem, which was

confirmed by the quality metrics on the validation and test

data.
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