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The insulator-quasi-metal (bad metal) transition observed in Jahn-Teller (JT) magnets orthonickelates RNiO3

(R= rare earth, or yttrium Y) is considered a canonical example of the Mott transition, traditionally described

in the framework of Hubbard’s U -t model. However, in reality, the insulating phase of nickelates is the result

of charge disproportionation (CD) with the formation of a system of spin-triplet (S= 1) electron [NiO6]
10− and

spinless (S= 0) hole [NiO6]
8− centers, equivalent to a system of effective spin-triplet composite bosons moving

in a nonmagnetic lattice. The effective CD-phase Hamiltonian takes into account local (U) and nonlocal (V )
correlations, and the transfer of composite bosons (tb). Within the framework of the effective field approximation,

we have shown the existence of two types of CD phases: the high-temperature classical paramagnetic CO-phase of

charge ordering of electron and hole centers, and the low-temperature magnetic quantum CDq phase with charge

and spin density transfer between electron and hole centers, with
”
uncertain valence“ [NiO6]

(9±δ)− (0 ≤ δ ≤ 1)
and spin density (1± δ)/2 NiO6-centers. In the classical CO phase, spin-triplet electron centers are surrounded

by the nearest nonmagnetic hole centers, which
”
turns off“ the strong superexchange interaction of the nearest

neighbors. The magnetic ordering in the quantum CDq phase is determined by a strong traditional superexchange

and an unusual bosonic double exchange mechanism.
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1. Introduction

Nickelates RNiO3 (R= rare earth or Y) demonstrate

extremely unusual electrical and magnetic properties,

this is primarily a poorly pronounced first-order metal-

insulator transition (MIT) observed in orthorhombic RNiO3

(R=Lu, . . . , Pr) with cooling below TMIT in a range from

130K for Pr to ∼ 550−600K for heavy rare earths [1–3].
This electrical feature opens wide opportunities for crea-

ting temperature-sensitive and resistive switches and other

devices, including neuron-spin logic and resistive random-

access memory [2]. The nature of MIT in nickelates has

been a kind of challenge for condensed matter physics

during more than three decades. Traditional approach

to describing a phase transition with a dramatic change

of magnitude and temperature dependence of resistance

in nickelates implies that a spontaneous
”
metal-insulator“

order-order phase transition is implemented from a high-

temperature phase of the coherent Fermi liquid to a low-

temperature charge ordered insulating phase. The Hubbard

model [4] is a typical theoretical MIT model and is

described by the following Hamiltonian in the simplest case

ĤHub = −t
∑

〈i j〉,σ

(ĉ†
i,σ ĉ j,σ + h.c.) +

U
2

∑

i

n̂iσ n̂i−σ , (1)

that considers the single-particle kinetic energy defined by

the effective transfer integral t and local correlations defined

by the effective parameter U . Transfer integrals are usually

within a tight-binding approximation using the DFT (density
functional theory) calculation scheme, and U is treated as

an adjustable parameter for d-electrons. With a quite large

U compared with the bandwidth W ≈ 2z t (z is the number

of the nearest neighbors), i. e. with strong correlations, the

”
metal-insulator“ transition is possible. This transition with

a certain final value of U was named the bandwidth control

(BC)-MIT) [4].

Despite a huge popularity of the Hubbard model and

traditional DFT band approaches to describing the
”
metal-

insulator“ transition that imply any consideration of local

correlations for some
”
parent“ metallic Fermi liquid phase,

they don’t provide any adequate description of the real

situation in nickelates. In our view, statements of many au-

thors that RNiO3 are ideal candidates for studying BC-MIT

are erroneous. Indeed, a high-temperature conducting

”
metal-like“ phase in JT magnets differs fundamentally from

traditional metals — extremely low density of carriers, high

effective carrier mass and low diffusion capability, low DC

conductivity with non-typical temperature dependence, vio-

lation of the Mott-Ioffe-Regel criterion, incoherent behavior

of charge carriers, observed variation of carrier concen-
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Table 1. Pseudospin, spin and orbital structure of three charge centers NiO6 in RNiO3

d-center Ion Cluster Pseudospin projection Spin Orb. state

d8 Ni2+ [NiO6]
10− M=−1 S = 1 t62g e2

g ;
3A2g

d7 Ni3+ [NiO6]
9− M= 0 S = 1/2 t62g e1

g ;
2Eg

d6 Ni4+ [NiO6]
8− M= +1 S = 0 t62g ;

1A1g

tration and sign with temperature variation, clear signs

of hopping polaron conductivity, temperature-dependent

paramagnetism, detection of electron/hole centers typical of

a low-temperature disproportionation phase [4,6–16], which

provided a basis for a general term —
”
bad“ or strange

metal. Conductivity phenomenon of such bad metals is one

of the central problems in the condensed matter physics.

In a low-temperature insulating phase, orthonickelates

demonstrate more or less clear signs of charge and bond

disproportionation with two types of Ni centers correspon-

ding to large and small NiO6-octahedra, and also a magnetic

phase transition to an antiferromagnetic structure that hasn’t

been known before for perovskite 3d-compounds and is

defined by the propagation vector QAFM = (1/2, 0, 1/2) in

orthorhombic coordinates [1,2].
Now few people doubt that the low-temperature insu-

lating phase of nickelates results from the charge dispro-

portionation (CD), however, the question of CD phase

structure, key interactions and effective Hamiltonian remains

open. This work addresses a
”
charge“ orthonickelate

model [17,18] within the charge triplet and pseudospin

6 = 1 formalism model and shows that consideration

of local and non-local correlations, and of two-particle

transfer allows the nature of MIT, CD phase structure and

known phase T -R diagram of RNiO3 orthonickelates to be

explained.

2. Charge triplet model

Following the remarkable idea of Rice and Sneddon [19]
developed by us for two-dimensional cuprates and other

JT magnets [20–24], we propose a generalized model of

effective charge triplets for describing the electronic struc-

ture and phase diagrams of RNiO3, that implies addressing

a high-symmetry
”
parent“ configuration with ideal NiO6

octahedra, low-energy state of which is formed by the

charge triplet [NiO6]
10−,9−,8− (nominally Ni2+,3+,4+) with

various spin and orbital ground states. We associate three

charge states of the NiO6 cluster with three pseudospin

6 = 1 projections and use the known spin algebra and other

methods, that are well-proven for spin magnets, to describe

charge degrees of freedom of nickelates in a
”
coordinate“

representation instead of a traditional one for models based

on the DFT k-representation. Pseudospin, spin and orbital

structure of the charge NiO6 centers in nickelates is shown

in the Table 1. In the simplest approximation below, we

neglect both a probable difference in the d-p-structure of

single-particle t2g - and eg -states for different components of

the charge triplet, and a contribution of the inactive fully

occupied t62g -shell with S = 0 to various spin and orbital

interactions.

Formally, the local pseudospin 6 = 1 implies eight (three

”
dipole“ and five

”
quadrupole “) independent operators and

corresponding local charge order parameters. In irreducible

components, they are

60 = 6z ; 6± = ∓ 1√
2

(6x ± i6y );

62
z ; 6

2
±; T± =

1

2
{6z , 6±}.

neg = 1− 〈6̂z 〉 is the local mean number of eg -electrons,

1n = 〈6̂z 〉 defines the deviation from half-occupancy. Op-

erators P0 = (1− 62
z ); P± = 1

2
62

z (1± 6z ) are actually

projection operators to charge states with pseudospin

projection M = 0,±1, respectively, and the mean numbers

〈P0〉, 〈P±〉 are actually the local densities for corresponding

charge states.

The operators 6± and T± change the pseudospin pro-

jection by ±1. The operators 62
± change the pseudospin

projection by ±2, therefore they may be treated as creation/

annihilation operators for an effective composite boson. The

corresponding local mean numbers 〈6±〉, 〈T±〉, 〈62
±〉 will

describe various
”
off-diagonal“ charge order alternatives, in

particular, coherent metallic and superconducting states.

Taking into account spin and orbital states for charge

components, we should expand the local Hilbert space to

a
”
pseudospin-orbital-spin octet“

|6M; Ŵµ; Sm〉 = |1M; Ŵµ; Sm〉,
(Ŵ = A1g , A2g, Eg is the irreducible representation of the

local point group) including the spin-orbital JT quartet

|10; Egµ;
1
2
ν〉 with M = 0 and spin-charge quartet with

M = ±1, including the singlet |1 + 1; A1g0; 00〉 and triplet

|1− 1; A2g0; 1m〉, where µ = 0, 2, ν = ± 1
2
, m = 0, ±1

(|Eg0〉 ∝ dz 2 ; |Eg2〉 ∝ dx2−y2), and address the low-energy

physics for nickelates formed by a system of such octets.

This approach will allow taking into account the effects

of competition of various degrees of freedom in the most

general way.

3. Effective model Hamiltonian

Describing orthonickelate as a pseudospin-orbital-spin

octet system is an extremely difficult problem. We have
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to use additional simplifications in real practice on the

basis of the existing experimental data. Within a minimal

model, our focus will be made on the only one relevant

charge degree of freedom neglecting electron-lattice and

superexchange interactions, and also vibronically reduced

single-particle transport effects. In this approximation,

the local octet structure will be reduced to the fourfold

degenerate JT level with M = 0, singlet with M = +1 and

spin triplet with M = −1. Assumption on the
”
inactivity“

of the Jahn-Teller quartet is based on the absence, both

above and below the MIT temperature, of any significant

traces of Jahn-Teller distortions of the NiO6 octahedra and

orbital ordering [25], which implicitly indicates the
”
anti-

Jahn-Teller“ disproportionation effect in the ground state of

nickelates [26]. This allows splitting of the Jahn-Teller spin-

orbital quartets with M= 0 to be neglected, i. e. the
”
Jahn-

Teller physics“ to be actually neglected. Taking into account

all approximations, the effective Hamiltonian describing the

relevant charge degree of freedom may be represented as a

sum of three main contributions

Ĥ = Ĥloc + Ĥnloc + Ĥ(2)
tr , (2)

including the potential energy of local and non-local correla-

tions and the two-particle transfer energy — kinetic energy

of effective composite bosons. This minimal model may

be considered as some
”
zero“ approximation that takes into

account the leading charge degree of freedom.

Effective Hamiltonian of the system of noninteracting

NiO6 centers includes only local correlations

Ĥloc =
U
2

∑

i

6̂2
iz (3)

— equivalent to the single-ion axial spin anisotropy de-

scribing the bare pseudospin splitting effects. Positive

values of the local correlation parameter U > 0 stabi-

lize the spin-orbital JT quartet |10; Egµ;
1
2
ν〉 that con-

sists of the [NiO6]
9−-centers corresponding to the pseu-

dospin projection M = 0, while the negative values of

U < 0 stabilize the disproportionation system of spin-charge

[NiO6]
10−,8−-centers corresponding to the pseudospin pro-

jection M = ±1. In accordance with the experimental

data regarding the observed JT effect for well isolated

Ni3+ ions in LaAlO3; Ni
3+ [27,28], positive sign for U

in nickelates is selected below. However, with positive

U , disproportionation is possible only with a quite high

screened Coulomb inter-center interaction, or non-local

correlations, described by the effective Hamiltonian

Ĥnloc =
1

2
V

∑

i 6= j

6̂iz 6̂ jz , (4)

— equivalent of two-ion spin anisotropy or Ising exchange.

Non-local correlations drive the classical disproportionation

(
”
site-centered“ charge order or CO phase) with G-type

ordering of spin-triplet electron and spinless hole centers,

which corresponds to the paramagnetic phase when only

nn-interactions of the nearest neighbors are accounted for.

Effective two-particle transfer Hamiltonian

Ĥ(2)
tr = −1

2
tb

∑

i 6= j

(

6̂2
i+6̂

2
j− + 6̂2

i−6̂
2
j+

)

(5)

is equivalent to the transfer Hamiltonian of effective com-

posite two-electron spin-triplet bosons with the ee
g ;

3A2g

configuration; and the transfer integral tb .

By introducing the creation/annihilation operators B̂†
µ/B̂µ

for the effective composite boson and selecting the spin

component µ = 0,±1, we rewrite Ĥ(2)
tr as follows

Ĥ(2)
tr = −tb

∑

i 6= j,µ

B̂†
iµB̂ jµ. (6)

Unlike the classical correlation contributions (3) and (4), the

quantum transfer operator Ĥ(2)
tr doesn’t preserve the local

pseudospin projection 6iz , i. e. the local charge state. In

the molecular filed approximation, this operator leads to

formation of local quantum superpositions [17,18]

|α〉 = cosα | + 1〉 + sinα | − 1〉, (7)

where 〈6z 〉 = cos 2α = δ . It is natural that quantum

superpositions (7) with |δ| < 1 differ fundamentally from

the classical states with the corresponding charge density.

Thus, when δ = 0, we deal with the local superposition of

the Ni2+- and Ni4+-centers, rather than with the Ni3+-center.

To distinguish classical and quantum states with formally

identical value of δ, we can use a value of the local order

parameter 〈62
z 〉 equal to 1 for any superposition (7) and

equal to zero for the Ni3+-center corresponding to M= 0.

Consideration of the two-particle transport leads to charge

density transfer with mixing the local charge states with

M = ±1, occurrence of uncertainty of the charge state of

the NiO6 clusters with mean charge (valence) [NiO6]
(9±δ)−

(Ni3±δ), and formation of the quantum disproportiona-

tion CDq-phase.

Transfer of the effective composite spin-triplet boson

corresponds to the transfer of both charge and spin density

with preserving the conventional spin, but with appearance

of uncertainty of the local spin value so that Ĥ(2)
tr is

actually also a nontraditional spin operator or a double

boson exchange similar to the traditional Zener double ex-

change [29–31]. However, this spin dependence is nontrivial.

The Hamiltonian initiating transport is spinless, so Ĥ(2)
tr may

be represented in a semiclassical approximation [30,32] as

Ĥ(2)
tr = −tb

∑

i 6= j

Si j B̂
†
i B̂ j, (8)

where Si j is the spin function overlap integral in the

common coordinate system that may be expressed in

the simplest case through the angle θi j between the

spin/magnetic moments Si and S j [17]:

Si j = cos2
θi j

2
. (9)

Physics of the Solid State, 2025, Vol. 67, No. 6



29th International Symposium
”
Nanophysics and Nanoelectronics“ 1065

Si j is obviously maximum for the ferromagnetic orientation

of magnetic moments of neighboring sites, which is tradi-

tionally associated with the ferromagnetic nature of double

exchange and attempts to introduce the Heisenberg-type ef-

fective spin Hamiltonian. However, the transfer Hamiltonian

doesn’t allow charge and spin degrees of freedom to be split.

Appearance of the quantum uncertainty of a local spin value

with local spin density in superpositions (7)

ρs = sin2 α =
1± |δ|

2
(10)

indicates that it is fundamentally impossible to associate

the transfer operator with the effective spin Hamiltonian

as is often the case in the traditional (
”
one-particle“) Zener

double exchange theory [29–32].
Thus, unlike nonlocal correlations, the two-particle, or

boson, transfer drives the formation of the quantum ferro-

magnetic CDq-phase with mean, but quantum-mechanical

uncertain values of charge and spin for the NiO6-centers

described by quantum superpositions (7).
The prospect of forming unique phase states such as spin-

triplet superconductivity or
”
supersolid“ [33] is probably the

most amazing detail of the quantum transport of composite

spin-triplet bosons in the CDq- phase. In this context,

note the recently discovered superconducting properties in

mixed-valence La3Ni2O7 [34].

4. Effective field theory

The charge triplet model and pseudospin formalism

indicate that it is possible to describe charge states in

nickelates as well as in other JT magnets using methods

that are well known in the spin magnet theory, primarily

the simple effective field theory (EF) — generalization of

the mean-field theory — which is a good starting point

for physically clear semiquantitative description of strongly

correlated systems.

The effective field approximation precisely accounts for

all local (single-center) interactions, and all inter-center

interactions are accounted for within the mean (molecular)
field (MFA) theory typical for describing

”
classical“ strongly

correlated spin-magnetic systems.

Assuming the existence of two interpenetrating sublat-

tices (A and B) in the CO phase of orthonickelate, we

introduce two charge order parameters of the ferro- and

antiferro-type, respectively:

1n =
1

2

(

〈6̂z A〉 + 〈6̂z B〉
)

(1n is the deviation from half-occupancy) and

l =
1

2
(〈6̂z A〉 − 〈6̂z B〉),

where 〈6̂z A,B〉 are the local order parameters 〈6̂z 〉 for

sublattices A, B .

In the molecular field approximation for the bilinear

Hamiltonian of nonlocal charge correlations:

1

2

∑

i 6= j

Vi j6̂z i6̂z j ≃
1

2

∑

i 6= j

2Vi j6̂z i〈6̂z j〉−
1

2

∑

i 6= j

Vi j〈6̂z i〉〈6̂z j〉

= −
∑

i

hi6̂z i −
1

2

∑

i 6= j

Vi j〈6̂z i〉〈6̂z j〉,

(11)
where

hi = −
∑

j 6=i

Vi j〈6̂z j〉 (12)

is the molecular field. The last
”
non-operator“ term in (11)

that is fully dependent on pseudospin mean values shall be

nevertheless included both in the octet spectrum and free

energy.

The effective Hamiltonian may be represented as a sum

of single-center contributions

H0 =

N/2
∑

c=1

Hc , ,Hc = HA + HB , (13)

where

Hα =
U
2
6̂2

zα − hα6̂zα, (14)

α = A, B ,

hA,B = −zV 〈6̂z B,A〉 (15)

are molecular fields in the nearest neighbor approximation,

z = 6 is the number of the nearest neighbors.

Interestingly, Hα resembles the Hamiltonian of the spin

S = 1 center with the
”
easy-plane“ type axial single-ion

anisotropy in the external field oriented along the symmetry

axis.

Figure 1 shows the model energy spectrum of the Ni-

center octets in two model nickelate sublattices in atomic

limit with U > 0. It is obvious that with V < Vcr = U/z ,
where z is the coordination number (= 6 for cubic

perovskite), the ground state of Ni-centers corresponds to

the JT quartet (see the upper panel), and with V > Vcr

the ground state of Ni-centers corresponds to the classical

disproportionated CO configuration with electron (hole)
centers in sublattice A(B) (see the lower panel). Spectrum
in Figure 1 is used to find the single-particle and two-particle

optical transition energies with charge-transfer in the CO

phase of nickelates (11 = zV −U and 12 = 4zV , respec-

tively) and to evaluate the local and nonlocal correlation

parameters. Unfortunately, there is extremely scarce data

for nickelates [35].
Octet distribution function is written as

Zc = Tr
(

e−βHc
)

= Tr
(

e−βHA
)

Tr
(

e−βHB
)

= ZAZB ,

where β = 1/kBT ,

ZA,B = 4 + e−
1
2
βU (3e−βhA,B + eβhA,B ) (16)
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M = 0

|M| = 1

M = 0

|M| =1

M = 1  S = 1–

M = 1   S = 1–

Sublattice A Sublattice B

U/2 U/2

2zV 2zV

|M| = 1

M = 0 M = 0

|M| = 1

Sublattice A Sublattice B

U/2 U/2

2zV2zV

V V U z< = /cr

M = +1  S = 0

M = +1  S = 0

M = 1  S = 1–M = +1  S = 0

M = 1   S = 1– M = +1  S = 0

V V U z> = /cr

Figure 1. Energy spectrum scheme of the NiO6 cluster octets in two model orthonickelate sublattices in the ground state: upper panel

V < Vcr, lower panel V > Vcr .

Free energy per center is written as

f = − 1

2β
(lnZA + lnZB) − 1

2
zV (1n2 − l2). (17)

By minimizing the free energy, equations may be derived to

determine the order parameters.

5. CO-NO transition in the model
nickelate: atomic limit

For illustration, consider the simplest atomic limit of

the minimal nickelate model where the CO-NO insulator–
metal transition and phase diagram will be defined by only

one parameter — the V/U ratio of non-local and local

correlations. Figure 2 shows the dependence of free energy

f (l) on l for various temperatures and values of V in terms

of U > 0. Figure 3 shows the phase T -V diagram of the

model nickelate in the atomic limit (U-V -model). Here, line
T (V ) separates the low-temperature insulating CO-phase

with the classical charge disproportionation and the high-

temperature disordered NO-phase that is associated with

the bad-metallic phase.

CO-NO transition takes place only when V > Vcr = 1
z U

= 1
6

U , so, when V = Vcr and T = 0, free energies of the

CO and NO phases coincide, the transition temperature

turns into zero, TCO = 0. When V < Vcr, cooperative JT or-

dering may be implemented. When V > Vcr, the CO-NO

temperature grows almost linearly as V increases. Analysis

of the f (l) dependence shows that with Vcr < V ≤ 1
3

U it is

typical of first-order phase transitions and with V ≥ 1
2

U it is

typical of second-order phase transitions. In the intermediate

region 1
3

U < V < 1
2

U , features typical both of the second-

order and first-order phase transitions are observed. High-

temperature NO-phase is stable throughout the temperature

range up to the lowest temperatures. The low-temperature

insulating CO-phase simultaneously becomes stable above

the critical temperature TCO, i. e. the maximum temperature

at which the free energies of the NO and CO phases

coincide.

Features of coexistence of the disordered NO-phase and

ordered CO-phase indicate phase separation as a typical

Physics of the Solid State, 2025, Vol. 67, No. 6
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Figure 2. Dependence of the free energy of the model nickelate (per site) on the order parameter l at various temperatures and relations

between the local and nonlocal correlation parameters.

0

1.0

2.0

2nd order1st order

0.5

1.5

2.5

CONO

JT?

0 0.25 0.50 0.75 1.00

T
/U

V/U
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state of the model orthonickelate, which automatically

explains the unique sensitivity of orthonickelates to non-

stoichiometry, sample shape (bulk/film), real and chemical

pressure, and isotopic substitution [6].

Surprisingly, but the addressed simple purely electronic

U-V model makes it possible to describe a set of fun-

damental features of the spontaneous insulator–bad metal

transition associated with the CO-NO transition of insulating

CO-phase
”
melting“ in orthonickelates. Thus, the first-order

nature of transition is easily explained on the assumption of

relatively low values of the non-local correlation parameter
1
6

U ≤ V ≤ 1
3

U . Universal nature of phase separation in

nickelates [36–39] typical of strongly correlated systems [40]
is naturally associated with a wide temperature region of

coexistence of the bad-metallic NO-phase and insulating

CO-phase. Transition temperature behavior in the rare-earth

orthonickelate series can be easily associated with the non-

local correlation parameter variation. Indeed, an increase in

the Ni-O-Ni coupling angle and a corresponding increase in

the Ni-Ni distance in the LuNiO3−LaNiO3 series lead to a

decrease in the V parameter of non-local correlations and,

in accordance with the predictions of the purely electronic

model, to a decrease in the insulator–metal transition

temperature, which is observed experimentally (see, for

example, [1–3,41]). It is not unlikely that in LaNiO3 (LNO)
the non-local correlation parameter approaches the critical

value, so the ground state in this nickelate may result from

the phase separation — a bad-metallic disordered NO-phase

co-existing with the CO-phase. The neutron diffraction

data actually show that on the approach to 0K the crystal

symmetry of LNO becomes two-sublattice and locally

monoclinic [42]. This indicates that, in spite of metallicity,

the system is very close to the insulating state with charge

disproportionation and monoclinic global structure. This

generally explains a set of anomalous properties of LNO, in

particular, both strong paramagnetism and antiferromagnetic

correlations [42–45]. Authors of [46] assume that LNO

is a quantum-critical metal close to the antiferromagnetic

quantum critical point (QCP). Moreover, according to [44],
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Figure 4. Energy spectrum scheme of the NiO6 cluster octets in two model orthonickelate sublattices in the ground state taking into

account the two-particle transfer effect with V < Vcr .

a combination of metallic properties and antiferromagnetic

ordering which is quite rare for transition metal oxides, was

found in LaNiO3 single crystals with a relatively high Neel

temperature: TN = 157K and QAFM = (1/2, 0, 1/2), typical
for the entire series of orthonickelates.

The minimal model of the spontaneous NO-CO tran-

sition, that is, the model of the formation of long-range

CO ordering with decreasing temperature, assumes the

formation of short-range order, in fact of electron-hole (EH)
centers, at temperatures significantly exceeding TCO. These

EH centers, that are relatively stable due to strong electron-

lattice interaction, form a kind of bipolarons that are
”
nu-

cleation centers“ of the low-temperature disproportionation

CO-phase. Thus, evolution of the NO-phase in our model

includes several stages from a totally disordered
”
octet“

system with mixed valence of the Debye–Hückel type NiO6-

centers and strongly screened Coulomb interactions to non-

degenerate
”
bipolaron gas“,

”
bipolaron liquid“ and, finally,

condensation of the phase into an ordered disproportionated

CO-phase with T = TCO. It is this scenario proposed by

N.F. Mott many years ago for a high-temperature bad-

metallic phase in VO2 [5] that is validated by numerous ex-

periments for orthonickelates, primarily by the data [14,16].
Summing up, an emphasis shall be made again on the

similarity of the model Hamiltonian of local and non-

local correlations with the Hamiltonian of an Ising S = 1

antiferromagnet with strong easy-plane uniaxial single-ion

anisotropy in the external field oriented along the axis of

symmetry.

6. Two-particle transfer and formation
of the quantum disproportionation
CDq phase

Complete certainty of the local charge state of the NiO6

clusters, or of the pseudospin projection 6z , is the main

distinguishing feature of the atomic limit. The ground state

of the two-sublattice model with V > Vcr resembles the

Neel state of a G-type spin antiferromagnet and is formed

by the system of [NiO6]
10− (〈6z 〉 = −1) centers in one

sublattice and [NiO6]
8− (〈6z 〉 = +1) centers in another

sublattice with S = 1 and S = 0, respectively. However,

these conclusions disagree with magnetic neutron diffraction

data [17–19] indicating redistribution of spin and, thus, of

charge density between sublattices with formation of local

charge states with [NiO6]
(9−δ)− type mixed valence, or

simply Ni3−δ (−1 ≤ δ ≤ +1) representing local quantum

superpositions (7).
Unlike the atomic limit with actually classical non-

local inter-center correlation effect, the introduction of a

molecular field for describing the quantum effect of charge

transfer (quantum tunneling) seems to be a rougher ap-

proximation, but, as we hope, not lacking in the potential of

qualitative and semi-quantitative predictions. Within MFA,

the transfer Hamiltonian Ĥ(2)
tr with a fixed conventional spin

component is

Ĥ(2)
tr = −

∑

i 6= j

tb
i j

(

6̂2
i+〈6̂2

j−〉 + 6̂2
i−〈6̂2

j+〉
)

+
1

2

∑

i 6= j

tb
i j

(

〈6̂2
i+〉〈6̂2

j−〉 + 〈6̂2
i−〉〈6̂2

j+〉
)

, (18)

where for quantum-mechanical mean values

〈6̂2
i±〉 = 〈α|6̂2

i±|α〉 =
1

2
sin 2α =

1

2

√

(1− δ2). (19)

According to the effective field theory for the two-sublattice

model, the operator part of Hamiltonian (18) is included in

Hα (14), which leads to modification of the octet energy

spectrum consisting of two sublattices as shown in Figure 4,

where

1A,B = 2z
√

V 2δ2B,A + t2b(1− δ2B,A)

= 2z
√

V 2 cos2(2αB,A) + t2b sin
2(2αB,A), (20)

and tb is the transfer integral for the nearest neighbors.

For octet distribution functions ZA,B in sublattices, we

obtain

ZA,B = 4 + e−
1
2
βU

(

2e−βhA,B + 2 cosh
1A,B

2

)

(21)
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Free energy per center is written as

f = − 1

2β
(lnZA + lnZB) +

1

2
zV l2 +

1

4
z t(1 − l2). (22)

Inclusion of the quantum effect of composite boson

transfer Ĥ(2)
tr (U-V -tb-model) together with the local and

non-local correlations leads to fundamental restructuring of

the ground state, phase transitions and temperature phase

diagram of nickelates. With quite low values of tb compared

with V , the quantum CDq phase existence temperature

range turns to be small, so a small increase in temperature
leads to the CDq-CO phase transition to the classical

disproportionation phase with further CO-NO transition

to the bad-metallic NO phase. However, competition of

potential and kinetic energies of effective composite bosons,

i. e non-local correlations and two-particle transfer, leads to
an unexpected effect. With growth of the boson transfer

integral, the CDq-CO transition temperature TCDq first grows

slowly being close to zero, and then starts growing rapidly at

some critical value of ts
b , while TCO of the CO-NO transition

to the bad-metallic phase, i. e. the insulator-metal transition
temperature, first grows slowly, achieves its maximum and

then starts decreasing rapidly at tb ≈ ts
b , and TCO and TCDq

become equal at a critical value of t∗b , and only the CDq

phase survives at tb > t∗b . |δ| that defines local quantum

superpositions (7) grows slowly as tb increases in a wide

range while remaining close to 1, and then starts decreasing
rapidly at tb ∼ ts

b and vanishes at tb ∼ t∗b .
All these features are well illustrated in Figure 6 that

shows phase diagram T -tb at V = 0.30U corresponding to

a poorly pronounced first-order CO-NO transition region.

With the simplest assumption on the linear dependence
of tb on the ionic radius of R-ions in the range of

its real values for orthonickelates, T (tb) perfectly repro-

duces the R-dependence of paramagnetic insulator — bad

metal transition temperatures for RNiO3 with TMIT 6= TN

(R=Lu, . . . , Sm) [3] at U ≈ 1000K, which immediately

leads to V ≈ 300K. In this case, the boson transfer
integral varies from tb ≈ 165K corresponding to LuNiO3 to
tb = t∗b ≈ 225K approximately corresponding to SmNiO3,
which is in good qualitative and quantitative agreement with
theoretical predictions [18].
With tb > t∗b , our model, in line with the experi-

ment, indicates fundamental variation of the MIT be-

havior from NO → classical paramagnetic CO-phase to
NO → quantum magnetic CDq-phase. However, the
observed complex noncollinear antiferromagnetic structure
QAFM = (1/2, 0, 1/2) [1,2] in this phase and unusual
dependence TMIT(R) = TN(R) for R=Nd, Pr and similar
compounds indicate the limitation of the minimal purely

charge model and the need to consider rather unusual
competition of the ferromagnetic boson double exchange
and antiferromagnetic superexchange, i. e. transition to the
U-V -tb-J-model. A more realistic model shall also consider
a considerable decrease in the V in the LuNiO3−LaNiO3

series.

7. Conclusion

A new purely electronic scenario is presented for the

insulator — bad metal transition in RNiO3 based on the
minimal U-V -tb-model that takes into account the only
one charge degree of freedom within the charge triplet
model, pseudospin formalism and effective field theory,
which ensures a physically clear and mathematically trivial
description typical of traditional spin-magnetic systems.
Despite the simplicity of the model, it reproduces the

main features of the T -R-phase diagrams for RNiO3 with
physically validated estimates of the U-V -tb-model para-
meters. High-temperature bad-metallic phase is associated
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with the disordered mixed-valence NO-phase of the charge

triplet system, and the insulating disproportionated CD-

phase includes the low-temperature quantum ferromagnetic

CDq-phase and high-temperature classical paramagnetic (in
the nearest neighbor model!) CO-phase separated by the

CDq-CO phase transition (R=Lu, . . . , Sm), or only the

magnetic CDq-phase (R=Nd, Pr). For detailed description

of the quantum CDq-phase, it is necessary to go beyond

the purely charge model taking into account the unusual

competition of the ferromagnetic bosonic double exchange

and antiferromagnetic superexchange Ni2+-O2−-Ni2+. The

developed pseudospin formalism makes it possible to

effectively consider the electron-lattice interaction, primarily

the essential contribution of a so-called
”
breathing“ mode

of local distortions of the NiO6 centers and bipolaron

effects as well as other signs of the important role of

electron-lattice coupling, which are experimentally observed

in nickelates [2].
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