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Within the framework of the Landau theory of second-order phase transitions, a ferromagnet/antiferromagnet

structure is considered, in which the ferromagnetic and antiferromagnetic layers are connected by exchange

interaction. In the vicinity of the Neel temperature, such an interaction leads to a modification of the order

parameter of the antiferromagnet. The magnetocaloric effect (isothermal change in magnetic entropy) of the system
under consideration is calculated when the magnetization direction of the ferromagnet changes relative to the easy

anisotropy axis of the antiferromagnet. The cases of compensated and uncompensated antiferromagnet boundaries

are considered. The results obtained suggest the possibility of using ferromagnet/antiferromagnet multilayer for

cooling micro- and nanoelectronic devices.
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1. Introduction

Magnetocaloric effect (MCE) is a change of magnetic

material temperature during adiabatic magnetization or

demagnetization [1]. This effect may be used to arrange a

magnetic cooling cycle that will result in heat removal from

the load into atmosphere, in particular at room tempera-

ture [2]. Such coolers are expected to be environmentally

friendly, compact and energy-saving [3,4]. Note that even

when MCE is irreversible, a magnetic cooling cycle still

can be arranged [5]. The need for applying very strong

magnetic fields in order to achieve the required MCE is one

of the reasons why the magnetic cooling technique hasn’t

been widely used yet. Thus, to change the temperature of a

reference magnetocaloric material, Gd, only by 1K, a field

of about 10 kOe shall be applied, and to change the tempe-

rature by 10K, a field of about 50 kOe will be necessary [6].

The problem of very strong fields may be avoided by

using nanostructured magnetocaloric materials instead of

bulk ones. The former may be actually used for cooling

microelectronic and nanoelectronic devices. In [7], a focus

was made on a ferromagnet/paramagnet multilayer, where

exchange fields occurring at the interfaces magnetize the

paramagnetic layers acting as magnetocaloric materials. Ap-

plication of a weak (10−100Oe) external field induces re-

orientation of exchange fields (ferromagnetic layer magneti-

zations) leading to a magnetic entropy (temperature) change
of such system. A number of later theoretical [8–10] and

experimental [8,11–16] works demonstrated a significant

exchange enhancement of MCE. Recently [17], the idea of

using exchange fields for MCE enhancement has been trans-

ferred to a ferromagnet|antiferromagnet structure, where

antiferromagnetic layers served as magnetocaloric materials.

Since the critical field between the antiferromagnetic and

paramagnetic phases of a bulk antiferromagnetic material

depends very much on the external magnetic field orienta-

tion with respect to an easy axis of anisotropy [18], then
simple rotation of this field leads to a change of magnetic

state and,consequently, to MCE in the antiferromagnetic

material. In [17], focus was made on an antiferromagnetic

material with a compensated interface, i. e. where this inter-

face contained equal amounts of atoms of both sublattices,

and the exchange field induced at the ferromagnetic and

antiferromagnetic interfaces played a role of a magnetic field.

This study investigated MCE in a ferromagnet/antiferro-

magnet exchange-coupled structure in the uncompensated

interface case, i. e. when the interface contains atoms of

only one of two antiferromagnetic sublattices. Such situation

takes place when a structure is sputtered in external

magnetic field and is identified by the presence exchange

bias effect [19,20]. Exchange field that occurs at the inter-

face modifies the order parameter of the antiferromagnetic

material, and application of a weak (∼ 100Oe) external

field leads to a change of direction of this exchange field and,

consequently, to MCE. As we see below, magnetocaloric

properties of the ferromagnet|antiferromagnet system de-

pend considerably on the type of interface. The findings

may turn out to be useful for the development of microscale

and nanoscale coolers operating in weak magnetic fields.

2. Compensated interface case

Let’s consider a two-layer ferromagnet/antiferromagnet

structure, where the ferromagnetic and antiferromagnetic
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layers have thicknesses h and d, respectively, and the

interface coincides with the plane z = 0 (see Figure 1, a).
Suppose the antiferromagnetic material has two sublattices

with magnetizations m1 and m2 (m1 = m2), and its magnetic

anisotropy easy axis is oriented along the x axis. The

system temperature T is assumed to be close to the Neel

temperature TN of the antiferromagnetic material, so T ≤ TN

and the Curie temperature of the ferromagnetic material is

much higher than TN. The latter makes it possible to neglect

the ferromagnetic state change caused by the exchange

coupling with the antiferromagnetic material and to consider

the ferromagnetic magnetization M to be uniform.

Let’s first consider the compensated interface case (Fi-
gure 1, b). According to the Landau theory of second-

order phase transitions [18], free energy per unit area of

the given system F can be represented as an expansion in

powers of the Neel vector (order parameter) L = m1−m2

and magnetization m = m1 + m2 of the antiferromagnetic

material, and of combinations and derivatives thereof:

F = Fv + Fs , (1)

Fv =

∞
∫

0

(

γ

2

(

dL
dz

)2

− ατ

2
L2 +

β

4
L4 +

Ka

2
(L2

y + L2
z )

)

dz ,

(2)

Fs =

∞
∫

0

(

γ0

2

(

dm
dz

)2

+
1

2χ
m2 +

1

2
(mL)2 +

δ

2
m2L2

)

dz

− J(mM)|z=0, (3)

where α, β, γ, γ0, 1 and δ are the positive phenomeno-

logical parameters, Ka > 0 is the magnetic anisotropy

constant, τ = (TN−T )/TN, χ is the susceptibility, J is

the interlayer -exchange interaction constant. Suppose the

antiferromagnetic layer is quite thick so the magnetic state

at its opposite interface (at z = d) may be considered

as unperturbed. Therefore integration in equations (2)
and (3) is taken over the half-space z > 0. Note

that interface compensation is reflected in the term —
J(mM)|z=0 = −J(m1M)|z=0−J(m2M)|z=0, i. e. the ex-

change interaction links the ferromagnetic magnetization to

the magnetizations of both antiferromagnetic sublattices. We

assume that the spatial scale of L is much larger than that

of m, which may be always fulfilled in the vicinity of TN.

Then after calculation of m and substitution in Equation (3),
we get (see the Appendix)

Fs ≈
χ3/2J2

4γ
1/2
0

(

δM2L2 + 1(ML)2
)

|z=0, (4)

where nonessential constant term was truncated. As

can be seen, in case of compensated interface, exchange

interaction between the ferromagnetic and antiferromagnetic

materials, on the one hand, leads to antiferromagnetic order

suppression (δM2L2), on the other hand, to the surface spin-

flop effect, i. e. to the deviation of vector L from the easy
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Figure 1. Schematic diagrams a) of the planar ferromag-

net|antiferromagnet (I|II) structure and antiferromagnetic inter-

faces: b) compensated and c) uncompensated. Double arrows

denote the anisotropy easy axis of the antiferromagnetic material.

axis (1(ML)2). Let

M = M(x̂ cosφ + ŷ sinφ)

and

L(z ) = L(z )
(

x̂ cos θ(z ) + ŷ sin θ(z )
)

.

Then, minimizing the free energy F with respect to the

modulus L and θ, we get the following equations and

boundary conditions:

d2L
dz 2

+

(

1

l2c
−
(

dθ
dz

)2

− 1

l2d
sin2 θ

)

L − β

γ
L3 = 0, (5)

L2 d2θ

dz 2
+ 2L

dL
dz

dθ
dz

− 1

l2d
L2 sin θ cos θ = 0, (6)

dL
dz

∣

∣

∣

∣

z=0

=
χ3/2J2M2

2γγ
1/2
0

L
(

δ + 1 cos2(θ − φ)
)∣

∣

z=0
, (7)

dθ
dz

∣

∣

∣

∣

z=0

= −χ3/2J2M21

2γγ
1/2
0

cos(θ − φ) sin(θ − φ)
∣

∣

z=0
, (8)

where lc =
√

γ/(ατ ) and ld =
√
γ/Ka are the corre-

lation length and domain wall thickness of the anti-

ferromagnetic material. With z → ∞, θ and modu-

lus L shall reach unperturbed values, i. e. θ(z → ∞) = 0

and L(z → ∞) = L0 =
√
ατ /β . By differentiating the

free energy with respect to temperature taking into ac-

count (5)−(8), we find the volume density of magnetic
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entropy s = −(∂F/∂T )/d :

s = − α

2TN

L2 = − α

2dTN

∞
∫

0

L2(z )dz . (9)

It can be seen that magnetic entropy is defined by the

average square of the order parameter over the thickness of

the antiferromagnet L2, the magnitude of which depends,

according to boundary conditions (7) and (8), on the

direction of vector M. It can be seen from the energy

symmetry (4) that the largest isothermal change of magnetic

entropy 1s is provide by changing the direction of M

from perpendicular (⊥) to parallel (‖) with respect to the

antiferromagnetic easy axis.

Concerning only with the change of the order parameter

modulus, we find the conditions under which θ = 0. Then

we assume that θ is small. Then in the first approximation

in equation (5), θ = 0 may be assumed. In this case

the spatial scale of the modulus L will be defined by lc .

Suppose ld/lc ≪ 1, which can be always satisfied in the

vicinity of TN. Then, in equation (6), the term proportional

to dL/dz may be neglected, after which the equation will

be written as:

d2θ

dz 2
− 1

l2d
sin θ cos θ = 0, (10)

and solution to it with φ = 0, π(‖) may be written as

cos θ‖(z ) = th
z + z ‖

θ

ld
, (11)

where z ‖
θ may be determined from

cos θ‖(0) =

(

Jθ

J

)2

. (12)

Here

J2
θ = 2γγ

1/2
0 /(χ3/2M2ld1).

The obtained solution is valid with J ≥ Jθ . With J ≤ Jθ,

θ‖(z ) = 0 is the solution to equation (10). Note that in

case of φ = ±π/2(⊥) according to (4), we have θ⊥(z ) = 0

with any J . With θ(z ) = 0 from (5) and (7) for φ = ±π/2

and φ = 0, π, we get the following dependences of the

order parameter modulus on the z coordinate:

L⊥(‖)(z ) = L0th
z + z⊥(‖)√

2lc

. (13)

z⊥(‖) is determined by

L⊥(‖)(0)

L0

=

√

1 +

(

J
J⊥(‖)

)4

−
(

J
J⊥(‖)

)2

, (14)

where

J2
⊥ = 23/2γγ

1/2
0 /(χ3/2M2lcδ)

and

J2
‖ = 23/2γγ

1/2
0 /

(

χ3/2M2lc(1 + δ)
)

.

It can be seen that the antiferromagnetic order is

suppressed as J grows. In case of weak in-

terlayer exchange (J ≪ J⊥(‖)), the order parame-

ter is not so different from the volume quantity,

i. e. L⊥(‖)(0)/L0 ≈ 1− (J/J⊥(‖))
2. In the opposite case

(J ≫ J⊥(‖)) we have L⊥(‖)(0)/L0 ≈ (J⊥(‖)/J)2/2 ≪ 1.

Calculation of the isothermal entropy change

1s = s‖−s⊥ according to (9) brings us to the following

result:

1s = 1smax

(

L⊥(0)

L0

− L‖(0)

L0

)

, (15)

1smax =
α

2TN

√
2lcL2

0

d
=

(2γτ )1/2α3/2

2TNβd
. (16)

Thus, 1s is defined by the order parameters at the inter-

face. Then to reach 1smax, it is necessary that L⊥(0) ≈ L0

and L‖(0) ≈ 0. This situation occurs when condition

J‖ ≪ J ≪ J⊥ is fulfilled. Since (J‖/J⊥)2 = δ/(1 + δ),
then 1 ≫ δ shall be in any case. The latter is satisfied

at least for most antiferromagnetic materials [21]. Note

that, since (J‖/Jθ)
2 ∝ ld/lc ≪ 1, then as J increases,

significant decrease in the order parameter modulus at the

interface takes place before it deviates from the easy axis

direction. Then, when ld/lc ≪ 1 is satisfied, θ(z ) = 0 may

be assumed at any J .
Let’s estimate the Landau theory parameters for an

adequately studied antiferromagnet, MnF2. Comparison

with experiment [22–25] gives

TN ≈ 67.33K, α/TN = 1K−1,

β ≈ 9.50 · 10−7 erg−2 · G2 · cm6,

1 ≈ 1.55 · 10−4 erg−2 · G2 · cm6,

δ ≈ 5.40 · 10−6 erg−2 ·G2 · cm6,

χ ≈ 1 · 10−3, Ka ≈ 2.33.

γ may be estimated from the equality of energy kBT
and exchange energy in the point of phase transition,

i. e. γ ≈ kBTN/(am2
s ) [18], where a is the lattice parameter,

ms is the antiferromagnet saturation magnetization. For

MnF2, we find γ1/2 ≈ 4 nm. γ0 will be assumed equal

to γ . Figures 2 and 3, a show the dependences of

L⊥(‖)(0) and 1s on the interlayer exchange constant J at

various temperatures T calculated for the ferromagnet|MnF2
structure at h = 20 nm. To satisfy the boundary condition at

z = d, antiferromagnet thickness d was set to 5lc . Then the

order parameter at z = d almost reaches the unperturbed

L0 at any temperature. It can be seen from Figure 3, a

that 1s grows with distance from TN. However, it is

impossible to determine the temperature at which 1s will

take the maximum value within the developed model,

because ld/lc ≪ 1 was assumed to be satisfied.

Switching between states with φ = ±π/2 and φ = 0, π

may be carried out by applying the external magnetic
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Figure 2. Dependence of the order parameter modulus

at the compensated interface L⊥(‖)(0) on the interlayer ex-

change constant J at various temperatures T calculated for

the ferromagnet|MnF2 structure. Solid lines correspond to the

perpendicular direction (⊥) of the ferromagnet magnetization M

with respect to the anisotropy easy axis of the antiferromagnet,

dashed lines correspond to the parallel direction (‖).

field H. Let’s find the magnitude of such switching field Hsw.

For this, note first that, taking into account (5)−(8), F may

be rewritten as

F = −β

4

∞
∫

0

L4(z )dz . (17)

In view of J‖ ≪ J⊥, we have L‖(z ) ≤ L⊥(z ) and the

state with φ = ±π/2 has the lowest free energy. Then the

volume density of effective free energy of the given system

in the presence of magnetic field may be written as

f eff =
1

2
Keff(M · x̂)2 − (MH), (18)

where Keff = 21F/(M2h) > 0 is the effective anisotropy

constant (easy-plane), 1F = F‖−F⊥ is the free energy
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Figure 3. Dependence of a) the isotermal entropy change 1s and b) switching field Hsw on the interlayer exchange constant J at various

temperatures T calculated for the ferromagnet|MnF2 structure for the compensated interface.

difference (17). For switching between the states, H shall

be applied along the easy axis of the antiferromagnet.

Minimizing f eff with respect to φ, we find Hsw = KeffM .

Figure 3, b shows the dependences of Hsw on the interlayer

exchange constant J at various temperatures T calculated for

the ferromagnet|MnF2 structure at h = 20 nm and d = 5lc .

It can be seen that switching between the states takes

place in a quite small field, the highest value of which is

about 150Oe. 1s corresponding to this field is comparable

with 1s in bulk Gd in the 10 kOe field [26].

3. Uncompensated interface case

We assume the antiferromagnet interface to be uncom-

pensated (Figure 1, c). Then in the contribution of Fs (equa-
tion (3)) instead of −J(mM)

∣

∣

z=0
take the magnetization

interaction M with the magnetization of only one of two

sublattices (for definiteness, m1), i. e.

Fs =

∞
∫

0

(

γ0

2

(

dm
dz

)2

+
1

2χ
m2 +

1

2
(mL)2 +

δ

2
m2L2

)

dz

− J
2

(mM)
∣

∣

z=0
− J

2
(ML)

∣

∣

z=0
, (19)

where m1 = (m + L)/2 was used. Then, after the calcula-

tion of m and substitution into Fs (see the Appendix), we
get

Fs ≈
χ3/2J2

16γ
1/2
0

(

δM2L2 + 1(ML)2
)∣

∣

z=0
− J

2
(ML)

∣

∣

z=0
,

(20)
Equation (20) differs from equation (4), that is valid

for the compensated interface, on the one hand, by the

coefficient of the first summand and, on the other hand,

by the additional summand that is linear in J and L. As

can be seen below, appearance of this summand will affect

considerably the magnetocaloric properties of the given
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system. Minimizing F with respect to L and θ, we again

get equations (5) and (6), however, now the boundary

conditions with z = 0 will be written as:

dL
dz

∣

∣

∣

∣

z=0

=
χ3/2J2M2

8γγ
1/2
0

L
(

δ + 1 cos2(θ − φ)
)
∣

∣

z=0

− JM
2γ

cos(θ − φ)
∣

∣

z=0
, (21)

L2 dθ
dz

∣

∣

∣

∣

z=0

= −χ3/2J2M21

8γγ
1/2
0

L2 cos(θ − φ) sin(θ − φ)|z=0

+
JM
2γ

L sin(θ − φ)
∣

∣

z=0
. (22)

With z → ∞, θ and modulus L reach unperturbed values,

i. e. θ(z → ∞) = 0 and L(z → ∞) = L0. Differentiating the

free energy with respect to temperature, taking into ac-

count (5), (6), (21) and (22), we will again get equation (9)
for the volume density of the system’s magnetic entropy.

As for the compensated interface, the magnetic entropy is

defined by the average square of the order parameter over

the thickness of the antiferromagnet L2, the magnitude of

which depends on the direction of vector M.

Let’s first consider the parallel orientation of M with

respect to the easy axis of antiferromagnet anisotropy.

Unlike the compensated interface, the states with φ = 0

and φ = π differ from each other due the appearance of the

linear summand in equation (20). We restrict ourselves

only to the case with φ = 0. As before, we will first

assume that θ is small. Then in the first approximation in

equation (5), θ = 0 may be assumed. Taking into account

the new boundary conditions (21), we have

L‖(z ) =







L0 cth
z+z‖√

2lc
, J ≤ J0,

L0th
z+z‖√

2lc
, J ≥ J0,

(23)

where J0 = 2J2
‖/Jc , Jc =

√
2γL0/(Mlc). z ‖ may be deter-

mined from

L‖(0)

L0

=

√

1 +

(

J
2J‖

)4

+
J
Jc

−
(

J
2J‖

)2

. (24)

Sufficiently close to the Neel temperature, Jc ≪ J‖ ≪ J0

is true. With low interlayer exchange (J ≪ Jc), we have

L‖(0)/L0 ≈ 1 + J/(2Jc), i. e. the order parameter at the

interface exceeds the volume value of L0, which was

not observed for the compensated interface. Maximum

L‖(0)/L0 was about 0.8(J‖/Jc)
2/3 and is reached at

J ≈ 2−1/3J2/3
0 J1/3

c . With J = J0, we have L‖(0)/L0 = 1,

and with J > J0, antiferromagnetic order suppression takes

place. Finally, with high interlayer exchange (J ≫ J0) we

have L‖(0)/L0 ≈ J0/J . We show that, in case of φ = 0, L

is parallel to M, i. e. θ‖(z ) = 0 at any J . Suppose again

ld/lc ≪ 1, which can be always satisfied in the vicinity

of TN. Then in equation (6), the summand proportional to

dL/dz may be neglected, then we come to equation (10),
solution to which is written as (11), where instead of (12)
we have

cos θ‖(0) =

(

2Jθ

J

)2(

1 +
JMld

2γ

1

L‖(0)

)

. (25)

With the growth of J, cos θ‖(0) decreases monotonously.

Within J → ∞, we have cos θ‖(0) = 1. Thus, θ‖(z ) = 0 is

the solution to equation (10).
Let’s consider the perpendicular orientation of M with

respect to the easy axis of antiferromagnet anisotropy

(φ = ±π/2). Unlike the compensated interface, L will

deviate from the easy axis direction and this deviation

may be significant. However, since ld/lc ≪ 1, then in

the first approximation, to which we restrict ourselves,

equation (5) may neglect the summands containing θ, and

equation (6) may neglect the summand containing dL/dz .
Then equations for L and θ will be separated again, and

the link between L and θ will be included in boundary

conditions (21) and (22). Solutions to the derived equations

are written as

L⊥(z ) =







L0 cth
z+z⊥√

2lc
, J ≤ J0,

L0th
z+z⊥√

2lc
, J ≥ J0,

(26)

cos θ⊥(z ) = th
z + z⊥

θ

ld
, (27)

z⊥ and z⊥
θ may be derived from the following equations:

L⊥(0)

L0

=

√

1+

(

J
2J⊥

)4(

1+
1

δ
sin2 θ⊥(0)

)2

+
J
Jc

sin θ⊥(0)

−
(

J
2J⊥

)2(

1 +
1

δ
sin2 θ⊥(0)

)

,

(28)

1 +
J
Jc

(

2Jθ

J

)2
sin θ⊥(0) tg θ⊥(0) − δ

1

sin θ⊥(0) +
(

2Jθ

J

)2
tg θ⊥(0)

−
(

2Jθ

J

)2( 2Jθ

Jd

)2

(

sin θ⊥(0) +
(

2Jθ

J

)2
tg θ⊥(0)

)2
, (29)

where Jd = 2γL0/(Mld). Sufficiently close to the

Neel temperature, Jc ≪ Jd ≪ J⊥(Jθ) ≪ J0 is satisfied.

With weak layer exchange interaction (J ≪
√

JcJd),
from equations (28) and (29) we get θ⊥(0) ≈ J/Jd

and L⊥(0)/L0 ≈ 1 + J2/(2JcJd). Unlike φ = 0, as J
increases, the order parameter grows slower. With

J ≫ 2(1/δ)1/2Jθ, θ⊥(0) approaches π/2, so that

tg θ⊥(0) ≈ (δ/1)
(

J/(2Jθ)
)2
. Since 1 ≫ δ, then L⊥ → L‖.

With J > J0, antiferromagnetic order suppression takes

place. Finally, with high interlayer exchange (J ≫ J0) we

have L⊥(0)/L0 ≈ J0/J . Figure 4, a and b show the de-

pendences of L⊥(‖)(0) and L‖(0) − L⊥(0) on the interlayer

exchange constant J at various temperatures T calculated
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for the ferromagnet|MnF2 structure. θ⊥(0) was calculated

numerically from equation (29). As can be seen, at some

value of J, the sign of L‖(0) − L⊥(0) is changed. Actually,

with J ≪ Jc , we have L‖(0)/L0 − L⊥(0)/L0 ≈ J/(2Jc),,
and with J ≫ J0, we have L‖(0)/L0 − L⊥(0)/L0 ∝ −1/J5.

Calculation of the isothermal entropy change 1s = s‖ − s⊥
according to (9) again brings us to equations (15) and (16).
Figure 5, a shows the dependences of 1s on the interlayer

exchange constant J at various temperatures T calculated for

the ferromagnet|MnF2 structure at h = 20 nm and d = 5lc .

Pairs of maxima of these dependences are linked by the

above-mentioned features of L⊥(0) − L‖(0) depending on J .
As with the compensated interface, 1s grows with distance

from TN. However, it is impossible to determine the

temperature at which 1s will take the maximum value

within the developed model, because ld/lc ≪ 1 shall be

satisfied.

Let’s find now the magnitude of switching field Hsw.

For this, taking into account (5), (6), (21) and (22), we

rewrite F as

F = −β

4

∞
∫

0

L4(z )dz − J
4

ML cos(θ − φ)
∣

∣

z=0
. (30)

With J ≪ Jc , we have 1F = F‖ − F⊥ ∝ −J, and with

J ≫ J0, we have 1F ∝ 1/J4. Thus, with large interlayer

exchange, a state with φ = ±π/2 has the lowest free energy,

and the volume density of effective free energy of the given

system in the presence of a magnetic field may be written

as (18). In this case Hsw = KeffM = 21F/(Mh). In the

opposite case, a state with φ = 0 has the free energy, and

f eff may be written as

f eff = −M(H + Heb), (31)

where Heb is the exchange bias field oriented along

the x axis. Minimizing f eff with respect to φ, we find

Hsw ≈ Heb = −1F/(Mh). Figure 5, b shows the depen-

dences of Hsw on the interlayer exchange constant J at
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various temperatures T calculated for the ferromagnet|MnF2
structure at h = 20 nm. Thus, switching between the states

with φ = 0 and φ = ±π/2 is carried out in a quite weak

field, which is about 100Oe with the maximum isothermal

magnetic entropy change 1s ≈ −0.4 · 105 erg · K−1 · cm−3.

4. Conclusion

Within the Landau theory, of second-order phase tran-

sitions, the isothermal magnetic entropy change 1s was

calculated for the ferromagnet|MnF2 structure for the

compensated and uncompensated MnF2 interfaces. It

is shown that the behavior of the dependence of 1s
on J depends considerably on the type of interface:

for the compensated interface, 1s has only one peak

(Figure 3, a), and for the uncompensated interface, it has

two peaks with unlike signs (Figure 5, a). Isothermal

magnetic entropy change may reach 1 · 105 erg · K−1 · cm−3

in the 150Oe field in the compensated interface case, and

1s ≈ −0.4 · 105 erg ·K−1 · cm−3 in the 100Oe field in the

uncompensated interface case. In the given structure, the

interlayer exchange interaction leads to MCE enhancement.

Actually, 1s in an individual MnF2 layer in the 150Oe field

is just 2 erg · K−1 · cm−3 [17], which is lower by 4 to 5

orders of magnitude. The findings may turn out to be useful

for the development of microscale and nanoscale coolers

operating in weak magnetic fields.

The developed model is used to formulate criteria

to be satisfied by an antiferromagnetic material in the

ferromagnet|antiferromagnet structure in order to achieve

a significant MCE. First, the desired material shall have a

strong magnetic anisotropy (Ka) and, second, 1/δ shall be

as high as possible. Satisfying these criteria provides the

maximum change of the order parameter modulus of the

antiferromagnetic material during exchange field rotation.

Thus, antiferromagnets with strong spin-flop-transition field

and strong dependence of the antiferromagnet-paramagnet

phase transition fields on the external field direction shall be

selected [18,21].
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Appendix

Let’s calculate m induced in the antiferromagnetic ma-

terial with the compensated interface due to the exchange

coupling with the ferromagnetic material. Minimization of

the Fs contribution with respect to m (equation (3)) gives

the following equation and boundary condition:

γ0
d2m

dz 2
− 1

χ
m− 1(mL)L− δL2m = 0, (A1)

dm
dz

∣

∣

∣

z=0
= − J

γ0
M. (A2)

With distance from the interface, magnetization

shall decrease, so the additional boundary condition

m(z → ∞) = 0 shall be introduced. We assume that the

spatial scale of L is much larger than that of m. In this

case, in equation (A1) L(z ) ≈ L(0), and the solution may

be written as

m(z ) =
J
γ0q

(

M exp(−qz )

+
(q

p
exp(−pz ) − exp(−qz )

)

(ML̂)L̂

)

, (A3)

where

L̂ = L/L, q2 = (1 + χδL2)/(χγ0)

and

p2 =
(

1 + χ(1 + δ)L2
)

/(χγ0).

Using equation (A1) and boundary condition (A2), Fs is

written as

Fs = −J
2

(mM)
∣

∣

z=0
. (A4)

Finally, after substitution of m(0) and expansion of Fs

to L2, equation (4) is derived.

For the uncompensated interface, J shall be replaced

with J/2 in equations (A2) and (A3), and instead of (A4)
we have

Fs = −J
4

(mM)
∣

∣

z=0
− J

2
(ML)

∣

∣

z=0
. (A5)

Then, instead of (4) we get equation (20).
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