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Within the framework of the Landau theory of second-order phase transitions, a ferromagnet/antiferromagnet
structure is considered, in which the ferromagnetic and antiferromagnetic layers are connected by exchange
interaction. In the vicinity of the Neel temperature, such an interaction leads to a modification of the order
parameter of the antiferromagnet. The magnetocaloric effect (isothermal change in magnetic entropy) of the system
under consideration is calculated when the magnetization direction of the ferromagnet changes relative to the easy
anisotropy axis of the antiferromagnet. The cases of compensated and uncompensated antiferromagnet boundaries
are considered. The results obtained suggest the possibility of using ferromagnet/antiferromagnet multilayer for

cooling micro- and nanoelectronic devices.
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1. Introduction

Magnetocaloric effect (MCE) is a change of magnetic
material temperature during adiabatic magnetization or
demagnetization [1]. This effect may be used to arrange a
magnetic cooling cycle that will result in heat removal from
the load into atmosphere, in particular at room tempera-
ture [2]. Such coolers are expected to be environmentally
friendly, compact and energy-saving [3,4]. Note that even
when MCE is irreversible, a magnetic cooling cycle still
can be arranged [5]. The need for applying very strong
magnetic fields in order to achieve the required MCE is one
of the reasons why the magnetic cooling technique hasn’t
been widely used yet. Thus, to change the temperature of a
reference magnetocaloric material, Gd, only by 1K, a field
of about 10kOe shall be applied, and to change the tempe-
rature by 10K, a field of about 50 kOe will be necessary [6].

The problem of very strong fields may be avoided by
using nanostructured magnetocaloric materials instead of
bulk ones. The former may be actually used for cooling
microelectronic and nanoelectronic devices. In [7], a focus
was made on a ferromagnet/paramagnet multilayer, where
exchange fields occurring at the interfaces magnetize the
paramagnetic layers acting as magnetocaloric materials. Ap-
plication of a weak (10—100 Oe) external field induces re-
orientation of exchange fields (ferromagnetic layer magneti-
zations) leading to a magnetic entropy (temperature) change
of such system. A number of later theoretical [8-10] and
experimental [8,11-16] works demonstrated a significant
exchange enhancement of MCE. Recently [17], the idea of
using exchange fields for MCE enhancement has been trans-
ferred to a ferromagnet|antiferromagnet structure, where

antiferromagnetic layers served as magnetocaloric materials.
Since the critical field between the antiferromagnetic and
paramagnetic phases of a bulk antiferromagnetic material
depends very much on the external magnetic field orienta-
tion with respect to an easy axis of anisotropy [18], then
simple rotation of this field leads to a change of magnetic
state and,consequently, to MCE in the antiferromagnetic
material. In [17], focus was made on an antiferromagnetic
material with a compensated interface, i.e. where this inter-
face contained equal amounts of atoms of both sublattices,
and the exchange field induced at the ferromagnetic and
antiferromagnetic interfaces played a role of a magnetic field.
This study investigated MCE in a ferromagnet/antiferro-
magnet exchange-coupled structure in the uncompensated
interface case, i.e. when the interface contains atoms of
only one of two antiferromagnetic sublattices. Such situation
takes place when a structure is sputtered in external
magnetic field and is identified by the presence exchange
bias effect [19,20]. Exchange field that occurs at the inter-
face modifies the order parameter of the antiferromagnetic
material, and application of a weak (~ 1000e) external
field leads to a change of direction of this exchange field and,
consequently, to MCE. As we see below, magnetocaloric
properties of the ferromagnet|antiferromagnet system de-
pend considerably on the type of interface. The findings
may turn out to be useful for the development of microscale
and nanoscale coolers operating in weak magnetic fields.

2. Compensated interface case

Let’s consider a two-layer ferromagnet/antiferromagnet
structure, where the ferromagnetic and antiferromagnetic
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layers have thicknesses h and d, respectively, and the
interface coincides with the plane z = 0 (see Figure 1,a).
Suppose the antiferromagnetic material has two sublattices
with magnetizations m; and m, (m; = my), and its magnetic
anisotropy easy axis is oriented along the X axis. The
system temperature T is assumed to be close to the Neel
temperature Ty of the antiferromagnetic material, so T < Ty
and the Curie temperature of the ferromagnetic material is
much higher than Ty. The latter makes it possible to neglect
the ferromagnetic state change caused by the exchange
coupling with the antiferromagnetic material and to consider
the ferromagnetic magnetization M to be uniform.

Let’s first consider the compensated interface case (Fi-
gure 1,b). According to the Landau theory of second-
order phase transitions [18], free energy per unit area of
the given system F can be represented as an expansion in
powers of the Neel vector (order parameter) L = m;—m;
and magnetization m = m; + m;, of the antiferromagnetic
material, and of combinations and derivatives thereof:

F=F +Fs, (1)
x 2
_ y(dL\" ar 5 B4 Ka o 2
F,,_/<2<dz> Tl g ) oz
0
(2)
< 2
S L L R S S
FS_/(z(dz) +2Xm+2(mL)+2mL dz
0
— J(mM)],—o, (3)

where a, B, 9,0, A and § are the positive phenomeno-
logical parameters, Ky > 0 is the magnetic anisotropy
constant, 7 = (Ty—T)/Tn, x is the susceptibility, J is
the interlayer -exchange interaction constant. Suppose the
antiferromagnetic layer is quite thick so the magnetic state
at its opposite interface (at z =d) may be considered
as unperturbed. Therefore integration in equations (2)
and (3) is taken over the halfspace z > 0. Note
that interface compensation is reflected in the term —
J(mM)|—0 = —I(mM)|,—0—I(myM)|,—9, ie the ex-
change interaction links the ferromagnetic magnetization to
the magnetizations of both antiferromagnetic sublattices. We
assume that the spatial scale of L is much larger than that
of m, which may be always fulfilled in the vicinity of Ty.
Then after calculation of m and substitution in Equation (3),
we get (see the Appendix)

Fo ~ S (SMPL? + A(ML)?) | (4)
s ™~ 47/1/2 z=0>»
0

where nonessential constant term was truncated. As
can be seen, in case of compensated interface, exchange
interaction between the ferromagnetic and antiferromagnetic
materials, on the one hand, leads to antiferromagnetic order
suppression (SM2L?), on the other hand, to the surface spin-
flop effect, i.e. to the deviation of vector L from the easy
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Figure 1. Schematic diagrams a) of the planar ferromag-
net|antiferromagnet (I|II) structure and antiferromagnetic inter-
faces: b) compensated and c¢) uncompensated. Double arrows
denote the anisotropy easy axis of the antiferromagnetic material.

axis (A(ML)?). Let
M = M(xcos¢ + ysin¢)

and
L(z) = L(z)(xcos 0(z) + ysin6(z)).

Then, minimizing the free energy F with respect to the
modulus L and 6, we get the following equations and
boundary conditions:

2L /1 /do\® 1 ., B
(= (=) —Ssino)L-EL=
d22+<lg <dz> Iésm > . 0, (5

d?e dLdoe 1
24V =P 22 —
L iz +2L dzdz 13 L“sinfcos6 =0, (6)
dL X3/2‘]2M2 )
& » = W L(8 + Acos* (0 — ¢)) ‘Z:O, (7)
do x*PIPM2A .
— =—-2———cos(0—¢)sin(0 —¢)|,_,, (8)
dz|,_, 270”2 =
where | =+/p/(ar) and lq=+/y/Kyq are the corre-

lation length and domain wall thickness of the anti-
ferromagnetic material. ~ With zZ — oo, 6 and modu-
lus L shall reach unperturbed values, i.e. 6(z — c0) =0
and L(z — o00) =Lg=+/ar/B. By differentiating the
free energy with respect to temperature taking into ac-
count (5)—(8), we find the volume density of magnetic
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entropy s = —(9F/9T)/d:

oo

-2 ¢ 2
s N L T /L (z)dz. 9)
0

It can be seen that magnetic entropy is defined by the
average square of the order parameter over the thickness of
the antiferromagnet L2, the magnitude of which depends,
according to boundary conditions (7) and (8), on the
direction of vector M. It can be seen from the energy
symmetry (4) that the largest isothermal change of magnetic
entropy As is provide by changing the direction of M
from perpendicular (L) to parallel (||) with respect to the
antiferromagnetic easy axis.

Concerning only with the change of the order parameter
modulus, we find the conditions under which 0 = 0. Then
we assume that 0 is small. Then in the first approximation
in equation (5), 6 =0 may be assumed. In this case
the spatial scale of the modulus L will be defined by I.
Suppose lq/lc < 1, which can be always satisfied in the
vicinity of Ty. Then, in equation (6), the term proportional
to dL/dz may be neglected, after which the equation will
be written as:

2
g—éschosQ—O, (10)

and solution to it with ¢ = 0, 7z(]|) may be written as

z+12)

cosf(z) = th o (11)
d
where Zg may be determined from
30\ 2
cos 0 (0) = <79> . (12)

Here
3 =209, 0PPMAA).

The obtained solution is valid with J > Jy. With J < Jg,
0)(z) = 0 is the solution to equation (10). Note that in
case of ¢ = +m/2(L) according to (4), we have 6, (z) =0
with any J. With 6(z) = 0 from (5) and (7) for ¢ = +a/2
and ¢ =0, 7, we get the following dependences of the
order parameter modulus on the z coordinate:

Z+2Z,()

V2

)4 - <Jj<>)2’ 14

=2y (PM1eS)

LL(H)(Z) = Loth (13)

Z, () is determined by

L@@ _ 1+< J
Lo Jan

where
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and i
Jp = 2pp 2 (FPM21e (A + 6)).

It can be seen that the antiferromagnetic order is
suppressed as J grows. In case of weak in-
terlayer exchange (J < J (), the order parame-
ter is not so different from the volume quantity,
ie. Lig)(0)/Lo~1—(3/Ii()* In the opposite case
J> ‘]L(H)) we have LL(H)(O)/LO ~ (JL<H)/J)2/2 < 1.
Calculation of the isothermal entropy change
As = s —s, according to (9) brings us to the following

result: L (0
As = Asmax<|'ti0) - Ill-(o )), (15)
2 1/2,.,3/2
Asmax - i \/E|CLO = (ZVT) ¢ (16)
2TN d 2TnpBd

Thus, As is defined by the order parameters at the inter-
face. Then to reach ASp,y, it is necessary that L, (0) =~ Lo
and L(0) ~ 0. This situation occurs when condition
Jy<JI<J, is fulfilled. Since (J”/JQ2 =3§8/(A+6),
then A>> § shall be in any case. The latter is satisfied
at least for most antiferromagnetic materials [21]. Note
that, since (JH/\]Q)z x lg/lc < 1, then as J increases,
significant decrease in the order parameter modulus at the
interface takes place before it deviates from the easy axis
direction. Then, when lg/lc < 1 is satisfied, 0(z) = 0 may
be assumed at any J.

Let’s estimate the Landau theory parameters for an
adequately studied antiferromagnet, MnF,. Comparison
with experiment [22-25] gives

Tn ~ 67.33K, a/Ty = 1K1,

B~9.50-10""erg™2 - G* - cm®,

A~1.55-10"*erg™? - G* - cm®,

5§~ 540-10"%erg2- G*- cm®,
x~1-1073, Ky~ 2.33.

y may be estimated from the equality of energy kpT
and exchange energy in the point of phase transition,
i.e. y ~ kgTy/(am?) [18], where a is the lattice parameter,
ms is the antiferromagnet saturation magnetization. For
MnF,, we find y1/2 ~4nm. ypy will be assumed equal
to y. Figures 2 and 3,a show the dependences of
Li(p(0) and As on the interlayer exchange constant J at
various temperatures T calculated for the ferromagnet|MnF,
structure at h = 20 nm. To satisfy the boundary condition at
z = d, antiferromagnet thickness d was set to 5l¢. Then the
order parameter at z = d almost reaches the unperturbed
Lo at any temperature. It can be seen from Figure 3,a
that As grows with distance from Ty. However, it is
impossible to determine the temperature at which As will
take the maximum value within the developed model,
because lg/lc < 1 was assumed to be satisfied.

Switching between states with ¢ = +7/2 and ¢ =0, 7w
may be carried out by applying the external magnetic
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Ly)(0)

Figure 2. Dependence of the order parameter modulus
at the compensated interface L,()(0) on the interlayer ex-
change constant J at various temperatures T calculated for
the ferromagnet|MnF, structure. Solid lines correspond to the
perpendicular direction (L) of the ferromagnet magnetization M
with respect to the anisotropy easy axis of the antiferromagnet,
dashed lines correspond to the parallel direction (||).

field H. Let’s find the magnitude of such switching field Hy,.
For this, note first that, taking into account (5)—(8), F may

be rewritten as
/ L*(z)dz.
0

In view of J < J1, we have Lj(z) <L.(z) and the
state with ¢ = +/2 has the lowest free energy. Then the
volume density of effective free energy of the given system
in the presence of magnetic field may be written as

feor = % Ker(M - %) — (MH),

F=-—

FNJ e

(17)

(18)

where Keg = 2AF/(M?h) > 0 is the effective anisotropy
constant (easy-plane), AF =F—F, is the free energy

E a l
. LOF ;
| L i
ﬁé 0.8F ]
: r 1
M 3 ]
&00.6_- ]
(0] : __
'S 04 ]
4 o02f ;

0 50 100 150 200

J/YI/Z

difference (17). For switching between the states, H shall
be applied along the easy axis of the antiferromagnet.
Minimizing f.¢ with respect to ¢, we find Hg, = KegM.
Figure 3, b shows the dependences of Hg, on the interlayer
exchange constant J at various temperatures T calculated for
the ferromagnet|MnF, structure at h = 20nm and d = 5l.
It can be seen that switching between the states takes
place in a quite small field, the highest value of which is
about 150 Oe. As corresponding to this field is comparable
with As in bulk Gd in the 10kOe field [26].

3. Uncompensated interface case

We assume the antiferromagnet interface to be uncom-
pensated (Figure 1, ¢). Then in the contribution of Fs (equa-
tion (3)) instead of —J(mM)‘Z:0 take the magnetization
interaction M with the magnetization of only one of two
sublattices (for definiteness, m;), i.e.

x 2
_ [(re(dm\T L A ey e
FS_/(Z(dZ) —|—2Xm +2(mL)+2mL dz
0
J J
~ 3 (mD],_, 5 (ML), (19)

where m; = (m + L)/2 was used. Then, after the calcula-
tion of m and substitution into Fs (see the Appendix), we
get

13232

Fs ~ 16}/5/2

(SM?L? + A(ML)?)]| (ML)|

z=0’

(20)

Equation (20) differs from equation (4), that is valid
for the compensated interface, on the one hand, by the
coefficient of the first summand and, on the other hand,
by the additional summand that is linear in J and L. As
can be seen below, appearance of this summand will affect
considerably the magnetocaloric properties of the given

J
2:0_5
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100

Hgyy, Oe

150

200

100
J/Yl/z

50

Figure 3. Dependence of a) the isotermal entropy change As and b) switching field Hsy on the interlayer exchange constant J at various
temperatures T calculated for the ferromagnet|MnF, structure for the compensated interface.

Physics of the Solid State, 2025, Vol. 67, No. 6



29th International Symposium ,,Nanophysics and Nanoelectronics*” 1041

system. Minimizing F with respect to L and 0, we again
get equations (5) and (6), however, now the boundary
conditions with z = 0 will be written as:

dL 3/2J2M2 2
o g OO
JM
~2 cos(6 — @), (21)
do 3/2\]2M2A
29 =&~ ——1%cos(6 — ¢)sin(0 — ¢)|,—0
dz|,_, 87/;/1/2 ‘
M
+ g LSln(Q - ¢)|z:0' (22)

With z — o0, 8 and modulus L reach unperturbed values,
i.e.0(z — o0) =0 and L(z — oo) = Ly. Differentiating the
free energy with respect to temperature, taking into ac-
count (5), (6), (21) and (22), we will again get equation (9)
for the volume density of the system’s magnetic entropy.
As for the compensated interface, the magnetic entropy is
defined by the average square of the order parameter over
the thickness of the antiferromagnet L2, the magnitude of
which depends on the direction of vector M.

Let’s first consider the parallel orientation of M with
respect to the easy axis of antiferromagnet anisotropy.
Unlike the compensated interface, the states with ¢ =0
and ¢ = s differ from each other due the appearance of the
linear summand in equation (20). We restrict ourselves
only to the case with ¢ =0. As before, we will first
assume that 0 is small. Then in the first approximation in
equation (5), & = 0 may be assumed. Taking into account
the new boundary conditions (21), we have

Lo cth “Z”, J< Jo,
Hi@ = L hz“fI J> )
Ot \/§|c 9 - 09

where Jy = 2Jﬁ/Jc, Je = V2pLo/(Ml¢). z| may be deter-

mined from

L|I|-(00) _\/1+ <%>4+Jic_ <%”>2 (24)

Sufficiently close to the Neel temperature, Jo < J) < Jo
is true. With low interlayer exchange (J < J¢), we have
L)(0)/Lo ~ 1+J/(2Jc), i.e. the order parameter at the
interface exceeds the volume value of Ly, which was
not observed for the compensated interface. Maximum
L;(0)/Ly was about 0.8(J;/Jc)*® and is reached at
I~ 271337013 With 3= Jo, we have L(0)/Lo = L,
and with J > Jy, antiferromagnetic order suppression takes
place. Finally, with high interlayer exchange (J > Jo) we
have L;;(0)/Lo ~ Jo/J. We show that, in case of ¢ =0, L
is parallel to M, i.e. 6(z) =0 at any J. Suppose again
l4/lc < 1, which can be always satisfied in the vicinity
of Tn. Then in equation (6), the summand proportional to
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dL/dz may be neglected, then we come to equation (10),
solution to which is written as (11), where instead of (12)

we have
230\ 2
COSQH (0) = <Ta> <1 +

With the growth of J, cos 0)(0) decreases monotonously.
Within J — oo, we have cos 0 (0) = 1. Thus, 6;(z) =0 is
the solution to equation (10).

Let’s consider the perpendicular orientation of M with
respect to the easy axis of antiferromagnet anisotropy
(¢ = £m/2). Unlike the compensated interface, L will
deviate from the easy axis direction and this deviation
may be significant. However, since lg/lc < 1, then in
the first approximation, to which we restrict ourselves,
equation (5) may neglect the summands containing 6, and
equation (6) may neglect the summand containing dL/dz.
Then equations for L and 6 will be separated again, and
the link between L and 6 will be included in boundary
conditions (21) and (22). Solutions to the derived equations
are written as

IMIg 1 > (25)

o Lo

Lo cth Z:/L—ZIJ‘ , J<Jo,
L@=4 " 7 (26)
Loth N J > Jo,
z+1z5

cos0, (z) =th , (27)

lq

Z, and 29L may be derived from the following equations:

L. (0) INY A, SN
» \/1+<23¢> 1+gs1n 0,(0) +£sm6l(0)

(3 (s fe),

(28)
2 (2)*sin6, (0)tg6, (0) — 2
Jo sin6, (0) + (22)*tg6, (0)

) ()3’ )

-
(sinGl(O) + (B thL(O))

where Jg = 2pLo/(Mly). Sufficiently close to the
Neel temperature, Jc < Jg < J (Jp) < Jo is satisfied.
With weak layer exchange interaction (J < v/JcJdq),
from equations (28) and (29) we get 6,(0) ~J/Jq4
and L, (0)/Lo ~ 1+ J%/(23cdgq). Unlike ¢ =0, as J
increases, the order parameter grows slower. With
J>2(A/8)Y23p, 0.(0) approaches /2, so that
tg6,(0) =~ (5/A) (J/(2J9))2. Since A> 4§, then L} — L.
With J > Jo, antiferromagnetic order suppression takes
place. Finally, with high interlayer exchange (J >> Jo) we
have L, (0)/Lo &~ Jo/J. Figure 4,a and b show the de-
pendences of L (,(0) and L;(0) — L, (0) on the interlayer
exchange constant J at various temperatures T calculated
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Figure 4. Dependences of a) the order parameter modulus at the uncompensated interface L, ()(0) and b) of L;;(0)—L.(0) on the
interlayer exchange constant J at various temperatures T calculated for the ferromagnet/MnF, structure. Solid lines in Figure 4,a
correspond to the perpendicular direction (L) of the ferromagnet magnetization M with respect to the anisotropy easy axis of the
antiferromagnet, dashed lines correspond to the parallel direction (||, ¢ = 0). The inset shows the same dependences for low values of J.
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Figure 5. Dependence of a) the isotermal entropy change As and b) switching field Hgy on the interlayer exchange constant J at various
temperatures T calculated for the ferromagnet|MnF, structure for the uncompensated interface.

for the ferromagnet|MnF; structure. 6, (0) was calculated
numerically from equation (29). As can be seen, at some
value of J, the sign of L (0) — L1 (0) is changed. Actually,
with J <« J., we have L” (0)/L0 — LL(O)/LO ~ J/(ZJC),,
and with J > Jo, we have L;;(0)/Lo — L1 (0)/Lo ox —1/7.
Calculation of the isothermal entropy change As =s; — s
according to (9) again brings us to equations (15) and (16).
Figure 5,a shows the dependences of As on the interlayer
exchange constant J at various temperatures T calculated for
the ferromagnet|/MnF, structure at h = 20nm and d = 5.
Pairs of maxima of these dependences are linked by the
above-mentioned features of L ; (0) — L;(0) depending on J.
As with the compensated interface, AS grows with distance
from Ty. However, it is impossible to determine the
temperature at which As will take the maximum value
within the developed model, because lg/lc < 1 shall be
satisfied.

Let’s find now the magnitude of switching field Hgy.
For this, taking into account (5), (6), (21) and (22), we

rewrite F as
oo
_B
4
0

With J < J¢, we have AF =F —F_ « —J, and with
J > Jy, we have AF x 1/ J*. Thus, with large interlayer
exchange, a state with ¢ = £/2 has the lowest free energy,
and the volume density of effective free energy of the given
system in the presence of a magnetic field may be written
s (18). In this case Hgy = KegM = 2AF/(Mh). In the
opposite case, a state with ¢ = 0 has the free energy, and
f e may be written as

z)dz — > MLcos(e D), (30)

fer = —M(H 4 Hep), (31)

where H, is the exchange bias field oriented along
the X axis. Minimizing f.x with respect to ¢, we find
Hgw ~ He, = —AF/(Mh). Figure 5,b shows the depen-
dences of Hg, on the interlayer exchange constant J at
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various temperatures T calculated for the ferromagnet|MnF,
structure at h = 20nm. Thus, switching between the states
with ¢ = 0 and ¢ = +a1/2 is carried out in a quite weak
field, which is about 100 Oe with the maximum isothermal
magnetic entropy change As ~ —0.4-10%erg - K~! - cm 3.

4. Conclusion

Within the Landau theory, of second-order phase tran-
sitions, the isothermal magnetic entropy change As was
calculated for the ferromagnetMnF, structure for the
compensated and uncompensated MnF; interfaces. It
is shown that the behavior of the dependence of As
on J depends considerably on the type of interface:
for the compensated interface, As has only one peak
(Figure 3,a), and for the uncompensated interface, it has
two peaks with unlike signs (Figure 5,a). Isothermal
magnetic entropy change may reach 1 - 10° erg - K. cm?
in the 150 Oe field in the compensated interface case, and
As~ —0.4-10%erg - K~' - cm™3 in the 100 Oe field in the
uncompensated interface case. In the given structure, the
interlayer exchange interaction leads to MCE enhancement.
Actually, As in an individual MnF, layer in the 150 Oe field
is just 2erg-K~'-cm™3 [17], which is lower by 4 to 5
orders of magnitude. The findings may turn out to be useful
for the development of microscale and nanoscale coolers
operating in weak magnetic fields.

The developed model is used to formulate criteria
to be satisfied by an antiferromagnetic material in the
ferromagnet|antiferromagnet structure in order to achieve
a significant MCE. First, the desired material shall have a
strong magnetic anisotropy (Ka) and, second, A/§ shall be
as high as possible. Satisfying these criteria provides the
maximum change of the order parameter modulus of the
antiferromagnetic material during exchange field rotation.
Thus, antiferromagnets with strong spin-flop-transition field
and strong dependence of the antiferromagnet-paramagnet
phase transition fields on the external field direction shall be
selected [18,21].
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Appendix

Let’s calculate m induced in the antiferromagnetic ma-
terial with the compensated interface due to the exchange
coupling with the ferromagnetic material. Minimization of

11" Physics of the Solid State, 2025, Vol. 67, No. 6

the Fs contribution with respect to m (equation (3)) gives
the following equation and boundary condition:

d’m 1 5
yoﬁ—}—cm—A(mL)L—SLmzo, (A1)
d J
o Iwm (A2)
dz Iz=0 V40
With distance from the interface, magnetization

shall decrease, so the additional boundary condition
m(z — oo) = 0 shall be introduced. We assume that the
spatial scale of L is much larger than that of m. In this
case, in equation (Al) L(z) = L(0), and the solution may
be written as

m(2) = > (Mexp(-a2)

+ (Lexp(-p) - exp(-a2)) MLL). (43)

where

L=L/L, &*=(14x5L%)/(x»0)

and
P’ = (1+x(A+8)L?)/ (xpo)-

Using equation (Al) and boundary condition (A2), Fs is
written as ]
Fs = 5 (mM)|
Finally, after substitution of m(0) and expansion of Fs
to L?, equation (4) is derived.
For the uncompensated interface, J shall be replaced
with J/2 in equations (A2) and (A3), and instead of (A4)

we have

0" (A4)

Fs = —% (mM)| - J (ML)

z=0 2 (AS)

z=0"

Then, instead of (4) we get equation (20).
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