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1. Introduction

Multilayer piezoelectric structures are currently used

mainly for creating acoustoelectric devices [1] such as

stripeline and matched filters [2] that are widely used in

modern mobile communications systems; high temperature

sensors, for example, langisite-crystal ones [3]; various

types of pressure and humidity transducers [4,5], chemical

substance concentration sensors [6,7], etc. Synthesis and

investigation of new structures facilitate cost reduction

and increase in the accuracy of such devices [8]. The

interest in exploring the influence of uniaxial mechanical

pressure is primarily driven by the fact that multilayer

piezoelectric structures are synthesized under pressure to

avoid fractures and damage, and this affects the elastic

wave properties [9]. For example, in polyvinylidenfluoride

(PVDF) structures with the 0◦|θ◦|0◦ configuration, appli-

cation of initial tension stress increases wave phase and

group velocities, which induces displacement of the Lamb

wave dispersion dependences [10]. Residual mechanical

stress affects the electron and hole drift in piezoelectric

semiconductors, and the magnitude of impact directly

depends on the wave propagation direction [11]. In case

of Love wave propagation in a viscoelastic medium, elastic

wave attenuation without initial mechanical stress goes

much faster than with initial mechanical stress [12]. When

a uniaxial mechanical pressure of 100MPa is applied to

an aluminum plate and the wave propagates at 45◦ with

respect to the applied pressure, interaction (hybridization)

of the fundamental modes SH0 and S0 occurs [13].

Hybridization of two and more modes plays a critical

role in elastic wave propagation leading to considerable

modification of dispersion dependences of the most prop-

erties, in particular, the phase and group velocities [14].
However, few if any investigations have been conducted

concerning the influence of mechanical pressure on a

multilayer piezoelectric structure in the hybridization region.

Acoustic back waves characterized by opposite directions

of phase velocity (PV) and acoustic wave energy flux,

i. e. negative energy transfer group velocities, have recently

drawn high interest of acoustoelectric device develop-

ers [15,16]. Existence of back waves was investigated

theoretically and experimentally in isotropic plates [17],
multilayer structures and phonon crystals [18,19]. PV

dispersion dependence of the Lamb wave, part of which

corresponds to the back wave, has a frequency band

where the elastic Lamb wave has a zero group velocity

(ZGV) [20,21]. Elastic wave modes with ZGV are special

points on a dispersion curve where the group velocity

vanishes, while PV is still finite, i. e. the wave vector of

this mode is still finite [22]. Advantage of these acoustic

wave modes in the ZGV point is in a combination of

energy localization and high Q factor of the cavity. Many

applications use these unique properties, in particular, a

high-Q AlN membrane cavity at 2GHz [23] in the ZGV

region. Acoustic Lamb back wave excitation and recording

procedure is addressed in [20,24], but the influence of

external mechanical impacts on acoustic back waves was

not investigated.

The paper studies the influence of uniaxial

mechanical pressure on the properties of elastic
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Lamb waves and SH-waves in multilayer piezoelectric

Al|AlN|[110]diamond type structures.

2. Theory of elastic wave propagation in
a piezoelectric-crystal plate exposed
to external mechanical pressure

For small amplitude waves when the piezoelectric crystal

is exposed to homogeneous mechanical pressure, equation

of motion, equations of electrostatics and equations of state

of the piezoelectric medium are written as [25]

ρ0
¨̃UA = τ̃AB,B + ŨA,PQτ PQ;

D̃M,M = 0;

τ̃AB = c∗
ABCDη̃CD − e∗MABẼM;

D̃M = ε∗MNẼN + e∗MABη̃AB,


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(1)

where ρ0 is the density of crystal in the undeformed state,

ŨA is the dynamic elastic displacement vector, τAB is

the thermodynamic stress tensor, D̃M electric flux density

vector, τ PQ = −τ PPPQ is the static uniaxial stress tensor,

PQ and PP are pressure force unit vector components, ηCD is

the strain tensor. Relation (1), as below, implies summation

convention over reiterated coordinate indices.

Effective material tensors of moduli of elasticity, piezo-

electric constants and permittivity in the approximation of

linear dependence on static mechanical stress τ are written

as [26]

C∗
ABKL = CE

ABKL −CE
ABKLQRSE

QRMNPMPNτ ;

e∗NAB = eNAB − eNABKLSE
KLMNPMPNτ ;

ε∗MN = ε
η
MN − HNMABSE

ABKLPKPLτ .


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

(2)

Here, CE
ABKL, eNAB, ε

η
MN are elastic piezoelectric and

dielectric second-order constants; SE
ABKL are elastic com-

pliance constants; CE
ABKLQR, eNABKL, HNMAB are nonlinear

elastic piezoelectric and electrostriction material tensors,

P are external mechanical pressure vector components.

Calculation was conducted in an arbitrary orthogonal

coordinate system, the X3 axis is oriented along the normal

to the free layer surface, and the X1 axis is oriented along

the wave propagation direction. For normal components of

the stress tensor of multilayer structures, equality to zero on

the free layer surfaces is the boundary condition. Continuity

of tangents to the interface surface of electric field strength

vector components is provided by the electric potential

continuity conditions at the layer−vacuum interface. In

addition, normal stress tensor component equality condition

and electric potential continuity at the layer interface shall

be satisfied. For example, boundary conditions for a three-

layer structure will be written as [26]:

τ
(1)
3 j = 0|x3=h3 ; D(1)

3 = D(vac)|x3=h3 ; ϕ
(1) = ϕ(vac)|x3=h3 ;

τ
(1)
3 j = τ

(2)
3 j |x3=h2 ; D(1)

3 = D(2)
3 |x3=h2 ; ϕ

(1) = ϕ(2)|x3=h2 ;

U (1)
A = U (2)

A |x3=h2 ;

τ
(2)
3 j = τ

(3)
3 j |x3=h1 ; D(2)

3 = D(3)
3 |x3=h1 ; ϕ

(2) = ϕ(3)|x3=h1 ;

U (2)
A = U (3)

A |x3=h1 ;

τ
(3)
3 j = 0|x3=0; D(3)

3 = D(vac)|x3=0; ϕ
(3) = ϕ(vac)|x3=0.
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(3)

When mechanical stresses are applied orthogonally to

the (P ‖ X3) free surface, elastic properties of the loading

medium shall be taken into account. Assuming that the

uniaxial stress takes place in such configuration without

elastic contact with the free surface (for example, loading

by gas medium), mechanical boundary conditions for this

case may be written as

τ̃3J + ŨJ,Kτ3K = 0(X3 = h3). (4)

The explicit form of boundary conditions (3) for a

piezoelectric plate exposed to the uniaxial mechanical

pressure is described in [27,28].

Elastic wave PV control coefficient αP with the applied

uniaxial mechanical pressure is written as

αP =
1

v0

(

1v

1P

)

1P→0

=
1

v0

(

v − v0

1P

)

1P→0

, (5)

where v0 is the wave propagation velocity without interac-

tion, v is the velocity at 1P .

3. Lamb wave dispersion dependences
for multilayer piezoelectric structures

The equations of motion were used to calculate the Lamb

wave PV propagation in multilayer piezoelectric structures.

In our case, the Al|AlN|[110]diamond structure was used as

multilayer structures. Elastic waves in all cases propagated

in the [100] orientation (along the X1 axis of the arbitrary

coordinate system) of the (001) plane for the piezoelectric

crystal, but the diamond is oriented along the [110] direction
of the (001) plane. Note that for the uniaxial mechanical

pressure along the normal to the (P ‖ X3) free surface of

the multilayer structure, the pressure was applied in such

a way that the mechanical boundary conditions were not

broken (4). All dispersion dependences are given depending

on h f , where h is the piezoelectric layer thickness, and f is

the wave propagation frequency.

Application of the external uniform mechanical pressure

along the normal to the free surface, i. e. P ‖ X3, to

the Al|AlN|[110]diamond structure, according to the Curie

principle, will change the initial symmetry of the diamond
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crystal from cubic to tetragonal. Consequently, all existing

material constants are modified:

C∗
11 = C∗

22 = CE
11 + [(C111 + C112)S12 + C112S11]τ ;

C∗
12 = CE

12 + [C123S11 + 2C112S12]τ ;

C∗
13 = C∗

23 = CE
12 + [C112(S11 + S12) + C123S12]τ ;

C∗
33 = CE

11 + [C111S11 + 2C112S12]τ ;

C∗
44 = C∗

55 = CE
44 + [C155(S11 + S12) + C144S12]τ ;

C∗
66 = CE

44 + [C144S11 + 2C155S12]τ .
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(6)

However, third-order material constants are unknown for

the AlN crystal, therefore the influence of the uniaxial

mechanical pressure on the AlN crystal layer was considered

only as geometrical nonlinearity, i. e. the static Green tensor

ηAB = δAB + 2SABCDτ CD;

τ CD = −τ PCPD [25].

Thus, in this case the Green−Christoffel tensor, explicit form

of which is given in [25], for the AlN layer in the elastic

wave propagation direction X1 considering the static Green

tensor is written as:

Ŵ11 = (CE
11 + 2CE

11S13τ )k2
1 + (CE

44 + 2CE
44S13τ )k2

3;

Ŵ13 =
(

CE
13 + CE

44 + 2(CE
13S11 + CE

44S33)τ
)

k1k3;

Ŵ22 = (CE
66 + 2CE

66S13τ )k2
1 + (CE

44 + 2CE
44S13τ )k2

3;

Ŵ31 =
(

CE
44 +

(

2(CE
44S33 + CE

13S13) + 1
)

τ
)

k1k3;

Ŵ33 = (CE
44 + 2CE

44S33τ )k2
1 +

(

CE
33 + (2CE

33S33 + 1)τ
)

k2
3;

Ŵ41 =
(

e15 + e31 + 2(e15S33 + e31S13)τ
)

k1k3;

Ŵ43 = (e15 − 2e15S33τ )k2
1 + (e33 − 2e33S33τ )k2

3;

Ŵ14 = (e15 + e31)k1k3;

Ŵ34 = e15k
2
1 + e33k

2
3;

Ŵ44 = ε11k
2
1 + ε33k2

3;

Ŵ12 = Ŵ21 = Ŵ23 = Ŵ32 = Ŵ42 = Ŵ24 = 0.
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(7)
Note that geometrical nonlinearity, i. e. geometrical layer

distortion, is exhibited in this case, and of course the

Green−Christoffel tensor (7) becomes nonsymmetric.

Figure 1 shows the dependences of Lamb waves

and SH-waves, and of control coefficients (5) for the

Al|AlN|[110]diamond structure for uniaxial mechanical

pressure application cases along the wave propagation

direction (P ‖ X1) orthogonally to the sagittal plane (P ‖ X2)
and orthogonally to the free surface (P ‖ X3). The (001)
plane of the piezoelectric AlN layer is isotropic with respect

to elastic properties, therefore pure elastic wave modes

propagate in this structure. The range of reviewed values

depending on h f (h is the layer thickness, f is the wave

frequency) is from 0 to 18 000m/s (Figure 1). Relation

of the piezolayer thickness to the diamond thickness

is 0.01, but the relation of the metal layer thickness to

the piezoelectric thickness is 0.03. In particular, the

Al|AlN|[110]diamond layer thicknesses, for example, may

be equal to 0.13|4.5|450 µm. Only the Lamb waves have

piezoelectric activity as shown in (7). Electromechanical

coupling coefficients for the Al|AlN|[110]diamond multi-

layer structure are shown in [29].
Typical PV dispersion dependence for the antisymmet-

ric (A) and symmetric (S) Lamb waves and SH-waves is

shown in Figure 1, b. When external pressure is applied

along the elastic wave propagation direction (P ‖ X1) for

the fundamental Lamb wave, the maximum αp (5) of the

symmetric mode S0 is reached for thin crystal wafers,

in particular, equal to 4.2 · 10−12 Pa−1 at h f = 1850m/s.

However, the maximum αp of the antisymmetric mode A0 is

equal to αp = 1.9 · 10−12 Pa−1 at h f = 50m/s (Figure 1, d).
As h f increases, PV of the fundamental mode S0 of the

Lamb wave tends to PV of 11141.9 m/s of the nondispersive

surface Rayleigh acoustic wave (SAW), control coefficient of
which is equal to αp = 1.95 · 10−12 Pa−1 when the uniaxial

mechanical pressure is applied along the X1 axis (P ‖ X1).
Note that as h f increases, the fundamental mode A0 of the

Lamb wave transforms into the Rayleigh mode R0 that de-

cays in the diamond crystal at h f > 3500m/s, PV of which

tends to the SAW velocity in the AlN crystal [30]. When the

uniaxial mechanical pressure is applied orthogonally to the

sagittal plane (P ‖ X2) for the fundamental modes S0 and A0

of the Lamb wave at h f > 3500m/s, control coefficients αp

are equal to 1.08 · 10−12 and 1.1 · 10−12 Pa−1, respectively

(Figure 1, e). However, when the uniaxial pressure is

applied as P ‖ X3, i. e. along the normal to the free surface,

values ofαp of the Lamb wave modes S0 and A0 differ more

considerably (Figure 1, f ). For example, at h f = 10 000m/s

they are 9.6 · 10−13 and 1.3 · 10−12 Pa−1, respectively.

In the variation range from 11 590m/s to 11 126m/s, i. e.

in the vicinity of the corresponding slow quasi-shear wave

PV values, the PV dispersion dependence for SH0 is weakly

pronounced. Dispersion dependence of αp for SH0 at P ‖ X1

is within the range from 1 · 10−12 to 1.56 · 10−12 Pa−1

(Figure 1, d).
Dispersion dependence of αp for a higher-order Lamb

wave, when the mechanical pressure P ‖ X1 or P ‖ X2 is

applied for symmetric Sn (n = 1, 2, . . .) and antisymmetric

An, is from 3.3 · 10−12 to 1.56 · 10−12 Pa−1 of the fast

quasi-shear wave (QFS) of the diamond at P ‖ X1. For

the elastic wave modes SHn, the αp variation range is

from 3.0 · 10−12 to 1.1 · 10−12 Pa−1 of the slow quasi-shear

wave (QSS) of the diamond at P ‖ X1 (Figure 1, d). The

same is also true when the mechanical pressure P ‖ X2 is

applied, but the range of αp for the Lamb wave modes is

from 2.6 · 10−12 to 1.51 · 10−12 Pa−1 (Figure 1, e).
In the Al|AlN|[110]diamond multilayer structure, there

is no hybridization effect in the elastic wave mode PV

range below the longitudinal bulk acoustic wave (BAW)
values (Figure 1, b). However, in the standing wave region,
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Figure 1. Dispersion dependences of elastic wave properties in the Al|AlN|[110]diamond multilayer structure. a) Arbitrary coordinate

system; b, c) phase velocities; control coefficients (n = 1, 2, . . .) for different pressure application cases: d) P ‖ X1; e) P ‖ X2; f ) P ‖ X3.
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Figure 2. a) Phase velocities, b) components U1, U3 of the displacement vectors of the interacting Lamb wave modes A2 and S2 .

i. e. when PV is higher than the diamond’s longitudinal

BAW PV, hybridization occurs [31] between the Lamb

wave modes A1 and S1, A2 and S2, A3 and S3, etc.

(Figure 1, c). In particular, hybridization between A2 and S2

occurs in the h f = 6750m/s region (Figure 2, a), where

the type of interacting modes changes. The hybridization

region is crosshatched in Figure 2, b. Note that, for the

next interacting Lamb wave mode pairs, the degree of
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Figure 3. Dispersion dependences of the Lamb wave back modes: a) phase velocities, b) control coefficients.

Maximum and minimum αp in the Al|AlN|[110]diamond structure

exposed to the uniaxial mechanical pressure

Mode
Pressure

h f , m/s αp, 10
−12 Pa−1

direction

S0 1850 3.88

S1 P ‖ X1 5400 3.30

A1 3600 3.34

S0 1850 4.23

A1 P ‖ X2 3700 2.68

SH0 13 650 0

SH2 3200 5.25

S0 P ‖ X3 1900 4

S2 3850 4.96

hybridization decreases as h f increases. Almost in any

external uniaxial mechanical pressure application case, the

degree of hybridization also decreases [32].
The given data may be used for choosing the best elastic

wave propagation direction in the Al|AlN|[110]diamond

structure exposed to the uniaxial mechanical pressure for

creating controlled acoustoelectric devices. In particular,

for A1, where the wave PV ν = 17 080.9m/s and signal

delay in the 0.01m line will be 1t = 5.85 · 10−7 s, when

P ‖ X1 is applied, 1t may vary within ±1.96 · 10−10 s,

because αp = 3.34 · 10−12 Pa−1. The table provides

some maximum and zero control coefficients in the

Al|AlN|[110]diamond multilayer structure (Figure 1).
In the velocity region corresponding to membrane oscil-

lations without energy transfer, the Al|AlN|[110]diamond

structure has acoustic back waves [33] that, as mentioned

above, are characterized by negative energy transfer ve-

locities in opposition to PV. Figure 3 shows the dis-

persion dependence of PV and αp of the acoustic back

modes S1, A2, and S3 of the Lamb wave. Frequency

cutoff of the Lamb back waves for S1 takes place at

h f = 1840m/s, h f = 3640m/s is the A2 mode cutoff fre-

quency and h f = 5320m/s is the S3 mode cutoff frequency.

Figure 3, b shows the dispersion dependences of αp of the

Lamb back waves when the uniaxial mechanical pressure is

applied along P ‖ X1. In particular, in the ZGV region, the

αp variation range is from 1.53 · 10−11 to 2.35 · 10−11 Pa−1

for S1, but for S3, the αp variation range is from 2.19 · 10−11

to 3.07 · 10−11 Pa−1. However, for direct Lamb waves
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Figure 4. Phase velocity dispersion dependences of A2 depending

on the AlN|diamond thickness ratio.

3∗ Physics of the Solid State, 2025, Vol. 67, No. 6



916 S.I. Burkov, O.N. Pletnev, P.P. Turchin, V.I. Turchin

in this PV range, values of αp have the same order, for

example, SH4 in Figure 3. Note that for other uniaxial

mechanical pressure application cases, in particular, along

the normal to the free surface P ‖ X3 or orthogonally to the

sagittal plane of the surface P ‖ X2, qualitative behavior of

the dispersion curves of αp is the same (Figure 3, b); they
differ only numerically. Note also a specific behavior of αp

for back modes where αp first decreases in the ZGV point,

but then starts growing as h f increases (Figure 3, b).

Application of the uniaxial mechanical pressure to the

Al|AlN|[110]diamond structure has a little effect on the

Lamb back wave cutoff frequency. The Lamb back wave

cutoff frequency changes considerably when the layer thick-

ness ration of the Al|AlN|[110]diamond structure changes.

Figure 4 shows the PV dispersion dependences of A2

depending on the relation of the piezoelectric AlN thickness

to the diamond thickness (d/h). Cutoff frequencies of A2

in this case h f are equal to 3540, 3630 and 3640m/s for

d/h 0.1, 0.05 and 0.01, respectively.

4. Conclusion

Application of the uniaxial mechanical pressure to

Al|AlN|[110]diamond induces the modification of piezo-

electric an dielectric constants of crystals leading to the

modification of the elastic wave properties. The most

considerable changes of the Lamb wave phase velocities are

associated with mode interaction exhibited in the standing

wave conditions. The influence of the uniaxial mechanical

pressure on the Lamb back wave cutoff frequencies is very

low in practice, but the relations of piezoelectric thick-

ness to substrate thickness modify the cutoff frequencies

considerably. Control coefficients for the standing wave

modes (membrane oscillations) are also up to three orders

of magnitude as high as those of the running Lamb waves.

Note that there are also values of h f where ap-

plication of the uniaxial mechanical pressure to the

Al|AlN|[110]diamond multilayer structure almost has no

effect on the elastic wave mode PV variations, i. e. the

control coefficients become equal to zero.
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