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Influence of uniaxial mechanical pressure on the characteristics
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The effect of uniaxial mechanical pressure on the dispersion characteristics of Lamb waves and SH-waves in
multilayer piezoelectric structures is studied for different variants of uniaxial mechanical pressure application. The
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1. Introduction

Multilayer piezoelectric structures are currently used
mainly for creating acoustoelectric devices [1] such as
stripeline and matched filters [2] that are widely used in
modern mobile communications systems; high temperature
sensors, for example, langisite-crystal ones [3]; various
types of pressure and humidity transducers [4,5], chemical
substance concentration sensors [6,7], etc. Synthesis and
investigation of new structures facilitate cost reduction
and increase in the accuracy of such devices [8]. The
interest in exploring the influence of uniaxial mechanical
pressure is primarily driven by the fact that multilayer
piezoelectric structures are synthesized under pressure to
avoid fractures and damage, and this affects the elastic
wave properties [9]. For example, in polyvinylidenfluoride
(PVDF) structures with the 0°]0°|0° configuration, appli-
cation of initial tension stress increases wave phase and
group velocities, which induces displacement of the Lamb
wave dispersion dependences [10]. Residual mechanical
stress affects the electron and hole drift in piezoelectric
semiconductors, and the magnitude of impact directly
depends on the wave propagation direction [11]. In case
of Love wave propagation in a viscoelastic medium, elastic
wave attenuation without initial mechanical stress goes
much faster than with initial mechanical stress [12]. When
a uniaxial mechanical pressure of 100 MPa is applied to
an aluminum plate and the wave propagates at 45° with
respect to the applied pressure, interaction (hybridization)
of the fundamental modes SHy and Sy occurs [13].
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Hybridization of two and more modes plays a critical
role in elastic wave propagation leading to considerable
modification of dispersion dependences of the most prop-
erties, in particular, the phase and group velocities [14].
However, few if any investigations have been conducted
concerning the influence of mechanical pressure on a
multilayer piezoelectric structure in the hybridization region.

Acoustic back waves characterized by opposite directions
of phase velocity (PV) and acoustic wave energy flux,
i.e. negative energy transfer group velocities, have recently
drawn high interest of acoustoelectric device develop-
ers [15,16]. Existence of back waves was investigated
theoretically and experimentally in isotropic plates [17],
multilayer structures and phonon crystals [18,19]. PV
dispersion dependence of the Lamb wave, part of which
corresponds to the back wave, has a frequency band
where the elastic Lamb wave has a zero group velocity
(ZGV) [20,21]. Elastic wave modes with ZGV are special
points on a dispersion curve where the group velocity
vanishes, while PV is still finite, i.e. the wave vector of
this mode is still finite [22]. Advantage of these acoustic
wave modes in the ZGV point is in a combination of
energy localization and high Q factor of the cavity. Many
applications use these unique properties, in particular, a
high-Q AIN membrane cavity at 2 GHz [23] in the ZGV
region. Acoustic Lamb back wave excitation and recording
procedure is addressed in [20,24], but the influence of
external mechanical impacts on acoustic back waves was
not investigated.
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Lamb waves and SH-waves in multilayer piezoelectric
Al|AIN|[110]diamond type structures.

2. Theory of elastic wave propagation in
a piezoelectric-crystal plate exposed
to external mechanical pressure

For small amplitude waves when the piezoelectric crystal
is exposed to homogeneous mechanical pressure, equation
of motion, equations of electrostatics and equations of state
of the piezoelectric medium are written as [25]

poUn = aBp + UapQ7 po;

lwh

MM = 0;

1

* ~ * = .
AB = Capcpllcd — evapEm;

O

M = eunEN + €yap7AB,

where pg is the density of crystal in the undeformed state,
fJA is the dynamic elastic displacement vector, 7ap is
the thermodynamic stress tensor, Dy electric flux density
vector, Tpg = —TPpPq is the static uniaxial stress tensor,
Pq and Pp are pressure force unit vector components, 7cp is
the strain tensor. Relation (1), as below, implies summation
convention over reiterated coordinate indices.

Effective material tensors of moduli of elasticity, piezo-
electric constants and permittivity in the approximation of
linear dependence on static mechanical stress T are written
as [20]

* E E E =.
Caskr = CapkL — CABKLQRSQRMN PMPNT;
€XAB = ENAB — eNABKLSK MNP MPNT; (2)

* AN E =

Here, CEBKL, ENAB, eﬁ,lN are elastic piezoelectric and
dielectric second-order constants; Spy; are elastic com-
pliance constants; CEBKLQR, enaBKL, Hnmap are nonlinear
elastic piezoelectric and electrostriction material tensors,
P are external mechanical pressure vector components.

Calculation was conducted in an arbitrary orthogonal
coordinate system, the X3 axis is oriented along the normal
to the free layer surface, and the X axis is oriented along
the wave propagation direction. For normal components of
the stress tensor of multilayer structures, equality to zero on
the free layer surfaces is the boundary condition. Continuity
of tangents to the interface surface of electric field strength
vector components is provided by the electric potential
continuity conditions at the layer—vacuum interface. In
addition, normal stress tensor component equality condition
and electric potential continuity at the layer interface shall
be satisfied. For example, boundary conditions for a three-

layer structure will be written as [26]:

13(]-1) = Olxyny; DY = Y2 |

D(VaC)|X3:h3; (p(l) — (p(

73(11) = 73<j2)|X3:hz§ DY = DYk @V = 0@y,
UL = U

737 = 737 = DY) = DY o 0@ = 03
U = U o

73(1'3) = Olx;-0; D(33) =DM, g; o) = |, .

(3)
When mechanical stresses are applied orthogonally to
the (P || X3) free surface, elastic properties of the loading
medium shall be taken into account. Assuming that the
uniaxial stress takes place in such configuration without
elastic contact with the free surface (for example, loading
by gas medium), mechanical boundary conditions for this
case may be written as

733+ Uskmsk = 0(X3 = h3). (4)

The explicit form of boundary conditions (3) for a
piezoelectric plate exposed to the uniaxial mechanical
pressure is described in [27,28].

Elastic wave PV control coefficient ap with the applied
uniaxial mechanical pressure is written as

et (B )
"7 v\ AP ap—o Yo\ AP J.p

where vg is the wave propagation velocity without interac-
tion, v is the velocity at AP.

3. Lamb wave dispersion dependences
for multilayer piezoelectric structures

The equations of motion were used to calculate the Lamb
wave PV propagation in multilayer piezoelectric structures.
In our case, the Al|AIN|[110]diamond structure was used as
multilayer structures. FElastic waves in all cases propagated
in the [100] orientation (along the X; axis of the arbitrary
coordinate system) of the (001) plane for the piezoelectric
crystal, but the diamond is oriented along the [110] direction
of the (001) plane. Note that for the uniaxial mechanical
pressure along the normal to the (P | X3) free surface of
the multilayer structure, the pressure was applied in such
a way that the mechanical boundary conditions were not
broken (4). All dispersion dependences are given depending
on hf, where h is the piezoelectric layer thickness, and f is
the wave propagation frequency.

Application of the external uniform mechanical pressure
along the normal to the free surface, ie. P | X3, to
the AlJAIN|[110]diamond structure, according to the Curie
principle, will change the initial symmetry of the diamond
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crystal from cubic to tetragonal. Consequently, all existing
material constants are modified:

i1 =C% =Cl + [(Ci11 + Ci112)S12 + C112S11]7;
12 = Ch, + [C123S11 + 2C112S12]7;
Ci3 = C33 = Cl, + [C112(Si1 + Si2) + C123S12]7;
C33 = Cl} + [C111Si1 + 2C112S07;
Cjis = Cis = Cly + [Cis5(Si1 + Si2) + C1a4S12]75
Cis = Chy + [C144S11 + 2C155S10] 7.

However, third-order material constants are unknown for
the AIN crystal, therefore the influence of the uniaxial
mechanical pressure on the AIN crystal layer was considered
only as geometrical nonlinearity, i.e. the static Green tensor

Nag = 6AB + 2SABCDT CD;

Tcp = —TPcPp [25].

Thus, in this case the Green—Christoffel tensor, explicit form
of which is given in [25], for the AIN layer in the elastic
wave propagation direction X; considering the static Green
tensor is written as:

I = (C’f1 + 2CE S37)k? + (CE, + 2CY,S157)K3;

I3 = (Cl3 4+ Cly + 2(CT5Si1 + ClyS33)7 ) Kiks;

T2 = (Cg + 2CE;SiaT K] + (Cly + 2C5,Si37)k3;
= (Chy + (2(ClyS33 + C3S13) + 1)T)kiks;

33 = (C, + 2C%,Su7)k3 + (C + (2C5Ss + 1)7)k;
= (e1s + €31 + 2(e15S33 + €31S13)7 ) ki ks;

T3 = (€15 — 2€15S537 KT + (€33 — 2€33S537)K3;

T4 = (e15 + es1)kiks;
T34 = €15k + es3k3;
Tas = eniki + e33K3;

IFo=Ty=Tpn=I3n=Iy

=Tu=0.
(7)
Note that geometrical nonlinearity, i.e. geometrical layer
distortion, is exhibited in this case, and of course the
Green—Christoffel tensor (7) becomes nonsymmetric.
Figure 1 shows the dependences of Lamb waves
and SH-waves, and of control coefficients (5) for the
Al|AIN|[110]diamond structure for uniaxial mechanical
pressure application cases along the wave propagation
direction (P || X;) orthogonally to the sagittal plane (P || X3)
and orthogonally to the free surface (P || X3). The (001)
plane of the piezoelectric AIN layer is isotropic with respect
to elastic properties, therefore pure elastic wave modes
propagate in this structure. The range of reviewed values
depending on hf (h is the layer thickness, f is the wave
frequency) is from 0 to 18000m/s (Figure 1). Relation

3 Physics of the Solid State, 2025, Vol. 67, No. 6

of the piezolayer thickness to the diamond thickness
is 0.01, but the relation of the metal layer thickness to
the piezoelectric thickness is 0.03. In particular, the
Al|AIN|[110]diamond layer thicknesses, for example, may
be equal to 0.13|4.5/450 um. Only the Lamb waves have
piezoelectric activity as shown in (7). Electromechanical
coupling coefficients for the Al|AIN|[110]diamond multi-
layer structure are shown in [29].

Typical PV dispersion dependence for the antisymmet-
ric (A) and symmetric (S) Lamb waves and SH-waves is
shown in Figure 1,b. When external pressure is applied
along the elastic wave propagation direction (P || Xj) for
the fundamental Lamb wave, the maximum «a, (5) of the
symmetric mode Sy is reached for thin crystal wafers,
in particular, equal to 4.2-10"'2Pa~! at hf = 1850 m/s.
However, the maximum «,, of the antisymmetric mode A is
equal to @y, = 1.9 - 10712Pa~! at hf = 50 m/s (Figure 1,d).
As hf increases, PV of the fundamental mode Sy of the
Lamb wave tends to PV of 11141.9 m/s of the nondispersive
surface Rayleigh acoustic wave (SAW), control coefficient of
which is equal to @, = 1.95- 10~ 2 Pa~! when the uniaxial
mechanical pressure is applied along the X; axis (P | Xy).
Note that as hf increases, the fundamental mode Ag of the
Lamb wave transforms into the Rayleigh mode Ry that de-
cays in the diamond crystal at hf > 3500 m/s, PV of which
tends to the SAW velocity in the AIN crystal [30]. When the
uniaxial mechanical pressure is applied orthogonally to the
sagittal plane (P || X;) for the fundamental modes Sy and Ag
of the Lamb wave at hf > 3500 m/s, control coefficients c,
are equal to 1.08 - 10~'2 and 1.1-10~'2Pa~!, respectively
(Figure 1,e). However, when the uniaxial pressure is
applied as P || X3, i.e. along the normal to the free surface,
values ofa, of the Lamb wave modes Sy and Aq differ more
considerably (Figure 1,f). For example, at hf = 10000 m/s
they are 9.6 - 10713 and 1.3 - 10~ !> Pa~!, respectively.

In the variation range from 11590 m/s to 11 126 m/s, i.e.
in the vicinity of the corresponding slow quasi-shear wave
PV values, the PV dispersion dependence for SHy is weakly
pronounced. Dispersion dependence of ¢, for SHy at P || X;
is within the range from 1-107'> to 1.56-10~'2Pa~"
(Figure 1,d).

Dispersion dependence of a, for a higher-order Lamb
wave, when the mechanical pressure P || X; or P || X; is
applied for symmetric S, (n=1, 2, ...) and antisymmetric
An, is from 3.3-107'2 to 1.56-10"'12Pa~! of the fast
quasi-shear wave (QFS) of the diamond at P | X;. For
the elastic wave modes SHj, the o variation range is
from 3.0 - 1072 to 1.1-10~'2Pa~! of the slow quasi-shear
wave (QSS) of the diamond at P || X; (Figure 1,d). The
same is also true when the mechanical pressure P || X; is
applied, but the range of a, for the Lamb wave modes is
from 2.6 - 1072 to 1.51 - 10~'2Pa~! (Figure 1,e).

In the Al|AIN|[110]diamond multilayer structure, there
is no hybridization effect in the elastic wave mode PV
range below the longitudinal bulk acoustic wave (BAW)
values (Figure 1, ). However, in the standing wave region,
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Figure 1. Dispersion dependences of elastic wave properties in the Al|AIN|[110]diamond multilayer structure. a) Arbitrary coordinate
system; b, ¢) phase velocities; control coefficients (n =1, 2, .. .) for different pressure application cases: d) P || Xi; e) P || Xo; f) P || Xs.
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Figure 2. a) Phase velocities, b) components U, U; of the displacement vectors of the interacting Lamb wave modes A, and S,.

i.e. when PV is higher than the diamond’s longitudinal
BAW PV, hybridization occurs [31] between the Lamb
wave modes A; and S;, A, and S;, Az and S;3, etc.
(Figure 1, ¢). In particular, hybridization between A, and S,

occurs in the hf = 6750m/s region (Figure 2,a), where
the type of interacting modes changes. The hybridization
region is crosshatched in Figure 2,b. Note that, for the
next interacting Lamb wave mode pairs, the degree of

Physics of the Solid State, 2025, Vol. 67, No. 6



Influence of uniaxial mechanical pressure on the characteristics of Lamb waves and SH waves...

915

a
120
|
|
100 | :
é |
|
80F Si
S Ay Sy : SH,
kﬁ ]
60 I |
]
H
40 '\
! k \
: \
20 '\_‘I‘ ] . ] L L e
1.85 190 3.6 39 6.0 7.5

hf, 103 m/s

8_
6_
- |
<
(a9}
o 4r
=
A d
3 ’
2-§ :
0_
1.84 1.88 3.6 39 5 6
hf, 103 m/s

Figure 3. Dispersion dependences of the Lamb wave back modes: a) phase velocities, b) control coefficients.

Maximum and minimum ¢, in the Al|AIN|[110]diamond structure
exposed to the uniaxial mechanical pressure

Mode (Ii)lrrzscstllléi hf, m/s ap, 10712 pa!
So 1850 3.88
Si P| X, 5400 330
Ay 3600 334
So 1850 423
Ay P| X, 3700 2.68
SH, 13650 0
SH» 3200 525
So P X 1900 4
S, 3850 496

hybridization decreases as hf increases. Almost in any
external uniaxial mechanical pressure application case, the
degree of hybridization also decreases [32].

The given data may be used for choosing the best elastic
wave propagation direction in the AlJAIN|[110]diamond
structure exposed to the uniaxial mechanical pressure for
creating controlled acoustoelectric devices. In particular,
for A;, where the wave PV v = 17080.9 m/s and signal
delay in the 0.01 m line will be At =5.85-10""s, when
P | X, is applied, At may vary within +1.96-10"10s,
because @, =3.34-10"2Pa~'.  The table provides
some maximum and zero control coefficients in the
Al|AIN|[110]diamond multilayer structure (Figure 1).

In the velocity region corresponding to membrane oscil-
lations without energy transfer, the AllAIN|[110]diamond
structure has acoustic back waves [33] that, as mentioned
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above, are characterized by negative energy transfer ve-
locities in opposition to PV. Figure 3 shows the dis-
persion dependence of PV and «;, of the acoustic back
modes S;, A, and S; of the Lamb wave. Frequency
cutoff of the Lamb back waves for S; takes place at
hf = 1840m/s, hf = 3640m/s is the A, mode cutoff fre-
quency and hf = 5320 m/s is the S3 mode cutoff frequency.

Figure 3, b shows the dispersion dependences of a;, of the
Lamb back waves when the uniaxial mechanical pressure is
applied along P || X;. In particular, in the ZGV region, the
a, variation range is from 1.53 - 10~!! to 2.35 - 10~"" Pa™!
for Sy, but for Ss, the «, variation range is from 2.19 - 10~ 1!
to 3.07-10""Pa~!. However, for direct Lamb waves

120} :
r — dh=0.1
F == dh=0.05
100 x w dlh =001
" 13
E 80
S
Aﬁ 60 -
40
20 ] . ] . 1
3.6 3.8 4.0
hf, 103 m/s

Figure 4. Phase velocity dispersion dependences of A, depending
on the AIN|diamond thickness ratio.
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in this PV range, values of o, have the same order, for
example, SHy in Figure 3. Note that for other uniaxial
mechanical pressure application cases, in particular, along
the normal to the free surface P || X3 or orthogonally to the
sagittal plane of the surface P || X;, qualitative behavior of
the dispersion curves of qj is the same (Figure 3, b); they
differ only numerically. Note also a specific behavior of a,
for back modes where «,, first decreases in the ZGV point,
but then starts growing as hf increases (Figure 3, b).

Application of the uniaxial mechanical pressure to the
Al|AIN|[110]diamond structure has a little effect on the
Lamb back wave cutoff frequency. The Lamb back wave
cutoff frequency changes considerably when the layer thick-
ness ration of the AI|AIN|[110]diamond structure changes.
Figure 4 shows the PV dispersion dependences of Aj
depending on the relation of the piezoelectric AIN thickness
to the diamond thickness (d/h). Cutoff frequencies of A;
in this case hf are equal to 3540, 3630 and 3640 m/s for
d/h 0.1, 0.05 and 0.01, respectively.

4. Conclusion

Application of the uniaxial mechanical pressure to
Al|AIN|[110]diamond induces the modification of piezo-
electric an dielectric constants of crystals leading to the
modification of the elastic wave properties. The most
considerable changes of the Lamb wave phase velocities are
associated with mode interaction exhibited in the standing
wave conditions. The influence of the uniaxial mechanical
pressure on the Lamb back wave cutoff frequencies is very
low in practice, but the relations of piezoelectric thick-
ness to substrate thickness modify the cutoff frequencies
considerably. Control coefficients for the standing wave
modes (membrane oscillations) are also up to three orders
of magnitude as high as those of the running Lamb waves.

Note that there are also values of hf where ap-
plication of the uniaxial mechanical pressure to the
Al|AIN|[110]diamond multilayer structure almost has no
effect on the elastic wave mode PV variations, i.e. the
control coefficients become equal to zero.
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