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The paper studies the polarization dependence of cesium vapor absorption in the spectral region of the T line

in weak magnetic fields, when the Zeeman structure of the spectrum is not resolved. The developed theory shows

that the experimentally observed dependence of absorption on the relative orientation of the azimuth of the probe

beam polarization and the magnetic field is a nonlinear effect and can be interpreted using the expansion of the

energy absorbed by the atom over the time T of its flight through the beam to terms ∼ T2 . Within the framework

of the proposed theory, it was also possible to explain the absence of an orientation dependence of absorption at the

transition F = 3 → F ′ = 4 (isotropic transition) and to quantitatively describe this dependence at other transitions

of the D1 cesium line.
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1. Introduction

Alkali metal vapors are a classic subject of atomic spec-

troscopy and have been studied for many decades. Their

nonlinear magnetic properties attract special attention from

researchers [1]. Nevertheless, even now, experiments with

atomic vapors often reveal effects whose interpretation is

not always obvious and can be of interest both for gathering

information about these systems and for applications. One

such effect is discussed in this work.

The effect was observed in an experiment on resonant

absorption of cesium vapors at the D1 line (λ = 894.593

nm). The diagram of the setup is shown in Fig. 1. A cuvette

with cesium vapors 5 was placed in a solenoid 4 creating a

sinusoidally time-varying magnetic field Bs with amplitude

∼ 2− 4 Gs and frequency ∼ 50 Hz. A linearly polarized

probe beam with a diameter 2r ∼ 4 mm, obtained by a

tunable diode laser 1, was attenuated by an attenuator 2 to

power P ∼ 5− 50 µW, passed through the cuvette 5 with

cesium vapors, and then detected by photodetector 6. A

half-wave wafer 3 allowed changing the polarization azimuth

mutual orientation of the probe beam polarization and the

magnetic field of the solenoid, which was directed along the

laboratory coordinate system axis x. The cuvette length l
was 50 mm. Observations were usually conducted in Voigt

geometry (the solenoid magnetic field perpendicular to the

probe beam direction), but the effect was also observed in

Faraday geometry (the solenoid magnetic field parallel to

the probe beam). The experiments were performed at a

temperature of 22◦C.

The cesium D1 line corresponds to transitions from two

ground-state multiplets with total momenta F = 4, and

F = 3 to two excited multiplets with momenta F ′ = 3, and

F ′ = 4 (Fig. 1). Accordingly, the absorption spectrum of ce-

sium vapors in the spectral region near the D1 line consists

of four components (F = 4 → F ′ = 3, F = 4 → F ′ = 4,

F = 3 → F ′ = 3, F = 3 → F ′ = 4). The frequency of the

probe optical beam was tuned in resonance with one of

these, after which the dependence of the transmitted beam

intensity P′ on the solenoid magnetic field was observed.

The discussed effect consisted of a narrow feature in the

transmitted beam intensity when the solenoid Bs magnetic

field passed through zero and changed sign (Fig. 2, a, c).
The character of this feature changed with the azimuthal

angle of the probe laser linear polarization (Fig. 2, c). In

our experiments, such a feature appeared on all D1 line

components except component F = 3 → F ′ = 4 (Fig. 2, a).
Similar effects are called magneto-optical resonances and

have been observed in Rb vapors [2,3] (in longitudinal

magnetic fields) and in Na and Rb vapors [4,5] (in
fluorescence intensity in transverse magnetic fields).
A simplest qualitative interpretation connects this feature

with the presence of a static Earth (laboratory) magnetic

field Be (Fig. 1), since no magnetic shielding was used

in our experiments. The atomic system absorption starts

to change significantly when the solenoid field becomes

comparable to the Earth’s field and the direction of the total

magnetic field B (Fig. 1) experiences a substantial change1.

This direction can be associated with the quantization

axis of the atomic system, whose orientation relative to

the probe beam linear polarization direction determines

the dipole moment operator matrix elements defining the

probe beam absorption. Therefore, at these times the

field dependence of atomic absorption exhibits a feature.

1 In our experiments, the Earth field had both components parallel and

perpendicular to the solenoid field.
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When the solenoid magnetic field significantly exceeds the

Earth’s field, the dipole moment matrix elements do not

depend on the magnetic field, as its direction (and thus

the quantization axis direction) is almost unchanged. This

directional dependence is decisive here since the Zeeman

splitting (∼ 1 MHz) in the applied magnetic fields (∼ 1Gs)

is much smaller than both the Doppler (1 ∼ 400MHz),

and homogeneous (δ ∼ 10 MHz) widths of the optical

atomic transitions. The Earth (laboratory) field can be

largely compensated using an additional electromagnet,

suppressing the aforementioned feature. Such experiments

were performed, and the calibration of the compensating

field allowed estimation of the Earth’s field, which in our

case was about ∼ 0.5Gs.

Let us note here that similar experiments in ultra-low

fields of about ∼ 10−4 Gs are described in [6], although

the nature of the observed effects and the methods of their

analysis differ from those presented below.

The first difficulty of the given interpretation is the fact

that, as will be shown later, the described effect should not

exist in linear theory. This is because the quantization axis

direction is conveniently chosen along the magnetic field,

but in principle, this direction can be arbitrary. The second

difficulty is the need to explain the absence of the effect on

the component F = 3 → F ′ = 4. Finally, the dependence

of the effect on the polarization azimuth mutual orientation

and the magnetic field also requires interpretation.

Special experiments have shown that despite the low

intensity of the probe beam (in typical experiments ∼ 5 µW

), the described effect is indeed nonlinear — further

decreasing the intensity leads to a reduction of the effect.

Theoretical analysis of magneto-optical resonance effects is

usually based on the Maxwell-Bloch equations [3–5,7] and

is used under conditions when the nonlinearity of atomic

dynamics is not assumed to be small. A consistent treatment

of this type (taking into account renormalization of atomic

states by the probe field, transit effects and related spatial

dispersion, nonlinear electrodynamics construction, etc.)

generally leads to a system of nonlinear integro-differential

equations, whose solution (even numerically) is known to

be challenging. Below, a simple theory of absorption of

the considered atomic system in the presence of weak

nonlinearity will be constructed, demonstrating all features

of the described effect and its orientational dependence. In

calculating absorption, we do not use the stationary density

matrix of the atomic system (as is often done [6]), assuming

the probe beam pumping is so weak that atoms do not have

time to significantly change their state while passing through

the laser beam. The small parameter in our consideration

is the transit time T . Our theory uses only the known

characteristics of the considered atomic system and in this

sense contains no fitting parameters.

2. Nonlinear Theory of Cesium Vapor
Absorption

In this section, we present the theory of absorption in

atomic systems with certain simplifications and additions

that take into account the specifics of our experiments. For

a qualitative interpretation of the described effects, it is

sufficient to consider the case of weak absorption, where

propagation effects can be neglected and the optical field

can be assumed to be the same for all atoms in the

beam. For a quantitative interpretation of our experiments,

in which the absorption was approximately ∼ 50%this

approximation may prove insufficient. A generalization of

the developed theory is provided in Section 4. In the

calculations presented below, we also do not take into

account interatomic collisions, since at the cesium vapor

pressures relevant to our experiments (∼ 10−6 Torr) the

atoms pass through the probe beam without collisions. The

calculations are based on a model whose main assumptions

are as follows.

i) Let us assume that cesium atoms enter the probing

beam in a state corresponding to an equal population

distribution among the sublevels of both lowest multiplets.

Upon entering the probing beam, the atoms begin making

transitions to the states of the resonant excited multiplet,

from which fast radiative disintegration occurs into both

main multiplets. At the same time, the non-resonant ground

multiplet is effectively populated, from which the probing

beam does not induce transitions — this is the phenomenon

of hyperfine pumping [8], which inevitably takes place and

must be taken into account. According to the conditions of

our experiments, we will assume that the rate of radiative

disintegration is significantly greater than the rate of induced

transitions.

ii) In calculating the dynamics of the atomic state in the

optical beam, we neglect relaxation processes causing tran-

sitions between the main multiplets (collisions with the cell

walls, interatomic collisions), assuming the corresponding

relaxation times to be much longer than the atomic flight

time through the probing beam.

iii) We assume that at the intensity of the probing beam

relevant to our experiments, the energy of an atom does

not change significantly during its flight time Tthrough
the beam. The corresponding condition is ω2

R/δ < T−1,

where T is the characteristic atomic flight time through the

beam, ωR is the Rabi frequency of the probing beam (see
below), and, δ is the homogeneous linewidth of the relevant

optical transitions. In our experiments, the parameters

appearing here are estimated as T ∼ 10−5 s, ωR ∼ 5 · 105
s−1, δ ∼ 2π · 107 s−1. Thus, the above condition holds.

Our consideration is based on the expansion of the atomic

energy change in powers of the flight time T . The first,

linear in T, contribution corresponds to linear absorption.

This contribution does not describe the effect under consid-

eration and it is necessary to include the∼ T2contribution.

The corresponding calculations are given below.
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Figure 1. Diagram of the experimental setup. 1 — tunable laser, 2 — attenuator, 3 — half-wave wafer used to rotate the azimuth of the

probe beam linear polarization, 4 — solenoid, 5 — cuvette with Cs vapors, 6 — photodetector, 7 — oscilloscope, 8 — sinusoidal current

generator. The laboratory coordinate system is shown in the lower-left corner. On the right is the scheme of transitions of the cesium D1

line. Bs — solenoid field, Be — Earth field, B — total field.
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Figure 2. Absorption dependence on magnetic field in Voigt geometry for various transitions of the cesium D1 line: a — experiment,

b — theory. Dependencies a and b are obtained at an angle between the probe beam linear polarization direction and the solenoid

magnetic field B. 90◦. (c) Behavior of absorption P′/P on transition F = 4 → F ′ = 3 at solenoid field passing through zero for various

angles (angles shown to the right) between the solenoid magnetic field and the probe beam linear polarization direction.

2.1. Absorption of a given velocity group

Consider a velocity group of atoms entering the probing

beam at time t = 0 with velocity v and leaving it at

time t = T . Denote by dNthe number of atoms in this

group. When analyzing the population dynamics of the

states for this group, we consider, besides the resonant

main and excited multiplets associated with the probing

beam, also the non-resonant ground multiplet, to which

radiative disintegration occurs from the resonant excited

multiplet (hyperfine pumping [8,9]). The non-resonant

excited multiplet will not be considered. Denote the

total angular momenta of the resonant ground and excited

multiplets by F and F ′, respectively, and the total angular

momentum of the non-resonant ground multiplet by J
(Fig. 3, a). We assume that at t = 0 the states of both

the main multiplets F and J are equally populated, and

therefore the population of each state in these multiplets

equals dN/[2J + 2F + 2]. Below it will be convenient to

normalize all populations to this value dN/[2J + 2F + 2].
For populations normalized in this manner, we introduce

the following notations:

nM, M = −F, ..., F — populations of the states |F,M〉 of
the resonant ground multiplet (capital Latin letters denote

the projection of the angular momentum),

pm, m = −F ′, ..., F ′ — populations of the states|F ′, m〉
of the resonant excited multiplet (lowercase Latin letters

denote the projection of the angular momentum),

Nα, α = −J, ..., J — populations of the states |J, α〉 of

the non-resonant ground multiplet (Greek letters denote the

projection of the angular momentum).
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Here, quantum numbers M, m and α correspond to

the projection of the total angular momentum along the

direction of the total magnetic field B, acting on the

atomic system, which, according to the remarks presented

in the Introduction, will be considered the quantization axis.

Recall that this direction does not coincide with the z axis of

the laboratory coordinate system (Fig. 1). Thus, the atomic

system under consideration loses isotropy and acquires a

distinguished direction determined by the magnetic field B
2.

The dynamics of the normalized populations introduced

above at t > 0 will be determined by the following kinetic

equations and initial conditions:

ṅM = −nM

F ′

∑

m=−F′

AM→m +
F∑

m=−F′

γm→M pm,

ṗm = − pm

{ F∑

M=−F

γm→M +

J∑

α=−J

γm→α

}

+

F∑

M=−F

AM→mnM, Ṅα =

F′

∑

m=−F ′

γm→αpm, (1)

nM(0) = Nα(0) = 1, pm = 0. (2)

Here: AM→m is the transition rate from the state |F, M〉
of the ground multiplet to the state |F ′, m〉 of the excited

multiplet due to the probing beam γm→M (γm→α ) is the

rate of radiative decay from the state |F ′, m〉 of the excited

multiplet into the state |F, M〉 (|J, α〉) of the resonant (non-
resonant) ground multiplet.

We will assume that the energy dE, absorbed by the

considered velocity group dN of atoms is determined by the

number of transitions from the multiplet F to the multiplet

F ′ during the flight time T , multiplied by the energy of the

atomic transition~�. Let us denote the specified number of

transitions (normalized by the factor dN/[2J + 2F + 2], as
was done above for the populations) by q. From equation

(1), we obtain the following expression for q:

q =

∫ T

0

dt
F∑

M=−F

nM

F′

∑

m=−F ′

AM→m

=

F∑

M=−F

∫ T

0

dt
F′

∑

m=−F ′

γm→M pm −
F∑

M=−F

∫ T

0

ṅMdt. (3)

Then,
dE
dN

=
1

2

~�q
J + F + 1

. (4)

2 The magnetic field in our experiments is of the order of the Earth’s

field; nevertheless, its perturbation on the atomic system must exceed that

caused by the probing beam, since only in this case does the nomenclature

of atomic states having definite angular momentum projections along

the magnetic field direction and between which the probing optical field

induces transitions, make sense.

Thus, the calculation of the contribution to the absorption

of the considered velocity group of atoms reduces to calcu-

lating the quantity q (3). For the calculations, we use the

fact that the sum of coefficients γm→M over the projections

of momentum M of the states of the ground multiplet does

not depend on the projection m of the momentum of the

excited multiplet (see Appendix 1 or [10,11]). Denote these

sums as follows:

F∑

M=−F

γm→M ≡ ŴF ′

F ,

J∑

α=−J

γm→α ≡ ŴF′

J (5)

(explicit expressions for ŴF′

F are given in Appendix 1).
Taking this into account and performing the integration in

the last term of (3), we obtain the following expression for

the quantity of interest q:

q = ŴF′

F

∫ T

0

dt
F ′

∑

m=−F′

pm −
F∑

M=−F

[

nM(T) − 1
]

. (6)

Next, let us note that in our experiments the rates of induced

transitions are much smaller than the rates of radiative

disintegration: AM→m ≪ γm→M . This allows neglecting

the derivative ṗmin the second equation of system (1).
Considering the expressions (5), one can write the following

expression for pm:

pm =

∑F
M=−F AM→mnM

ŴF′

F + ŴF ′

J

. (7)

Substituting this expression into (6) and recalling the

definition of the quantity q given in (3), we obtain the

following expression:

q =
ŴF′

F + ŴF ′

J

ŴF′

J

F∑

M=−F

[

1− nM(T)

]

. (8)

Solving the equations (1) for the given velocity group, one

can find the values nM(T). Then formulas (4) and (8) allow
computing the energy dE, absorbed from the probing beam

by the velocity group consisting ofdN atoms flying through

the beam during time T :

dE
dN

=
~�

F + J + 1

ŴF′

F + ŴF′

J

2ŴF ′

J

F∑

M=−F

[

1− nM(T)

]

. (9)

2.2. Averaging over velocity groups

Let us calculate the energy absorbed by atoms of the

velocity group v = (vx, vy, vz) passing through the beam

per unit time and perform averaging over velocity groups.

We assume the beam to be cylindrical with radius r and

axis coinciding with the y axis of the laboratory coordinate

system (Fig. 1). On the beam cross-section along the

level y designate an element of area
”
beam surface“ dS

(Fig. 3, b). Through the area element dS during the time
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Figure 3. a) Resonant multiplets F (ground) and F ′ (excited).
Downward arrows indicate radiative disintegration and hyperfine

pumping of the non-resonant multiplet J. b) To calculation of

energy absorbed by velocity groups from the probing beam.

interval dt passes dn= (v, dS)cM3(v)dvdt atoms of the

velocity group v (c where is the atomic concentration,

M3(v) = M(vx)M(vy)M(vz) is the Maxwell distribution

(10), dv is the
”
volume“ of the considered velocity group in

velocity space). All these atoms will pass the entire beam

and exit it, absorbing energy dE
dNdn, which they take from the

optical beam, thus causing the absorption we are interested

in. The total energy taken from the beam per unit time

by all velocity groups (i.e., the absorbed power, denote it

W ≡ dE
dN

dn
dt ), is determined by the integral:

W = −c
∫

2
(

−(v, dS)
)

(v, dS)
dE
dN

M3(v)dv, (10)

M3(v) = M(vx)M(vy)M(vz),

M(v) ≡ exp

(

− v2

v2
T

)
1√
πvT

, vT ≡
√

2kBT
mA

.

Here mA is the atomic mass, and, 2is a function account-

ing for the fact that only incoming atoms contribute to

absorption; for these atoms(v, dS) < 0. The position of

the area element dS is conveniently described in polar

coordinates: x = r cos β, z = r sin β (Fig. 3, b). Then

(v, dS) = [vx cos β + vz sin β]rdβdy. Appendix 2 shows

that the flight time of atoms of the velocity group v through

the beam depends only on vx and vz and is given by the

formula:

T(vx, vz, β) = −2r
vx cos β + vz sin β

v2
x + v2

z
. (11)

For a given flight time T the populations of the ground

resonant multiplet nM(T) depend only onvy, since only this

velocity component determines the Doppler shift, which in

turn affects transition probabilities AM→m (see below (23)).
Thus, the dependence of these populations on velocity

components has the form nM = nM(vy, T(vx, vz)). Now

use the fact that the integrand in (10) does not depend on

the coordinate y, and integrating over it simply yields the

length of the cell l along the probing beam axis.

Finally, recall again that only atoms flying into the beam

contribute to absorption. For these atoms, the flight time

(11) is positive (see Appendix 2). Taking all this into

account, as well as expression (9) for dE/dN, from formula

(10) we get the expression for the power absorbed by the

atomic system:

W =
ŴF′

F + ŴF′

J

2ŴF ′

J

clr ~�

F + J + 1

∫

dvdβ M3(v)2
(

T(vx, vz, β)
)

×
[

vx cos β + vz sin β
] F∑

M=−F

[

nM(vy, T(vx, vz, β)) − 1
]

.

(12)
This formula shows that the energy absorbed by the atoms

is effectively proportional to the decrease in their number in

the ground resonant multiplet, which is an expected result.

2.3. Expansion in powers of flight time T

As stated above, we consider the case of not too strong

absorption when the populations nM of states of the ground

resonant multiplet do not have time to change significantly

during the flight time T of atoms through the beam. Based

on this, expand the quantities in the square brackets of the

last multiplier in (12) in powers of T and keep only the first

two terms of the expansion:

nM(T) − 1 ≡ n1MT + n2MT2 + O(T3). (13)

Note that the flight time T (11) depends only on the

vx, vzcomponent of the atomic velocity, and the quantities

n1M and n2M depend only on vy (see the note after (11)).
Substituting (13) into (12) allows writing the absorption W
as:

W =
ŴF′

F + ŴF ′

J

2ŴF ′

J

clr ~�

F + J + 1

[

S161 + S262

]

+ O(T3), (14)

where

Sp ≡
∫

dvxdvzdβ M(vx)M(vz)2
(

T(vx, vz, β)
)

×
[

vx cos β + vz sin β

]

T p(vx, vz, β), (15)

S1 = −πr, S2 = −2
√
πr 2

3vT
, (16)

6p ≡
∫

dvyM(vy)

F∑

M=−F

npM, p = 1, 2.

Calculations of the integrals (15) are given in Appendix

3. Substitution of (7) into the first of the equations (1)
allows obtaining a closed equation for the populations

nM, M = −F, ..., F , which can be represented in matrix

form:

ṅM =

F∑

M′=−F

BMM′nM′ , (17)
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where

BMM′ ≡
F′

∑

m=−F′

AM′→mγm→M

ŴF ′

F + ŴF′

J

− δMM′

F ′

∑

m=−F′

AM→m.

The solution of equation (17) has the form

nM(T) =
∑F

M′=−F [eBT]MM′nM′(0). Expanding the exponent

into a series up to T2 and considering the initial condition

(2), we get:

nM(T) − 1 = T
F∑

M′=−F

BMM′

+
T2

2

F∑

M′=−F

F∑

M′′=−F

BMM′BM′M′′ + O(T3). (18)

Comparing this expression with (13), and using (16), we
obtain:

61 =

∫

dvyM(vy)σ1, σ1 ≡
F∑

M=−F

F∑

M′=−F

BMM′

= − ŴF′

J

ŴF′

F + ŴF ′

J

F∑

M=−F

F ′

∑

m=−F′

AM→m, (19)

62 =

∫

dvyM(vy)σ2, (20)

σ2 ≡
1

2

F∑

M=−F

F∑

M′=−F

F∑

M′′=−F

BMM′BM′M′′

= − ŴF′

J

ŴF ′

F + ŴF′

J

F∑

M=−F

F′

∑

m=−F ′

AM→m

F∑

M′=−F

BMM′

2
.

Here, we used the fact that the matrix elements AM→m

and BMM′ depend only on the vy-component of the atomic

velocity, which determines the Doppler shift. We will now

proceed to calculating these matrix elements.

2.4. Probabilities of induced transitions AM→m

In our experiments, the dependence of resonant absorp-

tion of cesium vapor on the solenoid field is recorded (Fig.
1), which is directed along the axis x of the laboratory

coordinate system Bs = (Bs, 0, 0). As was said, the

states between which the probing beam induces transitions

are referred to the quantization axis parallel to the total

magnetic field B = Bs + Be acting on the atomic system

(Fig. 1). We assume that in the laboratory coordinate

system the field B has components defined by angles φ

and η, and the electric field E of the probing beam in this

system is characterized by the azimuth of the polarization

plane θ. Then

B ≡ B





sinφ cos η

sin η

cosφ cos η



 , E = E





sin θ

0

cos θ



 cosωt, (21)

besides

φ = arctg
Bs + Bex

Bez
, η = arctg

{
Bey

Bs + Bex
sinφ

}

,

B =
√

[Bs + Bex]2 + B2
ey + B2

ez.

The matrix D of the operator of interaction of the atomic

system with the optical field of the probing beam in

the wave function representation with definite projection

along the direction of the magnetic field has the form

D = aF′

F (E′

xSx + E′

ySy + E′

zSz) (we omit the factor cosωt

), where aF′

F is the reduced matrix element of the dipole

moment of the transition between the ground and excited

atomic multiplets, E′

x,y,z are components of the electric

field of the probing beam, which differ from (21), in the

coordinate system with the quantization axis z′, directed

along the magnetic field B, and Sx,y,z are standard vector

operator matrices in the wave function representation with

definite projection of momentum along the quantization axis

z′ [12]. Direct calculation of the components E′

x,y,z leads to

the following expression for the matrix D:

D ≡ EaF′

F

[ X
︷ ︸︸ ︷

sin[θ − φ] Sx −
Y

︷ ︸︸ ︷

sin η cos[θ − φ] Sy

+

Z
︷ ︸︸ ︷

cos η cos[θ − φ] Sz

]

. (22)

Denoting the detuning between the frequency of the

probing beam ω and the transition frequency be-

tween the ground and excited resonant multiplets �

by ν ≡ �− ω and introducing the standard matrix

S+ ≡ Sx + ıSy [12], the expression for the transition rate

AM→m = 2π|〈F, M|D|F ′, m〉|2L([EF ′

m − EF
M ]/~)/~2 can be

written as follows [12]:

AM→m =
2π[aF ′

F E]2

~2
L

(

ν + kvy + mωL1 − MωL2

)

aM→m,

(23)

aM→m ≡ H2

{

δm,M+1|〈F ′M + 1|S+|FM〉|2

+ δm,M−1|〈FM|S+|F ′M − 1〉|2
}

+ Z2δm,M |〈F ′M|Sz|FM〉|2,

L(x) ≡ 1

π

δ

δ2 + x2
,

where H2≡ [X2+Y2]/4 = 1
4
[cos2[θ − φ] sin2 η+sin2[θ−φ]],

Z2 = cos2[θ − φ] cos2 η, k ≡ ω/c0 (c0 – speed of light,

and 4H2 + Z2 = 1), δ – homogeneous linewidth, ωL2

and EF
M = ωL2M (ωL1 and EF′

m = � + ωL1m) are the

Larmor frequencies and energies of the ground (excited)
multiplet states respectively. Formula (23) also defines the

coefficients aM→m, which we will use later. The matrix

elements S+ entering (23) differ from zero only when
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F ′ = F ± 1 or F ′ = F and are given by the expressions

[12]

〈F, M + 1|S+|F − 1, M〉 =

√

(F + M)(F + M + 1)

2
,

(24)

〈F − 1, M + 1|S+|F, M〉 = −
√

(F − M)(F − M − 1)

2
,

〈F, M|Sz|F−1, M〉 = 〈F − 1, M|Sz|F,M〉 = −
√

F2 − M2

2
,

〈F, M + 1|S+|F, M〉 =
√

F(F + 1) − (M + 1)M, (25)

〈F, M|Sz|F, M〉 = M.

As seen from (23), the transition rates depend only on the

component of the atomic velocity determining the Doppler

shift kvy, and when calculating the quantities 61 (19) and

62 (20) integrals of the following type will appear

I 1(x) ≡
∫

M(v)L(kv + x)dv, (26)

I 2(x, y) ≡
∫

M(v)L(kv + x)L(kv + y)dv.

The following circumstance allows simplifying formulas

(19), (20). Since we are interested in the absorption

behavior of the atomic system in magnetic fields so small

that the Zeeman splittings are significantly less than the

homogeneous linewidth ωL1,2 ≪ δ, one can assume that

the integrals in (26) depend only on the optical detuning ν .

For example, I 1(ν + mωL1 − MωL2) ≈ I 1(ν) ≈ k−1
M(ν/k)

and I 2(ν + mωL1 − MωL2, ν + m′ωL1 − M ′ωL2) ≈ I 2(ν, ν)
≈ k−1

M(ν/k)/[2πδ]. At this stage of calculations, the

dependence on the magnitude of the magnetic field, whose

direction sets the quantization axis, disappears.

For further calculations, we construct from the matrix B
which does not depend on optical detuning, a matrix b, in
which the transition rates AM→m → aM→m (17)

bMM′ ≡
F′

∑

m=−F′

aM′→mγm→M

ŴF′

F + ŴF′

J

− δMM′

F′

∑

m=−F ′

aM→m. (27)

are Taking into account the remarks made above, the

quantities 61,2 (19), (20) can now be written as:

61 = −M(ν/k)
2π[aF ′

F E]2

k~2

ŴF′

J

ŴF′

F + ŴF ′

J

F ′

∑

m=−F′

F∑

M=−F

aM→m,

(28)

62 = −k−1
M(ν/k)

4πδ

[
2π[aF′

F E]2

~2

]2
ŴF′

J

ŴF′

F + ŴF ′

J

×
F′

∑

m=−F ′

F∑

M=−F

F∑

M′=−F

aM→mbMM′ . (29)

In obtaining these formulas, wherever possible, summation

over M was performed using the relations (5). Substituting

the obtained expressions for 61,2 into formula (14), the

expression for the power W absorbed by the atomic system

can be brought to the form:

W =
√
πN

e−ν2/12

1

ω2
R~�

F + J + 1

[

I
︷ ︸︸ ︷

F′

∑

m=−F ′

F∑

M=−F

aM→m

+ ω2
RT1T2

A

︷ ︸︸ ︷

F′

∑

m=−F ′

F∑

M=−F

F∑

M′=−F

aM→mbMM′

]

, (30)

N = cπr 2l , 1 = kvT, ωR ≡ aF′

F E
~

,

T1 ≡
1

3
√
π

r
vT

, T2 ≡
1

δ
.

The quantities N and 1 represent, respectively, the number

of atoms in the beam and the Doppler width of the atomic

absorption line, while ωR is the Rabi frequency determined

by the intensity of the probing beam. In the case of weak

absorption, the power P′ of the probing beam at the output

of the cell is related to the input power Pby the relation

P′ = P −W. Note here that the nomenclature of the atomic

eigenstates used, relying on the quantum numbers M and

m projections of the total angular momentum — is justified

when the optical excitation of the atomic system is not too

strong and ωR ≪ ωL1,2 .

The first sum I in the square brackets describes the

linear absorption independent of the probing beam intensity.

The linear contribution ∼ I is the standard expression for

absorbed power by an atomic system under unresolved

multiplet structure conditions and, being the dominant

term, can be used for the experimental evaluation of the

reduced matrix elements aF′

F . Using expressions (24),
(25) for the matrix elements entering this sum, explicit

formulas for I can be derived and it can be shown

(Appendix 4, expressions (56)–(58)), that this quantity

does not depend on the angles θ, φ, η. Thus, as noted

above, linear theory does not yield the considered effect

of absorption dependence on the mutual orientation of the

magnetic field and the linear polarization of the probing

beam. This dependence is described by the second term

∼ A in the square brackets (30), whose contribution is

proportional to the probing beam intensity ∼ E2. The

factor appearing before this term in (30) has the form of a

standard saturation factor ω2
RT1T2, which includes the Rabi

frequency ωR, the phase relaxation time T2 ≡ 1/δ and the

effective
”
population relaxation time“ T1, determined by the

transit time ∼ r /vTof atoms through the probing beam. The

nonlinear contribution to absorption ∼ A is key to the effect

discussed in this work. This contribution is anisotropic, i.e.,

it depends on the angle between the magnetic field acting

on the atomic system and the direction of linear polarization

of the probing beam. This dependence is fully contained in

the factor A, and will be described in the next section.
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3. Nonlinear anisotropic contribution to
the absorption of an atomic system.
Isotropy of the
F = 3 → F′

= 4transition

Substituting (27) into (30), one can obtain the following

expression for the quantity A:

A =

F ′

∑

m,m′=−F ′

F∑

M=−F

F∑

M′=−F

aM′→m′γm′→MaM→m

ŴF ′

F + ŴF′

J

−
F′

∑

m,m′=−F′

F∑

M=−F

aM→−maM→m′ . (31)

Let us introduce the quantities 8F′F
M and UF ′F

M using the

relations:

F′

∑

m=−F ′

aM→m =

= H2

8F′F
M

︷ ︸︸ ︷
{

|〈F ′M + 1|S+|FM〉|2 + |〈FM|S+|F ′M − 1〉|2
}

+ Z2

UF′F
M

︷ ︸︸ ︷

|〈F ′M|Sz|FM〉|2 ≡ H28F ′F
M + Z2UF ′F

M .

(32)
Using (24), it can be verified that

F∑

M=−F

aM→m = H28FF′

m + Z2UFF ′

m . (33)

In terms of the introduced quantities 8F′F
M and UF′F

M the

anisotropic contribution to the absorption A can be written

as:

A =

=

F′

∑

m=−F ′

F∑

M=−F

[H28F ′F
M +Z2UF ′F

M ]γm→M [H28FF′

m +Z2UFF′

m ]

ŴF′

F + ŴF′

J

−
F∑

M=−F

[H28F ′F
M + Z2UF ′F

M ]2.

(34)
From the given expression, it follows that the general form

of the dependence of A on the angular factors H and Z is:

A = αH4 + βZ4 + γH2Z2, (35)

where

α ≡
F′

∑

m=−F′

F∑

M=−F

8F′F
M γm→M8FF ′

m

ŴF′

F + ŴF ′

J

−
F∑

M=−F

[8F′F
M ]2,

β ≡
F ′

∑

m=−F′

F∑

M=−F

UF ′F
M γm→MUFF′

m

ŴF′

F + ŴF ′

J

−
F∑

M=−F

[UF ′F
M ]2,

γ ≡
F′

∑

m=−F′

F∑

M=−F

8F′F
M γm→MUFF′

m + UF ′F
M γm→M8FF ′

m

ŴF′

F + ŴF ′

J

− 2

F∑

M=−F

UF ′F
M 8F ′F

M .

From definition (23) for the quantities H and Z it is clear

that they can be considered respectively as half the sine and

the cosine of the angle ξbetween the polarization direction

of the probe beam and the magnetic field:

H ≡ 1

2
sin ξ, Z = cos ξ. (36)

For arbitrary F and F ′ = F, F ± 1 using relations (24) and

(25, the following explicit expressions for the quantities

8F′F
M and UF ′F

M can be obtained:

8F ′F
M = (F + 1)(F + 2) + M2, UF ′F

M = [(F + 1)2 − M2]/2,

F ′ = F + 1,

8F′F
M = F(F − 1) + M2, UF ′F

M = [F2 − M2]/2,

F ′ = F − 1,

8F′F
M = 2[F(F + 1) − M2], UF ′F

M = M2,

F ′ = F. (37)

Since the expression (35) for the anisotropic contri-

bution A includes ratios of the form γm→M/[ŴF′

F + ŴF′

J ]
(see (35), only relative values of the reduced transition

matrix elements [aF′

F ]2, that enter expressions (44), (45)
for γm→M , ŴF′

F , ŴF ′

F are needed for the calculation of this

contribution. For the D1 line of cesium, these relative values

are known [10]:

[a4
3]
2 = 7/12 d2, F = 3 → F ′ = 4,

[a3
4]
2 = 3/4 d2, F = 4 → F ′ = 3,

[a4
4]
2 = 5/12 d2, F = 4 → F ′ = 4,

[a3
3]
2 = 1/4 d2, F = 3 → F ′ = 3,

(38)

where the overall dipole moment d2 of the cesium D1 line

can be determined experimentally and compared with its

tabulated value [10].
The angular dependence of the anisotropic contributionA

(35) for all four transitions of the cesium D1 line, calculated

using these data, is shown in Fig. 4. As seen from

this figure, this contribution is always negative, and for

the F = 3 → F ′ = 4 transition, the angular dependence is

practically absent, which fully agrees with the experiment.

In our experiments, the power P′ of the beam transmitted

through the cell with cesium vapor was recorded. If the

absorption of the atomic system were small 3, this power

3 i.e., when propagation effects can be neglected and the single scattering

approximation is applicable
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Figure 4. Dependence of the nonlinear contributionA (35)
to the transmission on the angle ξ between the magnetic field

and the direction of linear polarization of the probe beam (36)
for all transitions of the cesium D1 line. It can be seen that,

in agreement with the experiment, the developed theory shows

essentially complete isotropy of the F = 3 → F ′ = 4transition.

would be related to the power P of the incident laser

beam by the relation P′ = P −W, where the quantity W
is defined by expression (30). However, in our experiments,

absorption could be ∼ 50% or greater, so it seems natural to

take propagation effects into account, relating the calculated

quantity W to the optical density of the vapor in the cell.

This will be done in the next section.

4. Accounting for Propagation Effects

The formula (30) derived above for the absorbed power

is strictly applicable when the intensity of the probing beam

changes little while passing through the cell containing alkali

metal vapor — the Rabi frequency ωR entering this formula

is considered independent of position inside the cell and

determined by the input laser beam power. In a real

experiment, the transmission coefficient can be ∼ 0.5 or

less, which can noticeably affect the accuracy of estimates

made using formula (30). In this regard, it is appropriate to

indicate a straightforward method to account for propagation

effects and to provide expressions for the resonant optical

density of atomic vapors. For this, one may consider that

the above calculation of absorbed power applies not to the

entire cell length l , but to an element dy of the probing

beam inside the cell. The power p of the probing beam

at the input of this element and its power p + dp at the

output are related byp + dp = p−W, where in expression

(30) for W one should replace l → dy and express the Rabi

frequencyωR through the
”
current“ power p of the probing

beam using the known relation [10]:

ω2
R =

[
aF′

F

~

]2

E2 =

[
aF′

F

~

]2
2µ0c0

πr 2
p. (39)

This leads to the following equation for the probing beam

power p, which becomes a function of the coordinate y:

dp
dy

= −̹p− εp2, (40)

where

̹ =
e−ν2/12

1
f rac2

√
πµ0c0c ~�F + J + 1

[
aF′

F

~

]2

I,

ε =
e−ν2/12

1

4c ~�

F + J + 1

[
aF′

F

~

]4
µ2
0c2

0

3πrvTδ
A.

The solution of equation (40) with the initial condition

p(0) ≡ P (where P is the laser beam power at the cell

entrance) has the form:

P′ ≡ p(l) =
̹

̹ + P[1− e−̹l ]ε
Pe−̹l . (41)

As is seen from this expression, ̹can be interpreted as

the optical density of the atomic vapor inside the cell, and

formula (41) is applicable not only for small absorption.

Note that at very high beam power, formula (41) becomes

inapplicable. Section 3 stated that the quantity ε ∼ A,

describing the nonlinear contribution to absorption, is

negative ε < 0. Therefore, the relations presented here only

make sense when the beam power does not exceed the

power

Pc ≡ −̹/ε = −3

2

π3/2rvT~
2δ

µ0c0[aF′

F ]2
I

A
, (42)

at which the denominator in (41) can become zero, and

they remain valid for beam power P < Pc .

Results of calculations using formulas (40) and (41) are

shown in Fig. 2 d and Fig. 5. For clarity of comparison

with experiment, the probing beam power was chosen

to be sufficiently large (∼ 50 µW ) — in this case, the

relative magnitude of the absorption feature’s dependence

on magnetic field was ∼ 10% (Figs. 2b, d and 5) and

was clearly visible. Although the applicability condition

ωR ≪ ωL1,2 of our theory might have been somewhat

violated in this case, the experimental data presented

in Fig. 2, b and Fig. 5 could be interpreted using

relations (30),(40) and (41), with the values of the reduced

matrix elements (38) aF′

F ∼ d ∼ 1.6 · 10−30 C · m used

corresponding to the cesium vapor absorption cross-section

known from other sources [10] within an average error

∼ 30%.

Note that in our experiments we used the Earth’s mag-

netic field Be to observe the dependence of atomic system

absorption on the mutual orientation of the probing beam

polarization and the total magnetic field B. This dependence

can be described by a single angle ξ and is effectively

presented in Fig. 4. The experiments in Figs. 2, b,c and 5

show absorption dependence on the solenoid field Bs, with

the mutual orientation of the total magnetic field and the

probing beam polarization direction determined by formulas

(21) and (22). The required components of the Earth’s

field were determined by fitting and corresponded to known

values Bex, Bey, Bez ∼ 0.5 Gs.

Since the described effect essentially represents depen-

dence of absorption on the azimuth of linear polarization

(linear dichroism), beam propagation in the atomic medium
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Figure 5. Resonant probing on theF = 4 → F ′ = 3 transition of the cesium D1 line. Calculated (smooth) and experimental (noisy)
dependencies of the beam power P′ after passing through the cell on the solenoid magnetic field, in the Voigt geometry, for various

mutual orientations of the azimuth of the probing beam polarization and the solenoid magnetic field (compare with Fig. 2, c).

may be accompanied by changes in its polarization. Such

an effect is described in [13–15].

5. Conclusion

This work investigates the dependence of cesium atomic

vapor absorption near the D1 line on a small (close to

Earth’s) magnetic field. It is shown that even under

unresolved Zeeman structure conditions, the nonlinear

absorption significantly depends on the mutual orientation of

the magnetic field and the azimuth of linear polarization of

the probing beam at all transitions except F = 3 → F ′ = 4,

where this dependence is suppressed by at least two orders

of magnitude. A theory of nonlinear absorption of the

atomic system is constructed, explaining these properties

of cesium vapor atomic systems.

Note that in the above consideration, the described effect

does not explicitly depend on the magnitude of the magnetic

field. Nevertheless, anisotropy of the atomic system is

caused in the calculation by the magnetic field, which

must be sufficiently strong such that the Rabi frequency

of the linearly polarized probing optical beam satisfies the

inequality ωR ≪ ωL1,2 . Only in this case will the eigenstate

nomenclature be determined by the projection of total

angular momentum along the magnetic field direction, and

equations (3) (essentially, only the diagonal elements of the

atomic density matrix), containing transition rates between

these states, will have meaning.
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Appendix 1 (Radiative Sums)

The radiative disintegration rate of the excited atomic

state is determined by the interaction of the atom with

the quantized photon field, which may be in the vacuum

state. In this case, atomic excitation decay occurs due to
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vacuum fluctuations of the photon field accompanied by

photon emission. The disintegration rate from the excited

multiplet state |m, F ′〉 with momentum projection m to the

ground multiplet state |M, F〉 can be expressed through the

matrix elements of operators S+ and Sz and the reduced

inter-multiplet matrix element aF′

F as follows [11]:

γm→M =
1

τ F′

F

∑

i=x,y,z

|〈F ′, m|Si |F, M〉|2

=
1

τ F′

F

{
δm,M+1

2

∣
∣
∣
∣
〈F ′, M + 1|S+|F, M〉

∣
∣
∣
∣

2

+
δm,M−1

2

∣
∣
∣
∣
〈F, M|S+|F ′, M−1〉

∣
∣
∣
∣

2

+ δm,M

∣
∣
∣
∣
〈F ′, M|Sz|F,M〉

∣
∣
∣
∣

2}

,

1

τ F′

F

≡ 4[aF′

F ]2�3

3~c3
0

. (43)

Using the expressions (25) for the matrix elements entering

this formula, one obtains expressions for the sums (5)

of radiative decay rates over the ground multiplet states

ŴF′

F ≡ ∑F
M=−F γm→M :

ŴF′

F = F(F + 1)/τ F′

F , F ′ = F,
ŴF′

F = (F + 1)(2F + 1)/2τ F ′

F , F ′ = F + 1,

ŴF′

F = F(2F + 1)/2τ F ′

F , F ′ = F − 1,

(44)

and confirms that these sums do not depend on the index

m of the excited state.

Appendix 2 (Transit Time)

Write the equations of motion of an atom entering the

beam at time t = 0 at an arbitrary point on the beam

surface, characterized in the plane xz by the angle β

(Fig. 3, b):

x(t) = r cos β + vxt,
z(t) = r sin β + vzt.

(45)

After the flight time T the atom will again be on the beam

surface; hence, x2(T) + z2(T) = r 2. Substituting relations

(45) into this condition and solving for T , yields relation

(11).

Appendix 3 (Calculation of integralsS p

(15))

Substituting the Maxwell distribution (10) and the ex-

pression (11) for the flight time T into integral (15), it is

transformed into:

Sp =
(−2r )p

π

∫
dvxdvz

v2
T

dβ exp

[

− v2
x + v2

z

v2
T

]

×2

(

− vx cos β − vz sin β −
)

× [vx cos β + vz sin β]p+1

[v2
x + v2

z]
p

.

In this integral, we perform the variable change

x = vx/vT, z = vz/vT , introduce polar coordinates

x = ρ cosφ, z = ρ sinφ and a new variable ξ = β − φ.

This yields for the quantity Sp an integral of the form:

Sp = 2(−2r )pv
1−p
T

∫
∞

0

dρe−ρ2ρ2−p
∫ 3π/2

π/2

dξ cosp+1 ξ,

calculation of which is straightforward and leads to relations

(16).

Appendix 4 (Isotropy of Linear
Absorption)

Consider the first term I in the square brackets (30),
describing the linear absorption of the atomic system.

Calculate I ≡ ∑F
M=−F

∑F′

m=−F′ aM→m (24) for the case

F = F ′. Using the matrix elements (25), verify that the

first term in the curly braces (24) yields the following

contribution4:

1

4

∑

M

{

|〈F, M + 1|S+|FM〉|2 + |〈FM|S+|F, M − 1〉|2
}

=
1

4

∑

M

{

F(F+1) − M(M + 1) + F(F+1) − M(M−1)

}

=
1

2

{

(2F+1)F(F+1) −
∑

M

M2

}

=
1

3
F(F+1)(2F+1).

(46)
Now consider the sum with the factor Z2

∑

M

|〈F, M|Sz|FM〉|2 =
∑

M

M2 =
1

3
F(F + 1)(2F + 1).

(47)
Since 4H2 + Z2 = 1 always holds, for F ′ = F we get

I =

F∑

M=−F

F′

∑

m=−F′

aM→m =
F(F + 1)(2F + 1)

3
. (48)

Similarly, for F ′ = F + 1

I =

F∑

M=−F

F′

∑

m=−F ′

aM→m =
(2F + 3)(2F + 1)(F + 1)

6

(49)

4 In the calculations, the relation
∑F

M=−F
M2 = 1

3
F(F + 1)(2F + 1) is

used.
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and for F ′ = F − 1

I =

F∑

M=−F

F′

∑

m=−F ′

aM→m =
(2F + 1)(2F − 1)F

6
. (50)

From these expressions, it follows that the linear absorption

of the atomic system in small magnetic fields, when the

Zeeman structure is unresolved (i.e., ωL1, ωL2 < kvT), does
not depend on the mutual orientation of the magnetic field

and the azimuth of linear polarization of the probing beam.
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