05,10

Многочастичные комплексы в инкапсулированных монослоях дихалькогенидов переходных металлов

© В.Е. Бисти 1 , Г.М. Голышков 1,2 , А.С. Бричкин 1 , А.В. Черненко 1

¹ Институт физики твердого тела им. Ю.А. Осипьяна РАН,

Черноголовка, Россия
² Московский физико-технический институт,

Долгопрудный, Россия

E-mail: bisti@issp.ac.ru

Поступила в Редакцию 30 июня 2025 г. В окончательной редакции 22 июля 2025 г. Принята к публикации 25 июля 2025 г.

Изучалась возможности образования многочастичных комплексов в структурах, состоящих из монослоев дихалькогенидов переходных металлов, инкапсулированных гексагональным нитридом бора. Рассчитывались энергии связи трионов и экситонов, локализованных на заряженных примесях, для взаимодействия, рассматриваемого на больших расстояниях как диполь-зарядное, а на малых аппроксимируемого двумя различными способами. Диапазон значений поляризуемости выбирался из условия, чтобы полученные энергии связи комплексов были близки к наблюдаемым экспериментально. Сравнение проводимых расчетов позволило оценить допустимый диапазон экситонной поляризуемости, а также выделить наиболее реалистичную аппроксимацию диполь-зарядного взаимодействия на малых расстояниях. Проведена оценка концентрации электронов по соотношению интенсивностей экситонов и многочастичных комплексов в спектре отражения. Проводимые расчеты позволили оценить концентрацию электронов и положение примесей в барьере.

Ключевые слова: дихалькогениды переходных металлов, нитрид бора, трионы и экситоны.

DOI: 10.61011/FTT.2025.09.61634.1-25

1. Введение

Монослои дихалькогенидов переходных металлов (ДПМ) являются двумерными полупроводниками с шириной запрещенной зоны, соответствующей энергии межзонных переходов в видимом диапазоне, что делает их удобными для изучения оптическими методами. Гетероструктуры на основе ДПМ бывают разных типов: слои ДПМ на подложке из SiO₂/Si; монослои ДПМ, инкапсулированные гексагональным hBN, на подложке; гетероструктуры, покрытые слоями графена. Кулоновское взаимодействие в монослоях ДПМ за счет диэлектрического окружения может быть усилено или ослаблено по сравнению с объемными материалами или подвешенными монослоями. Покрытие таких структур слоями графена позволяет прикладывать к гетероструктурам электрическое напряжение, изменяя при этом параметры структур. Энергия связи межподзонных экситонов достигает несколько сотен мэВ, что позволяет наблюдать экситонные эффекты при температурах вплоть до комнатной [1-3]. Энергии экситонов в слоях ДПМ определены экспериментально, существуют хорошо разработанные методы расчета, согласующиеся с экспериментальными значениями [4,5]. В монослоях ДПМ находятся равновесные носители заряда электроны или дырки, попадающие из примесных центров, находящихся в окружающих слоях hBN [4,5]. Часть из них локализованы за счет взаимодействия с ионизированными центрами, а часть — свободны и образуют Ферми-газ. Также концентрация зарядов может изменяться приложением напряжения непосредственно к слою ДПМ [8].

Возбуждения в структурах изучаются с помощью спектров отражения, поглощения и люминесценции. Основными возбуждениями в рассматриваемых системах являются межзонные экситоны. Взаимодействие экситонов с равновесными электронами существенно влияет на наблюдаемые спектры. В спектрах люминесценции различаются две линии, интерпретируемые обычно как линии излучательной рекомбинации экситона и триона [1]. В спектрах отражения видны линии основного и возбужденных состояний экситона, при определенных условиях наблюдаются и низкоэнергетические линии, ассоциирующиеся с трионами. Следует заметить, что то, что высокоэнергетичная линия является линией люминесценции экситона, сомнений не вызывает. Это общепринятая точка зрения, подтвержденная теоретически и экспериментально [1–3]. Однако относительно линии, трактуемой как линия триона, возможны другие объяснения. Так, при изучении люминесценции квантовых ям в GaAs/AlGaAs [9,10] при исследовании температурной и магнитополевой зависимости было показано, что линии, которые ранее приписывались свободному триону, следует относить к связанному состоянию многочастичного комплекса, а именно экситону, связанному на нейтральном доноре или акцепторе в барьере.

В зависимости от используемых экспериментальных методов применяются и различные подходы к теорети-

ческому рассмотрению межзонных возбуждений в слоях ДПМ. Существуют два подхода к учету кулоновского взаимодействия экситонов с электронами: образование трионов (связанных состояний экситона и электрона) [11,3] или Ферми-поляронов (за счет взаимодействия экситонов с Ферми-морем электронов) [12–17]. При низких концентрациях свободных электронов n_s оба рассмотрения эквивалентны [3,16]. Интерпретация с помошью образования трехчастичных комплексов верна при выполнении условия $E_{\rm F} \ll E_T$, где $E_{\rm F}$ — энергия Ферми-газа электронов, E_{T} — энергия связи триона, однако соответствующий пик в поглощении или отражении мал по сравнению с экситонным пиком. Трионный пик четко наблюдается и сравним по интенсивности с экситонным только если $E_{\rm F} \sim E_T$. Следует отметить, что в структурах со слоями ДПМ всегда $E_x \gg E_{\rm F}, E_T$, где E_x — энергия связи экситона.

Впервые влияние взаимодействия межзонных экситонов с возбуждениями электронной Ферми-системы типа частица-дырка (тетроны Суриса) было предложено в работе [12].

Идея Ферми-поляронов была использована при исследовании двухкомпонентных ультра-холодных газов. В поглощении атома примеси в двумерном Ферми-газе с короткодействующим притягивающим потенциалом взаимодействия между атомом примеси и частицами газа, существуют две линии, соответствующие "притягивающему" и "отталкивающему" поляронам [13–15].

Концепция экситонов, окруженных облаком электронно-дырочных пар, возбужденных из Ферми-моря, оказалась плодотворной для описания спектров отражения или поглощения в структурах со слоями ДПМ не только при малых, но и при промежуточных значениях $n_s(E_{\rm F} \sim E_T)$ [16,17]. В этом диапазоне n_s присутствие "трионного" пика не может быть интерпретировано как образование трехчастичных комплексов. Взаимодействие экситона с Ферми-морем приводит к расщеплению спектра возбуждений на низкоэнергетичную экситонполяронную ветвь с энергией ϵ_T^* , обычно идентифицируемую как трион, и высокоэнергетичную ветвь с энергией ϵ_{x}^{*} , идентифицируемую как экситон. Проведенные расчеты [16] показали, что расщепление между линиями растет линейно с $E_{\rm F}$ равновесных носителей заряда, трионный пик доминирует при $E_{\rm F} \sim E_T$), ширина трионного пика заметно меньше ширины экситонного пика.

Следует заметить, что в монослоях ДПМ имеется долинное вырождение и сильное спин-орбитальное расщепление Δ_{so} . При $E_{\rm F} < \Delta_{so}$ имеются 2 типа электронов из разных долин, взаимодействующих с экситонами. Однако если экситоны и электроны из Фермиморя принадлежат одной долине, короткодействующее обменное взаимодействие подавляет корреляции. При условии $E_{\rm F} \ll E_T$ обменное взаимодействие не способствует образованию трионов, за исключением большой разницы эффективных масс электрона и дырки, что не реализуется в ДПМ. Предполагается, что экситон и

окружающее его поляронное облако электронов относятся к разным долинам. При условии $E_{\rm F} \ll E_{\rm x}$ возможность образования нескольких возбуждений Ферми-моря пар электрон-дырка можно не рассматривать. Фотовозбужденные электрон и дырка взаимодействуют как с возбужденным электроном, так и с дыркой Ферми-моря, однако взаимодействие с Ферми-дыркой менее существенно из-за малости фазового пространства дырки, и его можно опустить. Взаимодействие экситона с Фермиэлектроном, диполь-зарядное на больших расстояниях, можно аппроксимировать короткодействующим контактным потенциалом (константой в импульсном представлении). Единственным параметром, характеризующим взаимодействие, остается энергия связи триона, E_T , что заметно упрощает задачу об экситон-поляронах [13–15]. Энергия E_T представляет расщепление между "притягивающей" и "отталкивающей" поляронными линиями Δ_{XT} при $n_s \to 0$, что может быть определено экспериментально. При $E_{\mathrm{F}} \ll E_{T}$ величина расщепления и перераспределение спектральных весов в поглощении выражаются аналитически. Так,

$$\Delta_{XT} = \epsilon_X^* - \epsilon_T^* = E_T + E_F m_e / \mu_T, \tag{1}$$

$$A_X(\omega, 0) \approx 2\pi Z_T \delta(\omega - \epsilon_T^*) + 2\pi (1 - Z_T) \delta(\omega - \epsilon_X^*)$$
 (2)

 $Z_T = E_{\rm F} m_e / \mu_T, \ m_e$ — масса электрона, μ_T — приведенная масса триона.

В работе [18] рассчитывались энергии связанных состояний (основного и возбужденных) и состояний рассеяния (непрерывный спектр) для трех частиц в двумерных ДПМ. Фазовый сдвиг при рассеянии электронов и экситонов позволял определить энергетический сдвиг при конечной плотности электронов, для этих целей был предложен эффективный экситон-электронный потенциал рассеяния, что позволяло определить влияние плотности электронов на спектры оптического поглощения ДПМ в поляронной модели. В работе [19] рассматривалась задача о поглощении света в двумерных ДПМ при промежуточных концентрациях дополнительных зарядов $E_{\rm F} \sim E_T$ в терминах экситон-поляронов. Представлен микроскопический вывод электрон-экситонного взаимодействия с использованием вариационного подхода и теории возмущений. Авторы применили разработанную теорию для расчета спектров поглощения и показали, что зависимость от концентрации хорошо объясняется моделью с контактным потенциалом. В обеих работах [18,19] показано, что на больших расстояниях можно использовать классическое заряд-дипольное взаимодей-

Обобщение поляронной теории на случай конечных температур T было проведено в работах [20,21]. Был использован метод вириального разложения оптического отклика двумерного легированного полупроводника для случая высоких температур или слабого легирования, когда температурная длина волны электронов мала по сравнению с межчастичным расстоянием $(T\gg E_{\rm F})$.

Показано, что традиционная концепция трионов соответствует высокотемпературному и слабовзаимодействующему пределу теории ферми-поляронов. Используя теорию ферми-поляронов при конечной температуре, авторы обнаружили переход от квантово-вырожденного режима с четко определенными поляронными квазичастицами к некогерентному режиму при высокой температуре или низком легировании, где "притягивающая" поляронная квазичастица с наименьшей энергией разрушается, поглощаясь широким трионно-дырочным континуумом. С ростом температуры (или уменьшением легирования) профиль излучения притягивающей ветви эволюционирует от симметричного лоренцева к асимметричному пику с экспоненциальным хвостом, включающим трионы и электроны отдачи с конечным импульсом.

Определение энергии триона остается отдельной задачей. Расчеты энергии связи триона проводились вариационными методами [11,22], методом прямой численной диагонализации для трех частиц [18,23], методом Монте-Карло [24].

В работе [25] оценивались энергии трионов и экситонов, локализованных на заряженных донорах или акцепторах монослоях ДПМ. Расчеты проводились для логарифмического потенциала, что принципиально отличает рассмотренную задачу от случая инкапсулированных монослоев ДПМ.

Результаты расчетов энергии связи триона и других комплексов, как и энергии связи экситона, зависят от вещества монослоя ДПМ (MoS₂, MoSe₂, WS₂, WSe₂), окружения монослоя (свободно подвешенный, на подложке, инкапсулированный hBN), вида используемого потенциала взаимодействия (кулоновский потенциал или учитывающий экранирование в плоскости монослоя потенциал Рытовой—Келдыша [26,27]).

В данной работе изучались возможности образования многочастичных комплексов (трионов и экситонов, связанных на примесях) в инкапсулированных монослоях ДПМ и их проявления в оптических спектрах при низких температурах и концентрациях электронов: $T \ll E_{\rm F}$, E_T , $E_x \gg E_T \gg E_{\rm F}$. Целью работы являлось определение природы низкоэнергетичной по отношению к экситонной линии в спектрах люминесценции и отражения, относительно интерпретации которой единого мнения до сих пор нет. Ставилась задача расчета энергии связи и радиусов состояний как трионов, так и экситоннопримесных комплексов в рамках одного подхода.

2. Расчеты и обсуждение результатов

Расчет проводился в двухчастичном приближении для двух видов потенциалов взаимодействия V_H и V_S . На больших расстояниях $r\gg a_{ex}$ в обоих случаях использовалась диполь-зарядное взаимодействие (r — координата в плоскости слоя, a_{ex} — радиус экситона).

Энергия диполь-зарядного взаимодействия определялась как энергия экситона в основном состоянии, помещенного в электрическое поле заряда, во втором порядке теории возмущений:

$$V_{ex}(E) = -\frac{1}{2}\alpha_0 E^2, \quad \alpha_0 = 2e^2 \sum_{\nu} \frac{|x_{0\nu}|^2}{E_0 - E_{\nu}}$$
 (3)

 α_0 — поляризуемость экситона в основном состоянии. Для потенциала точечного заряда U(r) в среде с диэлектрической проницаемостью ϵ на расстоянии r от заряда $U(r)=-e/(\epsilon r),\,E=dU/dr=e/(\epsilon r^2),$

$$V_{ex-e}(r) = -\frac{\alpha_0 e^2}{2\epsilon^2 r^4} \tag{4}$$

В рассматриваемом случае инкапсулированных монослоев ДПМ (MoSe₂, WSe₂) на расстояниях $r>a_{ex}$ достаточно использовать этот потенциал. В общем случае в качестве U(r) можно использовать потенциал Рытовой—Келдыша.

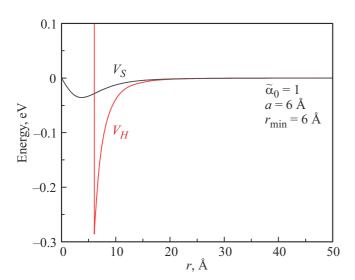
На малых расстояниях для V_H использовалась модель твердого центра: $V_H(r)=V_{ex-e}(r),\ r>r_{\min},\ V_H(r_{\min})\to\infty$ с радиусом обрезания $r_{\min}\sim a_x$ [18,28].

На малых расстояниях для V_S использовались интерполяция плавным потенциалом согласно [16,19]:

$$V_{ex-e}^{eff} = -\frac{\alpha_0 e^2 r}{2\epsilon^2 (r^2 + a^2)^{5/2}}, \quad a \sim 0.5 a_{ex}.$$
 (5)

Важным параметром задачи является экситонная поляризуемость α_0 . Для двумерного экситона с обычным кулоновским взаимодействием (2DX) эта величина известна. Поляризуемость вычислялась как с учетом только связанных состояний [28], так и с учетом состояний непрерывного спектра [16,19].

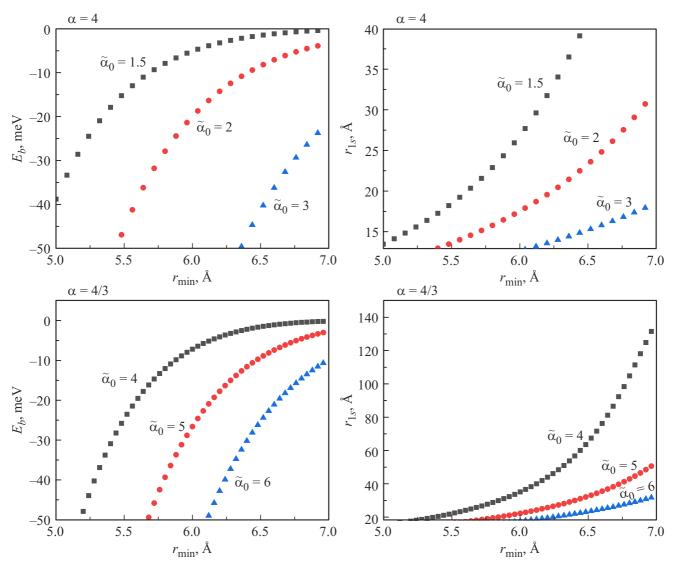
$$\alpha_0 = \frac{21}{16} \epsilon a_{ex}^3 [28], \quad \alpha_0 = \frac{8}{5} \epsilon a_{ex}^3 [16, 19].$$
 (6)

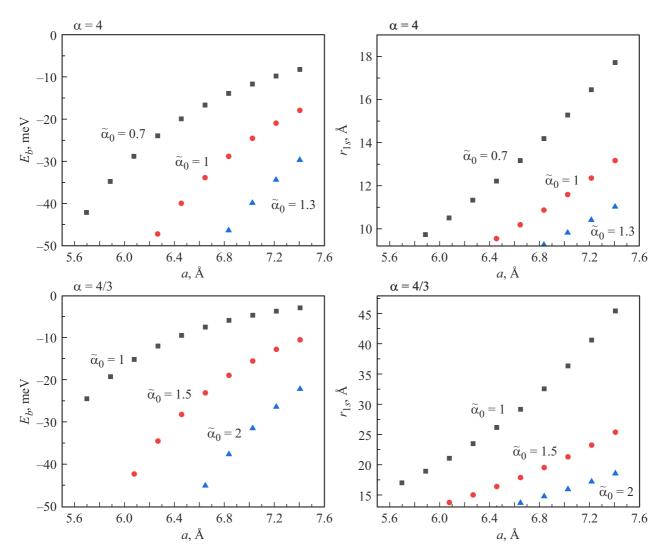

Если взаимодействие отличается от кулоновского, то оценочно $\alpha_0 \sim (2-5)\epsilon a_{ex}^3$.

Используем в качестве единиц энергии и длины $E_0 = \mu e^4/(2\hbar^2\varepsilon^2)$, $a_0 = \hbar^2\varepsilon/(\mu e^2)$. Для MoSe_2 $E_0 = 265 \,\text{meV}$, $a_0 = 6.33 \,\text{Å}$, $(\mu/m_0) = 0.35 m_0$, $m_e/\mu = 2$ $(\mu$ — приведенная масса электрона и дырки, m_0 — масса свободного электрона). Для удобства расчетов введем безразмерную величину поляризуемости $\tilde{\alpha_0}$:

$$\alpha_0 = 2\epsilon a_0^3 \tilde{\alpha}_0, \quad \tilde{\alpha}_0 = \alpha_0 / (2\epsilon a_0^3) \tag{7}$$

Для 2DX $\tilde{\alpha_0}=0.08$ ($a_x=a_0/2$). Оценка для экситона в инкапсулированном монослое $\tilde{\alpha}_0\sim 2-5$ ($a_{ex}=0.9$ нм для $MoSe_2$ [5]). Для сравнения, в атомных единицах поляризуемости $10^{-22} {\rm eV} ({\rm m/V})^2$, для 2DX $\alpha_0=2.2\cdot 10^3$, в инкапсулированном монослое $\alpha_0\sim (60-150)\cdot 10^3$, для свободного монослоя (данные работы [18]) $\alpha_0=61\cdot 10^3$.


На рис. 1 приведены потенциалы V_H и V_S для параметров MoSe₂, варьируемые параметры $\tilde{\alpha}_0$, r_{\min} , a указаны на рисунке.


Рис. 1. Потенциалы V_H и V_S .

Расчеты проводились для нескольких значений $\tilde{\alpha}_0$ для каждого из потенциалов, диапазон значений выбирался из условия, чтобы полученные энергии связи комплексов были близки к экспериментальным (наблюдаемый энергетический зазор между наблюдаемыми линиями для монослоя $\text{MoSe}_2 \simeq 26 \, \text{meV}$). На рис. 2-3 приведены данные расчетов энергии связи E_b и радиусов состояний от параметров используемых потенциалов. Приведенная масса трехчастичного комплекса $M = \alpha \mu$, где μ приведенная масса экситона. Для экситона, связанного с заряженным акцептором (локализованный экситон), $\alpha = 4$. Для триона $\alpha = 4/3$.

Сравнение расчетов для разных потенциалов показывает, что качественные зависимости одинаковы. Для выбранного значения энергии чем больше поляризуемость $\tilde{\alpha}_0$, тем больше значения r_{\min} или a, немного возрастает и эффективный радиус комплекса. Для значения

Рис. 2. Энергии связи и радиусы примесных трехчастичных комплексов ($\alpha=4$) и трионов ($\alpha=4/3$) для потенциала V_H .

Рис. 3. Энергии связи и радиусы примесных трехчастичных комплексов ($\alpha=4/3$) и трионов ($\alpha=4/3$) для потенциала V_S .

энергии связи $E_b\simeq 26~{\rm meV}$ для потенциала V_H значение поляризуемости ($\tilde{\alpha}_0\sim 1.5-3$ для $\alpha=4$ и $\tilde{\alpha}_0\sim 4-6$ для $\alpha=4/3$) и радиусы состояний r_{1s} (15–16 Å и 20–21 Å) больше, чем для потенциала V_S ($\tilde{\alpha}_0\sim 0.7-1.3$ для $\alpha=4$ и $\tilde{\alpha}_0\sim 1-2$ для $\alpha=4/3$, радиусы состояний 11-13 Å, 15-17 Å соответственно).

Сравнение радиусов состояний дает аргументы в пользу потенциала V_H . Значения $r_{1s} \sim r_0$ для потенциала V_S указывают на необходимость применения потенциала Рытовой—Келдыша для заряд-дипольного взаимодействия, для потенциала V_H этого не требуется, $r_{1s} > r_0$ (радиус экранирования $r_0 = 11 \, \text{Å} \, [5]$). Используемые оценки поляризуемости при сравнении расчетов для примесных комплексов и трионов указывают скорее на трионы, но для одозначного вывода необходимо более точное значение $\tilde{\alpha}_0$.

Также были рассчитаны энергии связи $E_b(d)$ и радиусы $r_{1s}(d)$ примесных трехчастичных комплексов ($\alpha=4$) в зависимости от расстояния примеси d от монослоя для ближайшего ($d=5\,\text{Å}$) и следующего ($d=8.33\,\text{Å}$) слоев

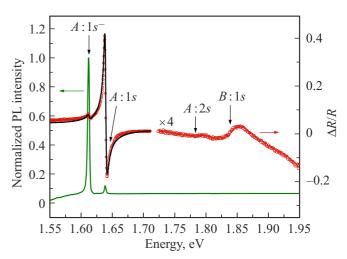
hBN [29] для потенциала $\tilde{V_H}$ ($r_{\min} = 5$), $\tilde{\alpha}_0 = 3$.

$$\tilde{V}_H = -\frac{\alpha_0 e^2}{2\epsilon^2 r^4} \left(1 + (d/r)^2 \right)^{-3}.$$
 (8)

Для данных параметров в пределах точности вычислений примесный комплекс образуется только для интерфейсной примеси из ближайшего слоя hBN $(E_b(5\,\text{Å}) = 22\,\text{meV},\ r_{1s}(5\,\text{Å}) = 17A,\ E_b(8.33\,\text{Å}) = 1.3\,\text{meV},\ r_{1s}(8.33\,\text{Å}) = 44\,\text{Å}).$

В монослоях, инкапсулированных hBN, равновесные носители заряда — электроны. Следовательно, преобладающие примеси в hBN — донорного типа. Электроны в монослое локализуются на интерфейсных примесях D^+ , и возбужденные экситоны могли бы образовывать в этом случае только четырехчастичный комплекс $(D^+ + e + X)$, энергия связи которого по предварительным оценкам, мала по сравнению с комплексом $(A^- + X)$, образуемым неосновной акцепторной примесью. Для систем с дырочным типом легирования экситоны образуют комплекс $D^+ + X$ с донорной примесью.

Методика	Параметры	Экситонные резонансы	
измерения	моделирования	A: 1s	A: 1s ⁻
Отражение	$\gamma_0 \; (\text{meV})$ $\gamma \; (\text{meV})$ $\omega_{res} \; (\text{eV})$	1.5 1.2 1.639	0.05 2 1.613
Люминесценция	FWHM (meV) Peak position (eV)	2.9 1.639	3.5 1.612


Параметры аппроксимации дифференциальных коэффициентов отражения и данные люминесценции структур с MoSe₂

Концентрация неосновных примесей мала по сравнению с n_s , и вклад их в исследуемые процессы вряд ли значителен.

Что же касается спектров люминесценции, то наблюдается зависимость не только от концентрации равновесных двумерных электронов или дырок, но и от способа возбуждения системы. Создавать экситоны можно с помощью резонансного или нерезонансного фотовозбуждения, спационарного или импульсного. В случае стационарного нерезонансного возбуждения с энергией фотона, заметно превышающей ширину запрещенной зоны, рождаются электроны и дырки, которые связываются в экситоны. Экситоны релаксируют по энергии и затем рекомбинируют. Для соотношения интенсивностей наблюдаемых линий люминесценции, кроме плотности равновесных электронов, необходимо учитывать также плотность и эффективную температуру экситонов и фотовозбужденных электронов и дырок. Система стационарна, но существенно неравновесна, что усложняет ее описание. В данной работе для экспериментального изучения спектров люминесценции использовался именно такой способ возбуждения.

На рис. 4 приведены полученные экспериментально дифференциальный спектр отражения и спектр люминесценции для структуры hBN-ML MoSe₂-hBN-SiO₂-Si (эксперимент и структура подробно описаны авторами в работе [5]). В спектре отражения удалось наблюдать как основное состояние экситона, так и расположенное ниже по энергии возбуждение, обычно ассоциируемое с трионом (Ферми-поляроном). Данные аппроксимации спектров отражения и параметры спектров люминесценции приведены в таблице. Видно, что энергии возбуждений практически совпадают для люминесценции (PL) и отражения (Refl). (ширины линий люминесценции на половине высоты (FWHM) $\sim 3 \, \text{meV}$, таблица). Погрешность разности энергетических положений линий $\Delta_{XT}=26\,\mathrm{meV}$ (Refl), $\Delta_{XT}=27\,\mathrm{meV}$ (PL) меньше ширины линий.

Для соотношения интенсивностей картина противоположная: в отражении экситон проявляется намного сильнее, в PL, наоборот, интенсивность линии экситона намного слабее. Используемые для аппроксимации спектра отражения величины радиационного зату-

Рис. 4. Дифференциальный спектр отражения и спектр люминесценции при $T=5\,\mathrm{K}$ для структуры hBN-MLMoSe₂-hBN-SiO₂-Si. A:1s – экситон X, A:1s — заряженный комплекс (трион) T.

хания для экситонов и трионов $\gamma_{0X}=1.5,\ \gamma_{0T}=0.05.$ $\gamma_{0X}/\gamma_{0T}=30$ (см. таблицу). Следуя поляронной модели, можно оценить концентрацию свободных электронов в исследуемой структуре (2). $Z_T=\frac{3}{2}\,E_F/E_T=\gamma_{0T}/\gamma_{0X}$ дает значение электронной плотности $n_s=1.7\cdot 10^{11}\,\mathrm{cm}^{-2},\ E_F=0.58\,\mathrm{meV}=6.5\,\mathrm{K}.$ Следует отметить, что при 5 К выполняется условие $T<E_F$, но не $T\ll E_F$, и значение n_s скорее оценочно. В работе [30] использовался метод отражения от квантовых ям для определения концентрации электронов. Оценка проводилась по соотношению сил осцилляторов для трионов и экситонов в магнитном поле. В монослоях ДПМ ранее концентрации оценивались по относительному сдвигу положения линий экситона и ферми-полярона в люминесценции, но не по соотношению интенсивностей в спектре отражения.

Соотношение интегральных интенсивностей PL в данном эксперименте (рис. 4) $I_T/I_X=20$. Возможно следующее объяснение. При условиях эксперимента (постоянная нерезонансная накачка с энергией, превышающей ширину запрещенной зоны) оптически активных экситонов мало, они быстро рекомбинируют и не накапливаются. Темных экситонов много, часть из них связываются со всеми имеющимися электронами, электроны и дырки комплекса рекомбинируют. Эти процессы могут быть более интенсивными. Темные экситоны могут быть как внутридолинными спин-запрещенными, так и междолинными, необходимо только, чтобы была возможна рекомбинация присоединившегося электрона и дырки. Подробно рекомбинация с участием темных экситонов рассматривались в работе [31].

3. Заключение

Рассчитанные энергии связи и радиусы состояний трехчастичных комлексов допускают существование как

трионов, так и экситонов, локализованных на заряженных примесях. Используемые оценки поляризуемости для энергии примесных комплексов и трионов указывают скорее на трионы, но для однозначного вывода о природе низкоэнергетичной линии в спектре и количественного сравнения с экспериментом необходимо точное значение экситонной поляризуемости для конкретных структур. Для описания трехчастичных комплексов лучше подходит потенциал V_H . Трехчастичный комплекс существует для экситона, сязянного с заряженной интерфейсной примесью неосновного типа, что может служить косвенным аргументом в пользу трионов.

Сделана оценка плотности свободных электронов в монослое ДМП на основе метода отражения.

В качестве задач на будущее хотелось бы рассмотреть возможность существования триона, локализованного на крупномасштабных по сравнению с радиусами экситона и триона неоднородностях другой природы, а также рассчитать значение поляризуемости для экситонов в инкапсулированных монослоях MoSe₂ и WSe₂.

Финансирование работы

Работа выполнена в рамках госзадания.

Конфликт интересов

Авторы данной работы заявляют, что у них нет конфликта интересов.

Список литературы

- G. Wang, A. Chernikov, M.M. Glazov, T. F. Heinz, X. Marie, T. Aman B. Urbaszek. Rev. Mod. Phys. 90, 021001 (2018).
- [2] М.В. Дурнев, М.М. Глазов. УФН 188, 913 (2018).
- [3] M.M. Glazov. J. Chem. Phys. 153, 034703 (2020).
- [4] B. Han, C. Robert, E. Courtade, M. Manca et al. Phys. Rev. 8, 031073 (2018).
- [5] Г.М. Голышков, А.С. Бричкин, В.Е. Бисти, А.В. Черненко. Письма в ЖЭТФ 120, 279 (2024).
- [6] R. Gillen, J. Robertson, J. Maultzsch. Phys. Status Solidi B 251, 2620 (2014).
- [7] A.S. Vokhmintsev, I.A. Weinstein. J. Lum. 230, 117623 (2021).
- [8] Z. Wang, Y.-H. Chiu, K. Honz, K.F. Mak, J. Shan. Nano Lett. 18, 1, 137 (2018).
- [9] О.В. Волков, В.Е. Житомирский, И.В. Кукушкин, В.Е. Бисти, К. фон Клитцинг, К. Эберл. Письма в ЖЭТФ 66, 730 (1997).
- [10] О.В. Волков, И.В. Кукушкин, К. фон Клитцинг, К. Эберл. Письма в ЖЭТ 68, 223, (1998).
- [11] M.A. Semina, R.A. Suris. Phys. Usp. 65, 2, 111 (2022).
- [12] R. Suris, V. Kochereshko, G. Astakhov, D. Yakovlev, W. Ossau, J. Nurnberger, W. Faschinger, G. Landwehr, T. Wojtowicz, G. Karczewski, J. Kossut. Phys. Stat. Solid. B 227, 343 (2001).
- [13] S. Zoellner, G.M. Bruun, C.J. Pethick. Phys. Rev. A 83, 021603 (2011).

- [14] R. Schmidt, T. Enss, V. Pietila, E. Demler. Phys. Rev. A 85, 021602 (2012).
- [15] V. Ngampruetikorn, J. Levinsen, M.M. Parish. Europhys. Lett. 98, 3, 30005 (2012).
- [16] D.K. Efimkin, A.H. MacDonald. Phys. Rev. B 95, 035417 (2017).
- [17] M. Sidler, P. Back, O. Cotlet, A. Srivastava, T. Fink, M. Kroner, E. Demler, A. Imamoglu. Nature Phisics 13, 255 (2017).
- [18] C. Fey, P. Schmelcher, A. Imamoglu, R. Schmidt. Phys. Rev. B 101, 195417 (2020).
- [19] D.K. Efimkin, E.K. Laird, J. Levinsen, M.M. Parish, A.H. MacDonald. Phys. Rev. B 103, 075417 (2021).
- [20] B.C. Mulkerin, A. Tiene, F.M. Marchetti, M.M. Parish, J. Levinsen. Phys. Rev. Lett. 131, 106901 (2023).
- [21] A. Tiene, B.C. Mulkerin, J. Levinsen, M.M. Parish, F.M. Marchetti. Phys. Rev. B 108, 125406 (2023).
- [22] E. Courtade, M. Semina, M. Manca, M.M. Glazov, C. Robert, F. Cadiz, G. Wang. Phys. Rev. B 96, 085302 (2017).
- [23] T.C. Berkelbach, M.S. Hybertsen, D.R. Reichman. Phys. Rev. B 88, 045318 (2013).
- [24] M. Szyniszewski, E. Mostaani, N.D. Drummond, V.I. Fal'ko. Phys. Rev. B 95, 081301(R) (2017).
- [25] B. Ganichev, N. Drummond, I. Aleiner, V. Fal'ko. Phys. Rev. Lett. 114, 107401 (2015).
- [26] Н.С. Рытова. Вестн. Моск. ун-та. Сер. 3. Физ. Астрон. 3, 30 (1967).
- [27] Л.В. Келдыш. Письма в ЖЭТФ 29, 716 (1979).
- [28] Ю.Е. Лозовик, М.В. Никитков. ЖЭТФ 111, 1107 (1997).
- [29] В.Е. Бисти, А.С. Бричкин, Г.М. Голышков, А.В. Черненко. Известия РАН. Серия физическая **89**, *2*, 53—57 (2025).
- [30] G.V. Astakhov, V.P. Kochereshko, D.R. Yakovlev, W. Ossau, T. Wojtowicz, G. Karczewski, J. Kossut. Phys. Rev. B 65, 115310 (2002).
- [31] Min Yang, Lei Ren, Cedric Robert, Dinh Van Tuan, Laurent Lombez, Bernhard Urbaszek, Xavier Marie, Hanan Dery. Phys. Rev. B **105** 085302 (2022).

Редактор А.Н. Смирнов