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Как известно, вдоль границы двух сред могут распространяться поверхностные электромагнитные волны.

Рассмотрен случай границы двух одинаковых одноосных кристаллов, в одном из которых поверхностный по-

ляритон принимает сингулярную форму, которая аналогична волне Фохта. Для таких поляритонов получены

необходимые и достаточные условия существования, связывающие главные значения диэлектрической про-

ницаемости с его направлением распространения или с ориентацией оптических осей кристаллов. Получены

аналитические выражения для распределения полей в поляритоне. Обнаружено, что для заданной ориентации

осей и степени анизотропии кристаллов возможно до четырех пар направлений распространения. При

определенных условиях поляритон может распространяться параллельно или перпендикулярно оптической

оси кристалла, где распределение поля поляритона имеет несингулярную форму.
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1. Введение

В изотропном случае необходимым условием суще-

ствования поверхностных электромагнитных волн явля-

ется противоположность знаков диэлектрических прони-

цаемостей граничащих сред. Это условие может быть

выполнено, например, для границы металла с диэлек-

триком. Использование таких волн, называемых поверх-

ностными плазмон-поляритонами, ограничено из-за дис-

сипации в среде с отрицательной вещественной частью

диэлектрической проницаемости. Отсутствие изотропии

хотя бы в одной из граничащих сред может приводить к

значительному изменению свойств поверхностных волн

и их условий существования. В статье Дьяконова [1]
для случая границы одноосного кристалла с изотроп-

ной средой показано, что при наличии анизотропии

возможно распространение поверхностной волны вдоль

границы двух прозрачных диэлектриков. Первое экс-

периментальное наблюдение таких волн, называемых

теперь поверхностными волнами Дьяконова или бездис-

персионными поверхностными волнами, было проведено

в 2008 году [2]. Эти волны распространяются в ограни-

ченном диапазоне углов, который крайне чувствителен

к степени анизотропии [3–5]. Малость этого диапазона

для оптических волн в природных минералах затрудняет

их наблюдение, но сильная чувствительность к измене-

нию диэлектрической проницаемости граничащих сред

может найти применение в сенсорах [3].
В последнее время рассматриваются все более слож-

ные структуры с анизотропными средами, в которых

могут распространяться поверхностные волны. Структу-

ры с дополнительным тонким изотропным диэлектриче-

ским слоем между полубесконечными средами имеют

увеличенный диапазон углов распространения [3,6–8].
В работе [9] было показано, что дополнительное ограни-

чение двух одноосных кристаллов плоскими границами

с воздухом (или проводником) сохраняет возможность

распространения бездиссипативных волн. При этом ока-

зывается возможным распространение поверхностной

волны в условиях, запрещенных для полубесконечных

сред [9,10]. Развитие технологий позволяет создавать

сложные структуры (метаматериалы) с требуемыми

электромагнитными свойствами, в том числе с сильной

анизотропией [11–14]. В метаматериалах для некоторого

диапазона длин волн может быть реализована анизо-

тропная эффективная диэлектрическая проницаемость

не только с одинаковыми знаками главных значений,

но и с различными. В таких средах, называемых гипер-

болическими, также исследуются поверхностные волны,

подобные волнам Дьяконова [12,15,16].
С точки зрения математического описания поверх-

ностных волн при наличии анизотропии интересен

случай, когда зависимость полей от расстояния до

границы сред содержит слагаемое (ar) exp(iqr), пред-

ставляющее собой произведение линейной функции на

экспоненциальную [17–20]. Если подобными выражени-

ями описываются поля хотя бы в одной из гранича-

щих сред, волна называется сингулярной поверхност-

ной волной (поляритоном) [17,21] или поверхностной

волной Дьяконова−Фохта [18,19]. В частности, если

анизотропны обе среды, возможна ситуация, когда вы-

ражениями вышеупомянутого вида описываются поля в
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обеих из них [21,22]. В этом случае волна называется

бисингулярным поляритоном.

В большинстве случаев условия существования по-

верхностных волн и зависимости их характеристик

от направления распространения исследуются численно

или приближенно. В работе [23] получено аналитиче-

ское решение для случая границы изотропной среды с

одноосным кристаллом, а в работе [24] — с двуосным

при положительных главных значениях диэлектрической

проницаемости. Для случая границы двух анизотропных

кристаллов задача становится более сложной, и ее ана-

литическое решение в общем виде пока никем не полу-

чено. Однако, в случае сингулярных волн дисперсионное

уравнение приобретает значительно более простой вид.

В работе [21] для двух одноосных кристаллов с парал-

лельными границе оптическими осями была аналитиче-

ски решена задача о распространении бисингулярного

поляритона. В настоящей статье рассмотрена анало-

гичная задача для одинаковых кристаллов, но условие

сингулярной формы решения ставится только в одном

из них. Получены условия существования, связывающие

взаимную ориентацию оптических осей или направление

распространения с главными значениями диэлектриче-

ской проницаемости. Также получены аналитические вы-

ражения для распределения полей поверхностной волны.

2. Модель

Рассмотрим плоскость границы между двумя одина-

ковыми немагнитными и негиротропными одноосными

кристаллами, оптические оси которых параллельны этой

границе. Будем считать, что каждый кристалл харак-

теризуются тензором диэлектрической проницаемости

ε̂ с главными значениями ε⊥ и ε‖, где значение ε⊥
соответствует направлениям распространения волн пер-

пендикулярно оптической оси, а ε‖ — параллельно.

Предполагаем, что в рассматриваемом диапазоне ча-

стот ω можно пренебречь поглощением, поэтому ε⊥ и ε‖
являются вещественными числами.

Введем систему координат (рис. 1), где x = 0 — плос-

кость границы, а Oz — направление распространения

поверхностной волны. Обозначим через ϕ и θ углы,

отсчитанные от оси Oz до оптических осей S и O сред,

заполняющих полупространства x < 0 и x > 0, соответ-

ственно. Направление отсчета углов выберем совпадаю-

щим с направлением часовой стрелки при взгляде на

плоскость со стороны x > 0. Тензор диэлектрической

проницаемости каждого из кристаллов в выбранной

системе координат имеет вид







ε⊥ 0 0

0 ε⊥ cos2(ψ) + ε‖ sin
2(ψ) (ε‖ − ε⊥) sin(ψ) cos(ψ)

0 (ε‖ − ε⊥) sin(ψ) cos(ψ) ε⊥ sin2(ψ) + ε‖ cos
2(ψ)







(1)
где ψ = ϕ, θ.

O

S

x

y

z

ϑ

ϕSSP

Рис. 1. Взаимная ориентация направления распространения

волны и оптических осей.

В силу симметрии задачи углы ϕ и θ определены

с точностью до πn. Взаимную ориентацию оптических

осей S и O в плоскости границы можно задать уг-

лом α = θ−ϕ. При этом будем считать, что выпол-

нено 0 < ϕ < π, а угол θ выбирается из промежутка

от 0 до 2π так, что 0 ≤ α < π. Так определенный α

равняется углу, отсчитанному от оси S до оси O по

часовой стрелке, если смотреть со стороны среды x > 0.

Так как при совпадении осей S и O граница между

кристаллами исчезает, то везде предполагаем α 6= 0. Сте-

пень анизотропии кристаллов удобно характеризовать

параметром η
def
= (ε‖/ε⊥)−1.

3. Решение

В выбранной системе координат поля поверх-

ностной волны наиболее общего вида представля-

ются выражениями E(r; t) = e(x) exp
(

i(qz−ωt)
)

+ c.c.,

H(r; t) = h(x) exp
(

i(qz−ωt)
)

+ c.c.. После подстановки

решения в такой форме в уравнения Максвелла две

проекции векторов e(x) и h(x) явно выражаются через

остальные. Оставшиеся проекции подчиняются однород-

ной системе из 4 линейных дифференциальных уравне-

ний первого порядка. Таким образом, зависимость полей

от нормальной координаты x определяется четырьмя

корнями характеристического уравнения этой системы,

имеющими следующий вид:

κo± = ±
√

q2 − ε⊥
ω2

c2
,

κe± = ±
√

(1 + η cos2 ψ)q2 − ε‖
ω2

c2
. (2)

Если κo± 6= κe±, то ограниченное при |x | → ∞ решение

системы имеет вид суммы обыкновенной и необык-

новенной компонент Ao exp(κox) и Ae exp(κex). Если

κo± = κe±, то решение необходимо выбирать в сингу-

лярном виде (A + Bx) exp(κx) [25,17].

Нас интересует случай совпадения корней в одном из

кристаллов при их различии в другом. Пусть решение

имеет сингулярный вид в кристалле при x < 0, тогда
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из (2) получаем

q2 =
ω2

c2

ε⊥

cos2 ϕ
(3)

и при этом cos2 θ 6= cos2 ϕ. Случай cos2 θ = cos2 ϕ от-

вечает бисингулярному поляритону и реализуется при

sin2(α/2) = 2/|η| или cos2(α/2) = 2/|η| [21]. Видно, что
равенство (3) возможно только при ε⊥ > 0. Также

для возникновения сингулярного решения необходимо

наличие ненулевых внедиагональных компонент у тен-

зора (1), то есть η 6= 0 и ϕ 6= 0, π/2. Далее эти условия

везде предполагаются выполненными.

Для удобства обезразмерим все величины на√
ε⊥ (ω/c). Если обозначить положительные совпадаю-

щие корни характеристического уравнения (2) в кри-

сталле x < 0 как κ, то отрицательные корни в кристалле

x > 0 будут равны −κ и −λ, где

κ = | tgϕ|, (4)

λ =

√

1 + η cos2 θ−(η + 1) cos2 ϕ

cos2 ϕ
. (5)

Условие совместности стандартных граничных усло-

вий для ненулевого решения уравнений Максвелла сво-

дится к равенству

λ{sin2 θ[η cos2 ϕ + 4] + sin θ cos θ[−2η sinϕ cosϕ]

+ cos2 θ tg2 ϕ[η cos2 ϕ − 4]} = κ{sin2 θ[η cos2 ϕ − 4]

+ sin θ cos θ[−2η sinϕ cosϕ] + cos2 θ tg2 ϕ[η cos2 ϕ + 4]}.
(6)

При заданных ϕ и η уравнения (5), (6) могут быть

решены относительно θ и λ (см. Приложение). Анали-
зируя решения, можно получить условия существования

сингулярного поляритона в виде















cos2 ϕ >
4

4
√

η(η + 1) − η
,

η ∈
[

−4

3
;
4

5

]

.

(7)

При этом для λ имеем

λ = κ
(η2 cos4 ϕ − 16) + 4|η| cos2 ϕ

√
D

D + 4 sin2(2ϕ)
, (8)

где D =
(

η cos2 ϕ + 4 cos(2ϕ)
)2

+ 12 sin2(2ϕ), а для угла

θ имеем

cos2 θ =
λ2 − tg2 ϕ + η

η
cos2 ϕ, (9)

sign
(

sin(2θ)
)

= sign{λ2[−4− η cos2 ϕ cos(2ϕ)] + λκ[−8]

+ κ2[−4 + 2η2 cos4 ϕ + η cos2 ϕ cos(2ϕ)]}sign
(

sin(2ϕ)
)

.

(10)
Если условия (7) выполнены, то выбор ϕ определяет

на промежутке (0; 2π] пару углов θ, отличающихся друг

от друга на π. В соответствии с определением угла α

это дает однозначную функцию α(ϕ).
Стоит отметить интересные случаи, когда сингуляр-

ный поляритон распространяется вдоль или перпенди-

кулярно оптической оси того кристалла, где решение

несингулярно. Случай θ = π/2 реализуется в гипербо-

лической среде при η < −4 и

ϕ = ± arcsin

( |η| − 4

|η|

)

. (11)

Случай θ = 0 реализуется в сильно анизотропном ди-

электрике при η > 8 и

ϕ = ± arccos

(

2
(

1 +
√
η + 1

)

η

)

. (12)

Пусть теперь задана взаимная ориентация оптических

осей S и O (угол α), а не направление распространения

сингулярного поляритона относительности оптической

оси S (угол ϕ). Направление отсчета углов ϕ отно-

сительно оси S ведется против часовой стрелки при

взгляде со стороны среды x > 0. Собирая в (6) сла-

гаемые при η в одной стороне равенства, используя

соотношения (4), (5) и сокращая на (κ−λ), получаем
условие совместности граничных условий в виде

(κ + λ)2 =
η2

4
sin2 α. (13)

Отметим, что уравнение (13) можно получить из урав-

нения (6) в работе [26], если выбрать константы локали-

зации обыкновенной и необыкновенной волны в одной

из сред одинаковыми, например k0 = k1 = κ и k2 = λ.

Однако, выбор поляризаций парциальных волн из ра-

бот jcite24,26 при таком вырождении некорректен.

Уравнения (4), (5), (13) позволяют также получить

аналитические выражения для зависимости ϕ(α) и

условия существования сингулярного поляритона при

фиксированном η. Мы привели их во второй части

Приложения. Наглядное представление об основных

особенностях ϕ(α) при различных η дает семейство

кривых, построенных на рис. 2, a и 2, d. На рис. 2, a

построены зависимости ϕ(α) для гиперболических сред

с η < −4/3, а на рис. 2, d — для диэлектрических сред

с η > 4/5. Пустые кружки на кривых соответствуют

направлениям распространения бисингулярного поляри-

тона, когда θ = π−ϕ или θ = 2π−ϕ, то есть α = π−2ϕ

или α = 2π−2ϕ.

При выбранном угле между оптическими осями α̃

можно определить число пар направлений распростра-

нения сингулярного поляритона по числу пересечений

вертикальной прямой α = α̃ с кривыми ϕ(α) для задан-

ного η. Отметим, что графики симметричны относитель-

но замены ϕ → π−ϕ и α → π−α. Таким образом, для

числа направлений распространения неважно, какой —

наибольший или наименьший — угол между оптически-

ми осями выбирается в качестве α̃.
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Рис. 2. Зависимости углов распространения сингулярного поверхностного поляритона (СПП) ϕ от угла между оптическими

осями α: a — в гиперболических кристаллах с η < −1; d — в диэлектрических кристаллах с η > 0. b — волновые вектора СПП

q для кристаллов с η = −4.5 и углом α ≈ 1.46. c — волновые вектора СПП q для кристаллов с η = 2.5, α = 5π/12. Обозначения

точек на панелях b и c соответствуют обозначениям точек на графиках a и d для выбранных углов α.

Из рис. 2, а видно, что возможно до 4 пар

направлений распространения сингулярного

поляритона. При −4/3 > η > −(1 +
√
17)/2 ≈ −2.56

возможна только одна пара направлений. При

η ∈ (−∞;−5) ∪
(

−4;−(1 +
√
17)/2

)

для некоторых

углов между оптическими осями — две пары

направлений, причем при η ∈
(

−4;−(1 +
√
17)/2

)

направление существует для любого α. В кристаллах,

где −5 < η < −4, для углов α вблизи π/2 возможны

четыре пары направлений. В случае диэлектрических

кристаллов (рис. 2, d) — две пары направлений, при

η >
(

−1 +
√
17

)

/2 ≈ 1.56. В этом же промежутке

значений η направление распространения существует

для любого угла α.

Для иллюстрации векторов q при отрицательных η

был выбран случай, когда имеется четыре пары направ-

лений распространения и для одной из них θ = π/2

(рис. 2, b). Оказывается, что в таком случае одна из трех

других пар направлений обязательно будет соответство-

вать бисингулярному поляритону. Для иллюстрации век-

торов q при положительных η был выбран случай, когда

есть две пары направлений распространения (рис. 2, c).
Все концы векторов q, отмеченные на рис. 2, b и 2, c,

лежат на прямых, перпендикулярных оптической оси S

и проходящих через точки касания границ световых

конусов обыкновенной и необыкновенной волн среды

x < 0 (кривых κo+ = 0 и κe+ = 0 в (2)). В термино-

логии статей [21,23] такие прямые называются сингу-

лярными осями поверхностных волн в среде. Направле-

ния, отмеченные на рис. 2, b кружками, соответствуют

бисингулярному поляритону и лежат на пересечении

сингулярных осей поверхностных волн обеих сред и на

биссектрисе угла между оптическими осями.

4. Распределения полей

Электрическое поле в сингулярном поляритоне опи-

сывается выражением

E(r; t) = С[e(x) exp
(

i(qz − ωt)
)

+ c.c.],

где С — произвольная константа, e(x) — вектор

поляризации, получающийся прямым вычислением из

граничных условий. Он дается выражениями































ex = iq
[(

K +
λ

κ
L
)

eκx + 2(K + M)κxeκx
]

,

ey = σ
[(4(K + M)

η cos2 ϕ
+ K + L

)

eκx − 2(K + M)κxeκx
]

,

ez = κ[(K + L)eκx − 2(K + M)κxeκx ],

при x < 0 и



















ex = iq
[

Ke−κx +
λ

κ
Le−λx

]

,

ey = σ [Me−κx + Ne−λx ],

ez = κ[Ke−κx + Le−λx ],

при x > 0.
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Рис. 3. Зависимости от координаты x в сингулярном поверх-

ностном поляритоне проекций: a — поляризации электриче-

ского поля e; b — усредненного вектора Пойнтинга 〈S〉.

Здесь введены обозначения

σ
def
= −sign(tgϕ),

K
def
=

(

(κ + λ)/2κ
)

cosϕ sin θ,

L
def
= sinϕ cos θ,

M
def
=

(

(κ + λ)/2κ
)

sinϕ cos θ,

N
def
= cosϕ sin θ.

Напряженность магнитного поля

H(r; t) = С[h(x) exp
(

i(qz − ωt)
)

+ c.c.]

можно получить, вычислив rotE. Так как формулы (3),
(4), (8) и (9), (10) задают q, κ, λ и θ как функции

ε⊥, ε‖ и ϕ, как функции этих параметров могут быть

рассмотрены и приведенные выше выражения для по-

лей (14). В силу выражений для ϕ(α) (см. Приложение)
и (3) одной из задаваемых величин можно рассматривать

α или q.

На рис. 3 приведены зависимости проекций вектора

поляризации e(x) и усредненного по периоду 2π/ω

вектора Пойнтинга

S(x) =
c

4π
[E×H].

В качестве параметров для расчета были выбра-

ны ϕ = 0.5 и η = −4/(1−| sinϕ|), что соответствует

θ = π/2. Заметим, что проекции вектора e в среде с

сингулярным решением (x < 0) ведут себя немонотонно

(рис. 3, a). Это является отличительной особенностью

поверхностных волн в анизотропных средах, в то время

как в изотропных поля локализованы строго на границе.

Немонотонная зависимость амплитуд полей от расстоя-

ния до границы может наблюдаться и для несингулярных

решений, если вклады обыкновенной и необыкновенной

парциальных волн отличаются по знаку. На рис. 3, b

видно, что и зависимости 〈Sy〉 и 〈Sz 〉 немонотонны,

причем в среде x < 0 каждая из них имеет локальный

максимум (для 〈Sy 〉 он заметен слабо). Также отметим,

что отношение 〈Sy 〉/〈Sz 〉, определяющее
”
направление

распространения энергии волны“, также зависит от x .

Отличие 〈Sy 〉 от нуля не удивительно, поскольку на-

правления групповой и фазовой скоростей волн в ани-

зотропных средах часто не совпадают. Не построенное

на графиках среднее значение 〈Sx 〉 = 0, что отвечает

переносу энергии волной только вдоль границы.

5. Заключение

В статье исследованы сингулярные поверхностные

поляритоны, распространяющиеся вдоль границы двух

одинаковых одноосных кристаллов. Предсказано их су-

ществование в таком диапазоне частот, где степень

анизотропии кристалла

η =

(

ε‖

ε⊥
− 1

)

< −4/3

или η > 4/5 при ε⊥ > 0, где ε‖ и ε⊥ — главные ком-

поненты тензора диэлектрической проницаемости. Такие

величины степени анизотропии могут наблюдаться в

природных одноосных минералах в инфракрасном или

терагерцовом диапазоне длин волн, а также они могут

быть достижимы в метаматериалах в более широком

диапазоне длин волн. При этом требования для двух

одноосных кристаллов слабее, чем в случае границы

анизотропной среды с изотропной.

Направление распространения поверхностного поля-

ритона характеризуется углом ϕ относительно оптиче-

ской оси кристалла, где решение сингулярно, и пра-

вильно выбранным углом между оптическими осями α.

Получены аналитические выражения для углов α(ϕ)
и ϕ(α) в зависимости от выбора одного из них в

качестве задаваемого параметра. Сингулярный поляри-

тон распространяется только вдоль особых направлений,

поэтому его условия существования зависят от углов ϕ

или α. Эти условия были определены в работе. Для

определенных степеней анизотропии и диапазонов углов

между оптическими осями в гиперболическом (диэлек-
трическом) режиме возможно до 4 (2) пар направлений

распространения. Интересно отметить, что при η < −4

поляритон может распространяться перпендикулярно
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оптической оси кристалла, в котором распределение

поля имеет несингулярный вид, а при η > 8 — па-

раллельно. Эти направления являются запрещенными

в кристалле с сингулярным видом распределения поля.

Получены аналитические выражения для распределений

компонент электромагнитного поля в сингулярном поля-

ритоне, определенные как функции от диэлектрических

проницаемостей ε⊥, ε‖ и одного из углов ϕ, α или

волнового вектора q. Полученные в работе выражения

могут быть использованы для построения приближен-

ных решений задачи о распространении несингулярных

волн в окрестностях направлений распространения син-

гулярных.

Приложение

Решение относительно ϕ и η. Найдем λ, θ и области

существования сингулярных волн при заданных ϕ и η.

Выразим cos2θ и sin2 θ из соотношения (5):

cos2 θ =
λ2 − κ2 + η

η
cos2 ϕ,

sin2 θ =
(1 + η)κ2 − λ2

η
cos2 ϕ. (51)

Выражения (51) позволяют переписать (6) в виде

уравнения

(λ − κ){λ2[−4− η cos2 ϕ cos(2ϕ)] + λκ[−8]

+ κ2[−4 + 2η2 cos4 ϕ + η cos2 ϕ cos(2ϕ)]}

= (λ − κ)sign
(

sin(2ϕ) sin(2θ)
)

2|η| | sinϕ cos3 ϕ|

×
√

−λ4 + λ2[(2 + η)κ2 − η] + (1 + η)(η − κ2)κ2.

(52)
Так как λ 6= κ, на (λ−κ) можно сократить. Возведя обе

части равенства в квадрат, получим уравнение четвер-

той степени относительно λ. Его решениями являются

двухкратный корень λ = −κ и пара корней

λ = κ
(η2 cos4 ϕ − 16) ± 4|η| cos2 ϕ

√
D

D + 4 sin2(2ϕ)
,

где D =
(

η cos2 ϕ + 4 cos(2ϕ)
)2

+ 12 sin2(2ϕ).

Нужно определить для каких (ϕ; η) будет λ > 0.

Границы областей знакопостоянства λ можно найти из

самого уравнения на λ при λ = 0. Исследуя знаки λ

внутри каждой из них, можно получить, что корень (8)
положителен для

η ∈
(

−∞;
−4 cos(2ϕ) − 4

√

cos2(2ϕ) + 15

15 cos2 ϕ

)

∪
(−4 cos(2ϕ) + 4

√

cos2(2ϕ) + 15

15 cos2 ϕ
;+∞

)

,

а другие корни λ ≤ 0 при любых (ϕ; η). Это условие

можно переписать относительно ϕ как















cos2 ϕ >
4

4
√

η(η + 1) − η
,

η ∈
[

−4

3
;
4

5

]

.

Далее требуется проверить, что выполняется

0 ≤ cos2 θ ≤ 1, где cos2 θ определяется (51) и (4), (8).
В выполнении этих неравенств можно убедиться,

исследовав области положительного знака cos2 θ и sin2 θ

аналогично исследованию λ > 0, используя при этом

уравнения (51) и (6). Отсутствие отрицательного

знака под корнем в (52) следует из 0 ≤ cos2 θ ≤ 1

в силу (51), а согласование знаков правой и левой

частей обеспечивается выбором знака у sin(2θ).

Решение относительно α и η. Найдем направления

распространения сингулярных волн, характеризуемые

углом ϕ при заданных α и η. Так как величины κ и λ

положительны, равенство (13) можно переписать в виде

λ =
|η sinα|

2
− κ. (53)

Возведя (53) в квадрат и воспользовавшись (4), (5),
приходим к следующему уравнению, определяющему

tgϕ как функцию от α и η:

tg2 ϕ +

[

sign(η sinα)sign(tgϕ) − 2 cosα

sinα

]

tgϕ

−
[

4 + η

4

]

= 0. (54)

Уравнение (54) эквивалентно двум квадратным урав-

нениям для tgϕ разных знаков. От его корней требуется

вещественность, ограниченность и строгая положитель-

ность или отрицательность, а также выполнение условия

λ > 0 в (53), принимающего вид 2| tgϕ| < |η sinα|. Так
как уравнение (54) и наложенные на его корни условия

инварианты относительно преобразования ϕ → π−ϕ,
α → π−α, а tgϕ при таком преобразовании меняет знак,

можно ограничиться рассмотрением ϕ ∈ (0;π/2). Этой
области соответствуют положительные решения

tgϕ± =

=
2 cosα−sign(η) ±

√

(

2 cosα−sign(η)
)2

+(4+η) sin2 α

2 sinα
.

(55)

В средах с −4 ≤ η < −4/3 или 4/5 < η распростра-

нение возможно только в направлениях, определяемых

tgϕ+, причем угол α должен принадлежать промежутку

(α0;π). В средах с η < −4 возможно распространение в

направлениях tgϕ+ при α ∈ (α0;α∗] и в направлениях

tgϕ− при α ∈ (0;α∗]. При η = −4 возможны только

направления tgϕ+ при α ∈ (α0; 2π/3). Границы α0 и α∗
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задаются выражениями

α0 = arccos

(

√

η(η + 1) − 2

|η|

)

; (56)

α∗ = arccos

(

√

η2 + 5η + 4− 2

|η|

)

. (57)

Граница α0 соответствует λ = 0, а граница α∗ — обраще-

нию в ноль радикала в (55). Условие α < 2π/3 для tgϕ+

и отсутствие направлений tgϕ− при η = −4 следуют

из требования tgϕ± > 0. Подставляя α0 в (55), полу-
чаем выражение для наибольшего угла распространения

ϕ ∈ (0;π/2) в виде

ϕ0 = arctg

(
√

√

η(η + 1) − 1− η

4

)

. (58)
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