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Описан и проанализирован метод решения многочастичных квантовомеханических задач, основанный на

вычислении плотности состояний системы в зависимости от полной энергии и проекции магнитного момента.

Метод применен для расчета свойств спиновой цепочки, описываемой гамильтонианом Гейзенберга.

Полученные результаты сравниваются с точным решением для цепочки из N = 16 спинов, полученным

методом точной диагонализации. Показано, что в области высоких температур, метод плотности состояний

совпадает с точным решением. При температурах меньше, чем энергия обменного взаимодействия, система

оказывается вблизи края плотности состояний и статистические методы работают плохо. Таким образом,

показано, что метод плотности состояний позволяет эффективно вычислять характеристики даже для

системы с небольшим количеством упорядоченно расположенных спинов.
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1. Введение

Как хорошо известно, точное решение большинства

многочастичных квантовомеханических задач невозмож-

но из-за их огромной вычислительной сложности. По

этой причине широко используются различные прибли-

женные методы вычислений [1,2]. Все эти методы сами

по себе достаточно сложны, а так же обладают ограни-

ченными точностью и областью применимости. Поэтому

разработка новых приближенных подходов к решению

многочастичных квантовомеханических задач представ-

ляется актуальной и по сей день. Одним из таких

подходов является метод плотности состояний.

Идея метода плотности состояний заключается в том,

чтобы вычислить, точно или приближенно, зависимость

плотности состояний g(E, M) от полной энергии систе-

мы и ее магнитного момента. После этого несложно най-

ти статистическую сумму, и рассчитать магнитные свой-

ства системы используя обычный термодинамический

подход. Первоначально такой подход использовал Гей-

зенберг в пионерской работе о природе ферромагнетиз-

ма [3]. Вновь интерес к методу плотности состояний был

привлечен сравнительно недавно, когда было показано,

что плотность состояний для спиновых систем возможно

достаточно точно рассчитать численно [4,5]. Также было
показано, что плотность состояний для гамильтониана

Изинга приближенно можно описать аналитически, ис-

пользуя центральную предельную теорему [6,7].
Метод плотности состояний привлекателен в си-

лу своей сравнительной простоты. Однако, как и все

приближенные методы, он применим только в огра-

ниченной области параметров исследуемой системы.

Задачей настоящей работы было продемонстрировать

работоспособность и установить пределы применимости

метода на примере многочастичной системы в виде

квантовой спиновой цепочки с циклическими гранич-

ными условиями (спинового кольца). Аналитически эта

задача была решена Бете в 1931 году для изотропного

гамильтониана Гейзенберга [8]. Решение Бете позволяет

легко рассчитать волновые функции и энергии состоя-

ний близких к основному. Для остальных состояний этот

метод сводится к решению достаточно сложной системы

уравнений [9]. Поэтому при вычислениях вместо него

часто используется метод численной диагонализации

матрицы гамильтониана [10]. До сих пор спиновые

цепочки активно используются в качестве удобного

модельного объекта как в теоретических [11] так и в экс-

периментальных исследованиях [12].

Задача о нахождении функции распределения для

собственных значений больших матриц в общем случае

не решена. Для случая матрицы с нормальным рас-

пределением ее элементов известно, что ее собствен-

ные числа соответствуют полукруговому распределению

Вигнера [13]. Как ниже будет показано, собственные зна-

чения гамильтониана Гейзенберга для спинового кольца,

соответствующие определенной проекции магнитного

момента, имеют распределение близкое к нормальному.

Тогда для построения плотности состояний достаточно

знать зависимости среднего и дисперсии этого нормаль-

ного распределения от магнитного момента. То есть,

в отличие от приближения среднего поля, в методе плот-
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ности состояний мы рассматриваем не только среднее

значение, но и дисперсию обменной энергии.

Статья устроена следующим образом. Вначале задача

на собственные значения энергии для спинового кольца

будет решена посредством численной диагонализации

матрицы гамильтониана. Исходя из полученных зна-

чений энергий, будут рассчитаны численные значения

первых четырех моментов функции рапределения плот-

ности состояний в зависимости от магнитного момента

системы. Далее, среднее и дисперсия этого же распре-

деления будут вычислены аналитически, а результаты

обоих методов сопоставлены друг с другом. Используя

полученные зависимости методом плотности состояний

будут рассчитаны значения магнитной восприимчивости,

магнитного момента, средней энергии и теплоемкости

для последующего сравнения их с результатами точного

решения. По результатам вычислений будут сделаны

выводы об условиях применимости метода плотности

состояний.

2. Точное численное решение задачи

В настоящей работе мы рассматриваем цепочку из

N атомов со спином 1/2 и циклическими граничными

условиями (цепочка замкнутая в кольцо). Взаимодей-

ствие спинов описываем гамильтонианом Гейзенберга.

Считаем, что взаимодействуют только соседние спины

в цепочке, а само взаимодействие имеет антиферромаг-

нитный характер.

Ĥ =
∑

i

J0Ŝi Ŝi+1 − gµB
∑

i

ŝz i (1)

В этом выражении J0 — константа обменного взаимо-

действия, B — магнитное поле, g — g-фактор электрона,

µ — магнетон Бора.

Состояние системы спинов можно охарактеризовать

полным магнитным моментом и проекцией магнитного

момента на некоторое направление. В качестве такого

направления удобно выбрать ось z , сонаправленную

с внешним магнитным полем. Так как проекции спина x ,

y и z одновременно не наблюдаемы, гамильтониан удоб-

но преобразовать перейдя к лестничным операторам

Ŝ
+ = Ŝx + i Ŝy ; Ŝ

− = Ŝx − i Ŝy . (2)

В качестве базисных волновых функций удобно выбрать

состояния вида 9i = | ↑↑ . . . ↓↓〉, сгруппировав их по

значению проекции магнитного момента на ось z . Да-

лее, последовательно действуя оператором Ĥ на спи-

новые волновые функции несложно получить матрицу

гамильтониана размером 2N , [14] где каждый матричный

элемент равен

Hi j = 〈9i |Ĥ|9 j〉. (3)

Эта матрица имеет блочную структуру, каждый блок

соответствует своему значению проекции магнитного

момента на ось z . Собственные значения энергии, соот-

ветствующие конкретному магнитному моменту, вычис-

лялись поблочной диагонализацией матрицы гамильто-

ниана. Для ускорения расчетов использовалась техника

параллельных вычислений с использованием платформы

CUDA и программного обеспечения на языке Julia. Наи-

больший размер системы, плотность состояний которой

удалось вычислить составил N = 16. Ограничение на

количество спинов связано с доступным объемом памя-

ти: матрица гамильтониана имеет размер (2N)2. Точное
решение задачи можно использовать для тестирования

решения, полученного методом плотности состояний.

Для каждого фиксированного значения магнитно-

го момента мы построили плотность числа состо-

яний g(E, m) в зависимости от энергии системы

и обезразмеренного магнитного момента на один спин

m = 2M/gµN, а так же вычислили моменты распределе-

ния. На рис. 1 показана гистограмма распределения со-

стояний системы из N = 16 спинов по энергии для трех

значений m. Можно заметить, что при фиксированном

m распределение числа состояний по энергии близко

к нормальному. Для сравнения реального распределения

с нормальным мы вычислили первые 4 момента распре-

деления. На рис. 2 точками показаны (1) — средняя

энергия E , (2) — дисперсия σ 2 = (E − E)2, (3) —

коэффициент асимметрии S = (E − E)3/σ 3 и (4) —

коэффициент эксцесса K = (E − E)4/σ 4 − 3.

Коэффициент асимметрии и коэффициент эксцесса

близки к 0, как и должно быть для нормального распре-

деления. Существенное отличие от 0 наблюдается толь-

ко для m, близких к 1. Это значит, что даже для неболь-

ших N распределение полной обменной энергии близко

к нормальному. При увеличении N будет увеличиваться

количество слагаемых в полной энергии, поэтому, в силу
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Рис. 1. Рассчитанная посредством численной диагонализа-

ции плотность состояний g(E, m) для спинового кольца из

N = 16 спинов, для различных значений магнитного момента:

1 — m = 0; 2 — m = 3/8; 3 — m = 5/8. Черная линия 4

соответствует уравнению (11).
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центральной предельной теоремы, распределение числа

состояний по энергии будет стремиться к нормальному

распределению.

3. Метод плотности состояний
для спиновой цепочки

Как было показано выше, при фиксированном значе-

нии магнитного момента плотность числа состояний по

энергии g(E, m) можно приближенно описать нормаль-

ным распределением. Это распределение характеризует-

ся средней энергией E(m) и дисперсией σ (m), которые
можно вычислить аналитически.

Система из двух спинов может находиться в четырех

состояниях. В состоянии | ↑↑〉 проекция магнитного

момента равна +1, а энергия равна +1/4, в состоянии

| ↓↓〉 проекция магнитного момента равна −1, а энер-

гия равна +1/4. Также есть два состояния с равной

нулю проекцией магнитного момента. В симметричном

состоянии
|↑↓〉+|↓↑〉√

2
система имеет энергию +1/4, а в ан-

тисимметричном состоянии
|↑↓〉−|↓↑〉√

2
энергия системы

равна −3/4.

Если средний магнитный момент системы равен m,

то каждый отдельный спин с вероятностью (1 + m)/2
направлен вверх, и с вероятностью (1− m)/2 направлен

вниз. Тогда среди всех N пар соседних спинов в це-

почке будет в среднем N(1 + m)2/4 пар в состоянии

| ↑↑〉, N(1 − m)2/4 пар в состоянии | ↓↓〉, а остальные

2N(1 − m)(1 + m)/4 пар спинов будут поровну раcпре-

делены между двумя состояниями с нулевой проекцией

магнитного момента. Средняя энергия таких состояний

равна −1/4. С учетом этих соображений среднюю

обменную энергию системы из N ≫ 1 спинов можно

представить в виде

E = NJ0Ŝi Ŝi+1

= NJ0

1

4

(

(1 + m)2

4
+

(1− m)2

4
− 2

(1− m)(1 + m)

4

)

=
1

4
NJ0m

2. (4)

Для систем из небольшого числа спинов появляются

еще поправки порядка 1/N. Вероятность появления

в цепочке случайно ориентированных спинов состояний

| ↑↑〉 и | ↓↓〉 с сонаправленными спинами оказывается

несколько меньше, а вероятность появления состояний

с противонаправленными спинами — больше

E =
1

4
NJ0

(

m2 +
m2

N
− 1

N
+ O

(

1

N2

))

. (5)

Аналогичными рассуждениями, рассматривая из ком-

бинаторных соображений возможные состояния для

4х спинов вычисляем дисперсию обменной энергии. Для

–1

 0

 1
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 4
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Рис. 2. Зависимость средней энергии E (1), дисперсии

σ 2 (2), коэффициента асимметрии S (3) и коэффициента

эксцесса K (4) от магнитного момента m. Сплошными линиями

показаны зависимости средней энергии и дисперсии, посчитан-

ные по формулам (5) и (6).

краткости не будем приводить здесь сами вычисления,

напишем лишь ответ

σ 2 = E2 − E
2

=
1

16
NJ2

0

(

3− 4m2 + m4

+
2− 6m2 + 4m4

N
+ O

(

1

N2

))

. (6)

При вычислении плотности состояний мы учитываем

все состояния с равным весом, что эквивалентно просто

вычислению спектра квантовой системы с учетом крат-

ности вырождения уровней. Корреляции между спинами

будут учтены ниже, когда для каждого состояния будет

вычислен статистический вес в соответствии с распреде-

лением Гиббса.

Полученные выражения для средней энергии и дис-

персии в зависимости от m интересно сравнить с резуль-

татами точного численного расчета. На рис. 2 сплош-

ными линиями показаны зависимости, посчитанные по

формулам (5) и (6) для N = 16 спинов. Видно хоро-

шее соответствие между аналитическими выражениями

и точными результатами, которые показаны точками.

Таким образом, плотность состояний можно предста-

вить в виде

g(E, m) =

(

N

N(1+m)
2

)

1√
2πσ (m)

× exp

(

−
(

E − E(m)
)2

2σ 2(m)

)

. (7)

В этом выражении N(1 + m)/2 — число спинов, на-

правленных вверх, поэтому m принимает дискретные

значения, так чтобы число спинов было целым. Но для

Физика твердого тела, 2025, том 67, вып. 9
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больших N можно перейти к непрерывному распределе-

нию по m.

Для больших N можно использовать формулу Стир-

линга и разложить факториалы в биномиальном коэф-

фициенте





N

N(1+m)

2



=

√
2πN

πN
√
1− m2

2N

(1−m)(1−m)N/2(1+m)(1+m)N/2
.

(8)
для краткости записи введем обозначение

p(m) = ln 2− 1− m

2
ln(1− m) − 1 + m

2
ln(1 + m) (9)

тогда биномиальный коэффициент можно представить

в виде





N

N(1 + m)

2



 =

√

2

πN

1√
1− m2

exp (N p(m)) . (10)

В дальнейшем будет удобно обезразмерить энергию

на J0 и перейти от полной энергии системы к обезразме-

ренной энергии на один спин e = E/NJ0. Для краткости

записи также введем обезразмеренное среднеквадра-

тичное отклонение s = σ/
√

NJ0. В этих обозначениях

плотность состояний запишется в виде

g(e, m)=
N

2πs(m)(1− m2)
exp

(

N p(m)−N
(

e−e(m)
)2

2s2(m)

)

.

(11)

Ниже, для краткости, мы часто не будем явно ука-

зывать в формулах, что средняя энергия и дисперсия

являются функциями m. Теперь рассмотрим спиновую

цепочку, в которой плотность состояний описывается

выражением (11). Пусть система имеет температуру

T и находится во внешнем магнитном поле B . Ве-

роятность системе оказаться в некотором состоянии

будет описываться распределением Гиббса с энергией

E − gµBNm/2. Здесь, как и выше, через E обозначена

только обменная энергия системы. Для удобства введем

безразмерную температуру t = kT/J0 и безразмерное

магнитное поле β = gµB/2J0. В этих обозначениях

можем написать выражение для плотности вероятности

системе иметь энергию e и магнитный момент m при

температуре t и во внешнем магнитном поле β

f (e, m, t, β) =
1

Z(t, β)

N

2πs(1 − m2)

× exp

(

N p(m)−N (e−e)2

2s2
−N (e−βm)

t

)

.

(12)

Здесь Z — статсумма, которая может быть вычислена

как

Z(t, β) =

∞
∫

−∞

de

1
∫

−1

dm
N

2πs(1 − m2)

× exp

(

N

(

p(m) − (e − e)
2

2s2
− (e − βm)

t

))

.

(13)
Интеграл по энергии считается аналитически

Z(t, β) =

1
∫

−1

√

N

2π

1

1− m2

× exp

(

N

(

p(m) +
βm

t
+

s2

2t2
− e

t

))

dm.

(14)
Интеграл по магнитному моменту может быть посчи-

тан численно, а при больших N можно применить метод

перевала (метод Лапласа).
Зная выражение для плотности вероятности

f (e, m, t, β) и статсуммы можно рассчитать параметры

системы, такие как средний магнитный момент, магнит-

ная восприимчивость, средняя энергия и теплоемкость

в зависимости от магнитного поля и температуры. Фор-

мула (12) также полезна для прояснения вопроса о вли-

янии спиновых корреляций на плотность состояний. Из

нее непосредственно следует, что плотность состояний

соответствует плотности вероятности при бесконечно

большой температуре. Поэтому спиновые корреляции

при расчете плотности состояний учитывать не нужно.

В случае малых m, то есть в случае слабых магнит-

ных полей, можно получить аналитическое выражение

для статсуммы без интегралов. Для этого используем

приближенное выражение для биномиального коэффи-

циента, справедливое при условии m ≪ 1

(

N
N(1+m)

2

)

≈ 2N

√

2

πN
exp

(

−Nm2

2

)

. (15)

Для плотности состояний получаем выражение

g̃(e, m) =
2N

πs
exp

(

−Nm2

2
− N (e − e)2

2s2

)

. (16)

Здесь тильда над плотностью состояний показывает,

что выражение справедливо только для m ≪ 1. Далее,

по аналогии с тем, как было сделано выше, вводим

плотность вероятности f̃ (e, m, t, β) и статсумму

Z̃(t, β) =

∞
∫

−∞

de

1
∫

−1

dm
2N

πs

× exp

(

−N

(

m2

2
+

(e − e)2

2s2
+

(e − βm)

t

))

.

(17)
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В выражении для статсуммы сначала считаем инте-

грал по энергии

Z̃(t, β) = 2N

√

2

πN

1
∫

−1

dm

× exp

(

N

(

−m2

2
+

βm

t
− e

t
+

s2

2t2

))

. (18)

Далее подставим явные выражения для зависимости

средней энергии и дисперсии от m, отбросим малое

слагаемое, пропорциональное m4, и перейдем к интегри-

рованию по всей вещественной оси. Тогда интеграл по

m также вычислится аналитически

Z̃(t, β) =
2N+2t

N
√
4t2 + 2t + 1

exp

(

2Nβ2

4t2 + 2t + 1
+

3N

32t2

)

.

(19)

4. Расчет магнитных свойств
спиновой цепочки

Используя формулу для плотности вероятности (12)
можем найти средний магнитный момент системы в за-

висимости от магнитного поля и температуры. Вычисле-

ния будем проводить численно в силу того, что выраже-

ния для средней энергии и дисперсии с учетом малых

поправок порядка 1/N имеют достаточно громоздкий

вид

m(t, β) =
1

Z

∞
∫

−∞

de

1
∫

−1

dm
Nm

2πs(1 − m2)

× exp

(

N

(

p(m) − (e − e)
2

2s2
− (e − βm)

t

))

.

(20)
Интеграл по энергии считаем аналитически

m(t, β) =
1

Z

√

N

2π

1
∫

−1

m

1− m2

× exp

(

N

(

p(m) +
βm

t
+

s2

2t2
− e

t

))

dm.

(21)
В общем случае полученный интеграл считаем чис-

ленно. Но в слабых магнитных полях, когда справедливо

разложение (15), можно получить явное выражение для

среднего магнитного момента

m̃(t, β) =
4βt

4t2 + 2t + 1
. (22)

Для сравнения с результатами, полученными методом

плотности состояний, магнитный момент был найден
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Рис. 3. Зависимость среднего магнитного момента от магнит-

ного поля, посчитанная для трех различных значений темпера-

туры t1 = 0.5, t2 = 1.5 и t3 = 3.0. Черная линия (кривая 1) по-

считана по точному решению, красный пунктир (кривая 2) —

формула (21), зеленая линия (кривая 3) — формула (22).

посредством точной диагонализации по следующей фор-

муле:

m(t, β) =

∑

j m j exp(− e j−m jβ

t
)

∑

j exp(−
e j−m jβ

t
)

. (23)

Здесь суммирование ведется по всем 2N состояниям

системы.

На рис. 3 показано сравнение зависимости среднего

магнитного момента от магнитного поля, посчитанного

по точному решению для N = 16 спинов (сплошная

линия), по формуле (21) (красный пунктир), а также по

приближенной формуле (22), справедливой для малых m

(тонкая зеленая линия). Расчеты сделаны для трех

значений безразмерной температуры, t1 = 0.5, t2 = 1.5

и t3 = 3.0. Видно хорошее совпадение формулы (21)
с точным расчетом, а небольшое отклонение при m,

близких к единице связано с тем, что формула Стир-

линга, использованная при выводе формулы (8), спра-
ведлива только для относительно больших чисел. При

приближении к m = 1 величина N(1− m)/2 стремится

к нулю, поэтому разложение (8) становится неприме-

нимо. Приближенная формула (22) хорошо совпадает

с точным решением при малых m, но при m ≥ 0.4

начинает расходиться с точным результатом.

В нулевом магнитном поле можем получить явное вы-

ражение для зависимости магнитной восприимчивости

от температуры. В этом случае используем для среднего

магнитного момента выражение (22)

χ =
∂M

∂B
=

g2µ2N

4J0

∂m

∂β
. (24)

В выражении для среднего магнитного момента маг-

нитное поле входит в экспоненту в выражении для плот-

ности вероятности (12) и в статсумму (13). Если явно
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Рис. 4. Обратная безразмерная магнитная восприимчивость

в зависимости от безразмерной температуры. 1 — результат

точного численного расчета для N = 16 спинов; 2 — результат

точного численного расчета для N = 15 спинов; 3 — метод

плотности состояний, разложение при малых m, формула (27);
4 — метод плотности состояний, производная от магнитного

момента (21) по магнитному полю; 5 — закон Кюри-Вейсса;

6 — закон Кюри.

посчитать производную от формулы (21) по магнитному

полю получаем полезное соотношение

χ =
g2µ2N2

4J0t

(

m2 − m2
)

=
M2 − M

2

kT
. (25)

В нулевом магнитном поле средний магнитный мо-

мент равен нулю, тогда получаем χ = M2/kT — из-

вестный результат для восприимчивости в слабом маг-

нитном поле. Кроме того, магнитную восприимчивость

в нулевом магнитном поле можем посчитать явно про-

дифференцировав выражение для среднего магнитного

момента (22) по магнитному полю

χ =
g2µ2N

4J0

∂m

∂β
=

g2µ2N

4J0

4t

4t2 + 2t + 1
. (26)

Удобно анализировать не саму восприимчивость, а об-

ратную магнитную восприимчивость потому что в слу-

чае свободных спинов, который описывается законом

Кюри, обратная магнитная восприимчивость линейно

зависит от температуры. В выражении для обратной

восприимчивости перейдем к размерной температуре T

1

χ
=

4kT + 2J0

g2µ2N
+

J2
0

g2µ2NkT
. (27)

Полученная зависимость обратной восприимчивости

от температуры показана на рис. 4. Также на рисунке

показаны зависимости, полученные путем точного чис-

ленного расчета для спиновых колец из 15 и 16 спинов.

Магнитная восприимчивость вычислялась методом чис-

ленного дифференцирования среднего магнитного мо-

мента по полю. Видно, что при высоких температурах

обе зависимости ведут себя одинаково, а при низких тем-

пературах наблюдается существенное различие между

зависимостями для четных и нечетных N. Для четных N

спины образуют пары, в результате чего суммарный маг-

нитный момент и магнитная восприимчивость стремятся

к нулю. Для нечетных N магнитный момент всегда нену-

левой, поэтому магнитная восприимчивость велика. Су-

щественно, что формула (27) при высоких температурах

значительно лучше описывает результаты точного чис-

ленного расчета, чем просто закон Кюри для восприим-

чивости свободных электронов (1/χ = 4kT/g2µ2N), или
закон Кюри-Вейсса (1/χ = (4kT + 2J0)/g2µ2N), которые
показаны на графике пунктиром. Зависимость обратной

восприимчивости для спиновой цепочки от температуры

в нулевом магнитном поле была численно посчитана

в работе [10]. Наши результаты, полученные методом

точной диагонализации гамильтониана очень хорошо

сходятся с результатами, полученными в работе [10].

5. Средняя энергия системы
и теплоемкость

Вычислим среднюю энергию спиновой цепочки в маг-

нитном поле. Полная энергия рассматриваемой системы

состоит из обменной энергии и энергии взаимодействия

с внешним магнитным полем. Вначале найдем среднее

только обменной части энергии E .

E(t, β) =
N2J0

Z(t, β)2π

∞
∫

−∞

de

1
∫

−1

dm
e

s(1− m2)

× exp

(

N

(

p(m) − (e − e)
2

2s2
− (e − βm)

t

))

.

(28)
Интеграл по энергии считаем аналитически

E(t, β) =
NJ0

Z(t, β)

√

N

2π

1
∫

−1

e − s 2

t

1− m2

× exp

(

N

(

p(m) +
βm

t
+

s2

2t2
− e

t

))

dm.

(29)
Интегрирование по магнитному моменту можно про-

вести численно. Теперь вернемся к полной энергии

спиновой цепочки E − BM . С учетом выражения для

среднего магнитного момента (21) получаем

E − BM =
NJ0

Z(t, β)

√

N

2π

1
∫

−1

e − s 2

t
− mβ

1− m2

× exp

(

N

(

p(m) +
βm

t
+

s2

2t2
− e

t

))

dm.

(30)
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Для случая m ≪ 1 используем приближенное раз-

ложение биномиального коэффициента (15), которое

позволяет вычислить среднюю обменную энергию ана-

литически.

Ẽ(t, β) =
2NNJ0

Z̃(t, β)

√

2

πN

1
∫

−1

(

e − s2

t

)

× exp

(

N

(

−m2

2
+

βm

t
− e

t
+

s2

2t2

))

dm.

(31)
С учетом малости m отбросим слагаемое порядка

m4 в выражении для дисперсии и перейдем к интегри-

рованию по всей вещественной оcи. Также подставим

явные выражения для зависимости средней энергии

и дисперсии от m

Ẽ(t, β) =
2NNJ0

Z̃(t, β)

√

2

πN

∞
∫

−∞

(

m2

4
− 3− 4m2

16t

)

× exp

(

N

(

−m2

2
+
βm

t
−m2

4t
+
3−4m2

32t2

))

dm.

(32)
После интегрирования по m получаем

Ẽ(t, β) =
J0(t

2+ t)

4t2+2t+1

(

1+
32β2t2

(4t2+2t+1)2

)

− 3NJ0

16t
. (33)

Для больших N оставим только последнее слагаемое

и выражение сильно упростится. Кроме того, в магнит-

ном поле учтем еще энергию взаимодействия магнитно-

го момента цепочки с полем

Ẽ − BM̃ ≈ −3NJ0

16t
− 4J0Nβ2t

4t2 + 2t + 1
. (34)

Аналогично среднему магнитному моменту, средняя

обменная энергия для метода точной диагонализации

вычислялась по формуле:

E(t, β) = NJ0

∑

j e j exp(− e j−m jβ

t
)

∑

j exp(−
e j−m jβ

t
)

. (35)

Зависимость полной энергии спиновой цепочки

E − BM от температуры показана на рис. 5 для трех

значений магнитного поля. Сплошными черными лини-

ями показан результат точного расчета, красным пунк-

тиром — вычисления по методу плотности состояний,

а зеленой линией — приближенная зависимость, по-

считанная с учетом разложения в слабом магниитном

поле. Видно хорошее совпадение теоретической зависи-

мости с точным расчетом в области температур t ≥ 1.

При меньших температурах метод плотности состояний

дает существенное расхождение с точным результатом

вследствие того, что система оказывается вблизи края

плотности состояний. Приближенная формула хорошо

совпадает с теоретической зависимостью для β = 0,

а для сильных полей наблюдается существенное расхож-

дение.
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Рис. 5. Зависимость средней энергии спиновой цепочки от

температуры в магнитных полях β1 = 0, β2 = 1, β3 = 1.5. 1 —

точное решение, 2 формула (30), 3 приближенное аналитиче-

ское выражение (34).
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Рис. 6. Зависимость теплоемкости спиновой цепочки от тем-

пературы в магнитных полях β1 = 0, β2 = 1, β3 = 1.5. 1 — точ-

ное решение, 2 — метод плотности состояний, формула (36),
3 — приближенное аналитическое решение по формуле (38).

Теплоемкость спинового кольца в магнитном поле

можно посчитать как производную от полной энергии
по температуре:

c(t, β) =
∂(E − BM)

∂T
. (36)

В частном случае малых m и больших N получаем

c(t, β) =
∂(− 3NJ0

16t
− J0Nβ

4βt

4t2+2t+1
)

∂t

k

J0

, (37)

c(t, β) = Nk

(

3

16t2
+

4β2(4t2 − 1)

(4t2 + 2t + 1)2

)

. (38)

Еще раз подчеркнем, что последнее выражение спра-
ведливо только при малых m, то есть в слабых магнит-

ных полях, и для N ≫ 1.
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Зависимость теплоемкости спиновой цепочки от тем-

пературы показана на рис. 6 для трех значений маг-

нитного поля. Сплошными черными линиями пока-

зан результат точного расчета, полученный численным

дифференцированием средней энергии по температуре,

красным пунктиром — вычисления по методу плотности

состояний (36), а зеленой линией — приближенная

зависимость (38), посчитанная с учетом разложения

в слабом магниитном поле. Из рисунка видно, что при

высоких температурах t ≥ 1 метод плотности состояний

достаточно хорошо описывает зависимость теплоемко-

сти от температуры. Но при меньших температурах

зависимость сильно отличается от точного решения,

поэтому не показана на графике.

6. Заключение

В заключение отметим, что метод плотности состо-

яний может быть успешно использован для описания

свойств деже небольших (N = 16) систем без простран-

ственного беспорядка, таких как спиновые цепочки.

Существенные отличия от точного решения появляются

при низких температурах (kT < J0), когда максимум

плотности вероятности смещается к границе плотности

состояний по энергии. В этой области распределение

состояний по энергии уже нельзя считать нормальным.

Также отклонение от точного расчета может проявлять-

ся в сильном магнитном поле, когда средний магнитный

момент m близок к 1. В этом случае число состояний си-

стемы с данным магнитным моментом становися мало,

в частном случае m = 1 у системы всего одно состояние,

поэтому использование законов статистики невозможно.

В остальных случаях, то есть при сравнительно высокой

температуре и не слишком сильном магнитном поле,

метод плотности состояний позволяет найти характери-

стики системы либо численным интегрированием, либо,

в приближении m ≪ 1 — аналитически.
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