13,07

Особенности кристаллической структуры Са-замещенных ферритов $La_{1-x}Ca_xFeO_{3-y}$

© В.Д. Седых¹, В.С. Русаков², О.Г. Рыбченко¹, А.М. Гапочка², М.Е. Мацнев², А.А. Топоркова¹, А.И. Иванов¹, В.И. Кулаков¹

Москва, Россия

E-mail: sedykh@issp.ac.ru

Поступила в Редакцию 25 мая 2025 г. В окончательной редакции 28 августа 2025 г. Принята к публикации 29 августа 2025 г.

Методами рентгеновской дифракции и мёссбауэровской спектроскопии исследованы в зависимости от содержания Са $(x=0.0,\ 0.3,\ 0.5,\ 0.7,\ 1.0)$ особенности кристаллической структуры Са-замещенного феррита лантана $\text{La}_{1-x}\text{Ca}_x\text{FeO}_{3-y}$. Изучены как исходно синтезированные образцы, так и после вакуумного отжига при 650°C, когда происходит полный переход ионов Fe^{4+} в Fe^{3+} . При концентрациях Са x<0.5 формируется ромбическая фаза Pbnm, при больших концентрациях (x>0.5) — упорядоченные фазы Гренье ($\text{LaCa}_2\text{Fe}_3\text{O}_8$) и браунмиллерит ($\text{Ca}_2\text{Fe}_2\text{O}_5$). Из низкотемпературных мёссбауэровских данных для всех исследуемых образцов определены доля каждого валентного состояния Fe, количество кислородных вакансий и содержание кислорода. Исходный образец с x=0.5 имеет максимальное количество ионов Fe^{4+} . В крайних состояниях, x=0 (LaFeO_3) и x=1 ($\text{Ca}_2\text{Fe}_2\text{O}_5$), ионы Fe находятся только в трехвалентном состоянии. Показано, что в исходных образцах с ростом концентрации Са меняется соотношение вкладов в мёссбауэровский спектр от различных структурных состояний ионов Fe^{3+} в сторону кислородных окружений, характерных для вакансионно-упорядоченных фаз. Вакуумный отжиг (когда нет ионов Fe^{4+}) приводит к формированию менее дефектного локального окружения ионов Fe.

Ключевые слова: ортоферриты, валентные состояния железа, кислородные вакансии, мёссбауэровская спектроскопия, рентгеноструктурный анализ.

DOI: 10.61011/FTT.2025.09.61631.139-25

1. Введение

Перовскитоподобные соединения с гетеровалентным замещением типа $R_{1-x}A_xBO_{3-\gamma}$, где R — редкоземельный элемент, A — щелочноземельный элемент (Ва, Са или Sr), B — переходный металл (Fe, Mn, Со или Ni), благодаря своим необычным электрическим, магнитным и каталитическим свойствам являются перспективными материалами в широкой области их применения: в качестве электродов топливных элементов, катализаторов, газовых сенсоров, оптоэлектронных приборов и приборов магнитной памяти [1–6]. Благодаря наличию кислородных вакансий эти соединения также обладают антибактериальными свойствами [7].

В системах $R_{1-x}A_xBO_{3-\gamma}$ ионы переходных металлов (B) имеют смешанные валентные состояния, что обеспечивает высокую электронную проводимость при комнатной температуре [8]. Смешанное валентное состояние образуется для компенсации зарядового дисбаланса, оно может появляться как при замещении трехвалентного элемента (R) двухвалентным (A), так и при наличии кислородных вакансий. Кислородная нестехиометрия обуславливает высокую ионную проводимость по кислороду.

Антиферромагнетизм в феррите лантана LaFeO₃ является результатом сверхобменного взаимодействия между катионами Fe^{3+} и Fe^{3+} [9], которое сильнее, чем между ионами Fe^{3+} и Fe^{4+} , а также Fe^{4+} и Fe^{4+} [10]. Поэтому наличие Fe⁴⁺ в замещенных ортоферритах приводит к ослаблению антиферромагнитного взаимодействия и, соответственно, к понижению температуры Нееля [11]. Таким образом, большинство особых свойств ортоферритов связано с наличием четырехвалентного железа и кислородных вакансий, содержание и однородность распределения которых, в свою очередь, зависят от ряда факторов: типа и доли замещающего лантан элемента, условий синтеза и последующих термических обработок. Использование вакуумного отжига как инструмента варьирования содержания вакансий позволяет управлять соотношением валентных состояний Fe^{3+} : Fe^{4+} вплоть до полного перехода в Fe^{3+} , когда в решетке остается только кислород, количество которого определяется исключительно долей замещающего элемента [12].

Важную роль в формировании той или иной кристаллической решетки замещенного ортоферрита лантана может играть разница в ионных радиусах La и замещающего элемента. Замещение La приводит к изменению

¹ Институт физики твердого тела им. Ю.А. Осипьяна РАН,

Черноголовка, Россия

² Московский государственный университет им. М.В. Ломоносова,

объема элементарной ячейки в фазах перовскитного типа, может вызывать заметные искажения кристаллической решетки, а также приводить к формированию слоистых упорядоченных фаз. Все эти факторы также влияют на свойства ферритов.

Два крайних состава исследуемой системы — LaFeO₃ и СаFeO_{2.5} — содержат ионы железа только в трехвалентном состоянии; при этом в LaFeO₃ все они находятся в октаэдрическом кислородном окружении (координационное число K = 6) тогда как в CaFeO_{2.5} существует два кислородных окружения: октаэдрическое (K = 6) и тетраэдрическое (K = 4). Достаточно хорошо изучена структура незамещенных ортоферритов: LaFeO₃ [13,14] и браунмиллеритной фазы CaFeO_{2.5} с упорядоченным расположением кислородных вакансий [15,16], а также структура Са-замещенной фазы Гренье LaCa₂Fe₃O₈ [17,18]. Замещенные ортоферриты $La_{1-x}Ca_xFeO_{3-y}$ исследованы в меньшей степени (например, [19]). В особенности это касается систематических исследований — изучения влияния доли замещающего элемента, а также связанного с ней количественного соотношения валентных состояний Fe³⁺: Fe⁴⁺ и содержания кислорода, на структуру и физические свойства.

В наших предыдущих работах [12,20–22] были изучены особенности структуры, в том числе на локальном уровне, а также магнитные свойства ортоферритов системы $\text{La}_{1-x}\text{Sr}_x\text{FeO}_{3-\gamma}$, в которой ионный радиус замещающего элемента больше, чем у лантана (1.44 Å для Sr^{2+} , 1.36 Å для La^{3+} [23]). В настоящей работе в качестве замещающего иона использовался Ca^{2+} с меньшим, чем у La, ионным радиусом (1.34 Å), и исследована зависимость кристаллической структуры $\text{La}_{1-x}\text{Ca}_x\text{FeO}_{3-\gamma}$, содержания кислорода, а также валентных состояний и локального окружения ионов Fe от доли $\text{Ca}\ x$; изучены их изменения после вакуумного отжига.

2. Эксперимент

Поликристаллические образцы сложных оксидов $La_{1-x}Ca_xFeO_{3-y}$ были получены глицин-нитратным способом с использованием $La(NO_3)_3 \cdot 6H_2O$ (химической чистоты, XЧ), $Ca(NO_3)_2 \cdot 4H_2O$ (XЧ), $Fe(NO_3)_3 \cdot 9H_2O$ (Асгоѕ Organics, 99+%) и глицина (> 99.5%) в качестве исходных компонентов. В необходимом количестве нитраты металлов и глицин растворялись в дистиллированной воде при интенсивном перемешивании на магнитной мешалке. После выпаривания и тления реакционной смеси происходило образование рыхлой массы, которую отжигали на воздухе при $900 \,^{\circ}C$ 2 h для удаления углеродосодержащих остатков. Далее проводился финальный отжиг на воздухе при $1200 \,^{\circ}C$ с изотермической выдержкой 25 h. После синтеза образцы отжигались в вакууме 10^{-3} Torr при температуре $650 \,^{\circ}C$.

Структурная аттестация поликристаллических образцов проводилась при комнатной температуре на ди-

фрактометре Rigaku SmartLab SE с $CuK\alpha$ -излучением. Для проведения фазового анализа и определения структурных параметров использовались программы Powder Cell 2.4 и Match3.

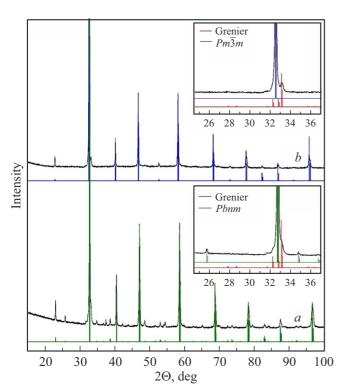
Мёссбауэровские измерения поликристаллических образцов выполнены при $85\,\mathrm{K}$ на спектрометре CM 1101, работающем в режиме постоянного ускорения. В эксперименте использовался радиоактивный источник $^{57}\mathrm{Co}(\mathrm{Rh})$. Обработка и анализ спектров проводились методом модельной расшифровки спектров с помощью программы SpectrRelax [24].

3. Результаты и обсуждение

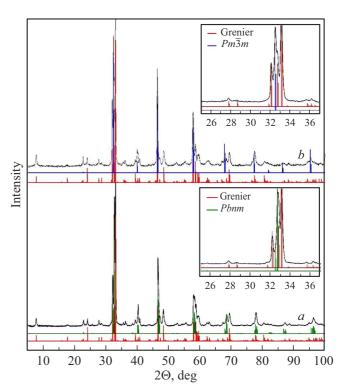
3.1. Рентгеноструктурный анализ

Исходные образцы $LaFeO_3$ и $La_{0.7}Ca_{0.3}FeO_{3-\gamma}$ имеют ромбическую структуру (пространственная группа Pbnm). Частичная замена лантана на Ca приводит к изменению параметров элементарной ячейки и, как следствие, уменьшению (приблизительно на 2%) объема кристаллической решетки, приходящегося на одну формульную единицу — так называемый объем перовскитной ячейки ($V_{\rm cell}$). Связано это с разницей в ионных радиусах Ca^{2+} и La^{3+} (1.34 и 1.36 Å [23]), а также изменением валентного состояния части ионов Fe c Fe³⁺ на Fe $^{4+}$, которые тоже имеют разные ионные радиусы (Fe^{3+} — 0.645 Å, Fe^{4+} — 0.585 Å).

Вакуумный отжиг не изменяет структуру LaFeO $_3$; замещенный феррит лантана La $_{0.7}$ Ca $_{0.3}$ FeO $_{3-\gamma}$ также остается ромбическим, однако увеличивается объем перовскитной ячейки $V_{\rm cell}$ с 59.08 до 59.77 Å 3 .


С увеличением доли Са заметно уширяются линии на дифрактограммах исходных образцов. Как показали наши предыдущие исследования [25], образцы ферритов, синтезированные золь-гель-методом, имеют малый размер зерна (порядка нескольких десятков нанометров), что приводит к уширению дифракционных линий. При этом, как следует из литературы [26], средний размер зерна уменьшается с ростом концентрации кальция в $La_{1-r}Ca_rFeO_{3-\nu}$. Вторая возможная причина изменения ширины линий — растущие вместе с концентрацией замещающего Са микроискажения решетки [27]. Они, по-видимому, связаны с разницей атомных радиусов Ca^{2+} и La^{3+} , а также неравномерным распределением возникающих кислородных вакансий, которое коррелирует, в соответствии с необходимостью локальной компенсации заряда, с распределением ионов Са²⁺ и La³⁺. Следствием этих искажений является образование микроблочной структуры.

Основная фаза в исходном образце $La_{0.5}Ca_{0.5}FeO_{3-\gamma}$ также имеет ромбическую структуру (пр. гр. Pbnm), V_{cell} отличается от величины для незамещенного феррита лантана $LaFeO_3$ приблизительно на 4%. Вторая фаза — предположительно, ромбическая фаза Гренье состава $Ca_2LaFe_3O_8$ (пр. гр. $P2_1$ ma, PDF-2 #01-082-3103) [17].


Ее доля мала, некоторые линии ее спектра накладываются на линии *Pbnm*, а остальные имеют очень малую интенсивность, что затрудняет ее идентификацию.

Образец $La_{0.5}Ca_{0.5}FeO_{3-\nu}$ после вакуумного отжига также имеет в своем составе две фазы: основная из них — с кубической решеткой $(Pm\overline{3}m)$, примесная, в количестве не более 10% — фаза Гренье. На дифрактограмме линии этой фазы, кроме одной, имеют малую интенсивность, однако полученные данные и сравнении с результатами для исходного образца позволяют нам с достаточной уверенностью идентифицировать эту фазу как фазу Гренье. Превращение ромбической фазы в кубическую сопровождается увеличением объема кристаллической решетки, приходящегося на одну формульную единицу $V_{\rm cell}$ с 58.12 до 59.24 ų. На рис. 1 приведены дифрактораммы образца La_{0.5}Ca_{0.5}FeO₃₋₂ до и после вакуумного отжига; на вставке показан угловой интервал, содержащий наиболее интенсивные линии фазы Гренье, а также обозначены малоинтенсивные линии Pbnm, которые отсутствуют в спектре фазы с кубической решеткой $Pm\overline{3}m$.

Образец La_{0.3}Ca_{0.7}FeO_{3- γ}, как исходный, так и отожженный в вакууме, состоит из двух фаз, преобладающей из которых является фаза Гренье (рис. 2). Ее содержание в исходном образце — \sim 60%, в отожженном увеличивается незначительно. Вторая фаза в исходном образце — ромбическая *Pbnm*, структура которой в

Рис. 1. Дифрактограммы образца $La_{0.5}Ca_{0.5}FeO_{3-\gamma}$ a) до и b) после вакуумного отжига. На вставках приведены соответствующие фрагменты дифракционных спектров в ограниченном угловом интервале.

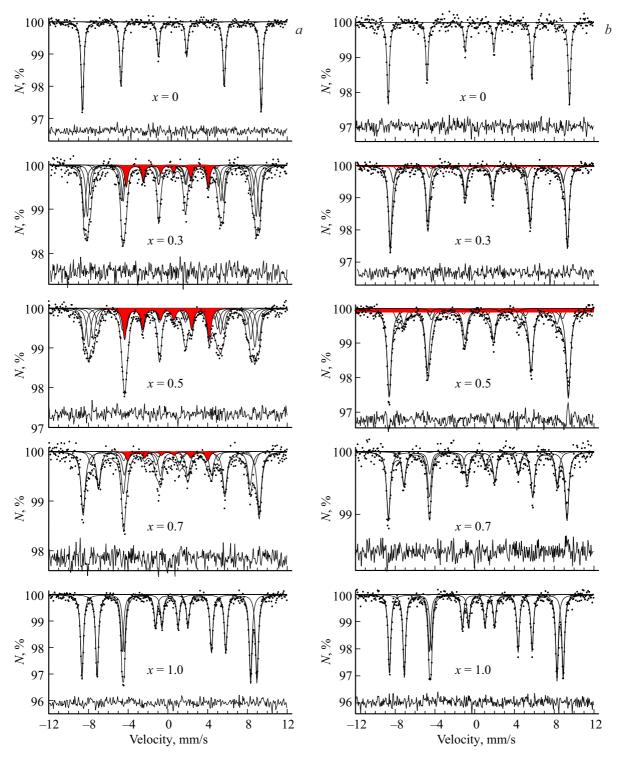


Рис. 2. Дифрактограммы образца $La_{0.3}Ca_{0.7}FeO_{3-y}$ *а)* до и *b)* после вакуумного отжига. На вставках приведены соответствующие фрагменты дифракционных спектров в ограниченном угловом интервале.

результате отжига меняется на кубическую, как и в $La_{0.5}Ca_{0.5}FeO_{3-\nu}$.

Природа кубической фазы, наблюдаемой нами в отожженных образцах $La_{0.5}Ca_{0.5}FeO_{3-\gamma}$ и $La_{0.3}Ca_{0.7}FeO_{3-\gamma}$, обсуждалась в ряде исследований, выполненных с помощью электронной микроскопии высокого разрешения и электронной дифракции [28-31]. Как показали эти эксперименты, в Са-замещенных ферритах лантана характерно образование микродоменной структуры, которая состоит из разориентированных доменов с размерами порядка десятков нанометров и дает на рентгеновской дифракции картину перовскитного куба. Тип структуры доменов зависит от соотношения Са: La, и возможно срастание доменов с разной структурой, например, фазы Гренье и браунмиллерита. Наблюдаемая нами в ходе вакуумного отжига трансформация из Pbnm в перовскитный куб, вероятно, связана с образованием микродоменов со структурой фазы Гренье. В случае состава $La_{0.5}Ca_{0.5}FeO_{3-\gamma}$ такие микроблоки, возможно, сосуществуют с доменами со структурой Рвпт (локальная структура определяется распределением Са и La), а в образце $La_{0.3}Ca_{0.7}FeO_{3-\nu}$ они могут иметь фазу Гренье практически полностью.

Образец, не содержащий La, имеет структуру браунмиллерита (CaFeO $_{2.5}$), как в исходном, так и в отожженном состоянии.

Рис. 3. Результаты модельной расшифровки измеренных при $85\,\mathrm{K}$ мёссбауэровских спектров образцов $\mathrm{La}_{1-x}\mathrm{Ca}_x\mathrm{FeO}_{3-y}$: a) исходных и b) отожженных в вакууме при $650\,^{\circ}\mathrm{C}$. Красным цветом выделен парциальный спектр ионов Fe^{4+} . Разностный спектр приводится внизу каждого экспериментального спектра.

3.2. Мёссбауэровские данные

Мёссбауэровские спектры синтезированных и отожженных в вакууме при $650\,^{\circ}$ C Са-замещенных ортоферритов $\text{La}_{1-x}\text{Ca}_x\text{FeO}_{3-\gamma}$ ($x=0,\ 0.3,\ 0.5,\ 0.7,\ 1$) были

измерены при 85 К и приведены на рис. 3. Мёссбауэровский спектр магнитоупорядоченного ортоферрита лантана LaFeO₃ (x=0) представляет собой типичный зеемановский секстет с узкими линиями (рис. 3). Значения сверхтонких параметров спектра: изомерный сдвиг δ ,

Образец	δ, mm/s	ε, mm/s	H _{hf} , kOe	I, %	Позиция атома Fe
LaFeO ₃	0.433(2)	-0.037(2)	556.4(6)	100	Октаэдрическая
CaFeO _{2.5}	0.432(2)	-0.275(2)	540.1(5)	49.9(4)	Октаэдрическая
	0.245(2)	0.354(2)	473.2(5)	50.1(4)	Тетраэдрическая

Таблица 1. Результаты модельной расшифровки мёссбауэровских спектров ортоферритов лантана LaFeO₃ и кальция CaFeO_{2.5}

квадрупольное смещение ε и сверхтонкое магнитное поле $H_{\rm hf}$ (таблица 1) хорошо согласуются с известными литературными данными [32] и соответствуют трехвалентным атомам железа ${\rm Fe^{3+}}$ в высокоспиновом состоянии, которые находятся в октаэдрическом кислородном окружении.

Мёссбауэровский спектр магнитоупорядоченного ортоферрита кальция $CaFeO_{2.5}$ (x=1) представляет собой совокупность двух секстетов (рис. 3). Сверхтонкие параметры спектра соответствуют трехвалентным атомам железа Fe^{3+} , находящимся в высокоспиновом состоянии в двух кислородных окружениях: октаэдрическом (с бо́льшими сверхтонким магнитным полем и изомерным сдвигом) и тетраэдрическом (таблица 1).

Отношение интенсивностей двух парциальных спектров, соответствующих этим состояниям атомов железа, составляет 1:1. Спектр соответствует хорошо известной в литературе браунмиллеритной фазе $Ca_2Fe_2O_5$ [15], в которой существует чередование октаэдрических и тетраэдрических слоев.

Таким образом, особенность Са-замещенных ортоферритов заключается в том, что в двух крайних синтезированных образцах с x=0 (LaFeO $_3$) и x=1 (CaFeO $_2.5$) ионы Fe находятся только в трехвалентном состоянии. Но при x=0 в образце нет кислородных вакансий, и ионы Fe находятся в одном кислородном окружении, а при x=1 количество вакансий максимально, и ионы Fe находятся в двух кислородных окружениях.

Спектры образцов $La_{1-x}Ca_xFeO_{3-y}$ (x = 0.3, 0.5, 0.7), измеренные при 85 К, состоят из совокупности нескольких парциальных спектров; сверхтонкие параметры одного из них, с меньшим сдвигом и сверхтонким полем, соответствуют ионам Fe^{4+} , а остальные — ионам Fe^{3+} (рис. 3). При замещении La^{3+} на Ca^{2+} в $LaFeO_3$ или Ca²⁺ на La³⁺ в CaFeO_{2.5} наличие в спектрах нескольких зеемановских секстетов, относящихся к ионам Fe³⁺, связано с появлением кислородных вакансий и ионов Fe^{4+} в ближайшем ионном окружении ионов Fe^{3+} , т.е. при замещении появляются атомы Fe со смешанной валентностью. При вакуумном отжиге исходного синтезированного образца меняется число кислородных вакансий и ионов Fe⁴⁺, что приводит к соответствующему изменению сверхтонких параметров мёссбауэровских спектров. Кристаллохимическую формулу замещенного феррита $La_{1-x}Ca_xFeO_{3-y}$ в соответствии с условием

электронейтральности можно представить в виде

$$\begin{split} La_{1-x}^{3+}Ca_{x}^{2+}Fe_{1-y}^{3+}Fe_{y}^{4+}O_{3-y}^{2-} &\Rightarrow \\ &\Rightarrow (La_{1-x}^{3+}Ca_{x}^{2+})(Fe_{1-x+2y}^{3+}Fe_{x-2y}^{4+})(O_{3-y}^{2-}\Box_{y}), \quad (1) \end{split}$$

где x, $y = x - 2\gamma$ и $\gamma = (x - y)/2$ — среднее число ионов Ca^{2+} , Fe^{4+} и кислородных вакансий (\square) на формульную единицу феррита соответственно. Как видим, отсюда следует взаимосвязь между числами x, y и γ .

При модельной расшифровке мёссбауэровских спектров число ионов ${\rm Ca}^{2+}$ (x) задается, а число ионов ${\rm Fe}^{4+}$ (y) и кислородных вакансий (y) вычисляются. Если предположить, что вероятности эффекта Мёссбауэра для ядер 57 Fe, принадлежащих ионам ${\rm Fe}^{3+}$ и ${\rm Fe}^{4+}$, практически одинаковы, то относительные интенсивности их парциальных спектров позволяют определить для каждого образца не только число ионов ${\rm Fe}^{4+}$ (y), но и число кислородных вакансий (y) и анионов ${\rm O}^{2-}$ (3-y) на формульную единицу для заданного замещения ионов ${\rm La}^{3+}$ ионами ${\rm Ca}^{2+}$ (x):

$$y = \frac{I(Fe^{4+})}{I(Fe^{4+}) + I(Fe^{3+})}, \quad \gamma = (x - y)/2.$$
 (2)

Здесь $I(\mathrm{Fe^{4+}})$ и $I(\mathrm{Fe^{3+}})$ — относительные интенсивности парциальных мёссбауэровских спектров ионов $\mathrm{Fe^{4+}}$ и $\mathrm{Fe^{3+}}$ соответственно. При этом легко посчитать среднее число n катионов $\mathrm{Fe^{4+}}$, кислородных вакансий \square и ионов кислорода $\mathrm{O^{2-}}$ в ближайших катионном и анионном окружениях атома Fe :

$$n(\text{Fe}^{4+}) = 6y, \quad n(\square) = 2y = x - y,$$

$$n(\text{O}^{2-}) = 6 - 2y = 6 - (x - y). \tag{3}$$

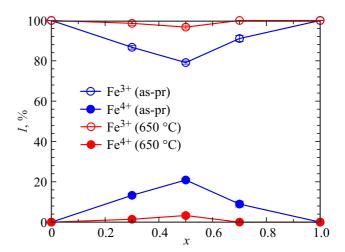
Учитывая возможные значения числа кислородных вакансий (y) и числа ионов $\mathrm{Fe^{4+}}\ (y)$, экспериментальные спектры расшифровывались в предположении о наличии до пяти парциальных спектров $\mathrm{Fe^{3+}}\$ и одного парциального спектра $\mathrm{Fe^{4+}}\$ (см. рис. 3). Появление кислородной вакансии в ближайшем окружении иона $\mathrm{Fe^{3+}}\$ обрывает обменную связь $\mathrm{Fe^{3+}}\$ О $\mathrm{C^{2-}}\$ Fe, что приводит к уменьшению сверхтонкого магнитного поля H_{hf} и изменению изомерного сдвига спектра [33,34]. Появление иона $\mathrm{Fe^{4+}}\$ в ближайшем катионном окружении иона $\mathrm{Fe^{3+}}\$ приводит к ослаблению обменной связи и соответственно к уменьшению поля H_{hf} . Введем в рассмотрение число оборванных и ослабленных связей ти предположим,

что изменения сверхтонкого поля, изомерного сдвига и квадрупольного смещения для парциальных спектров ионов $\mathrm{Fe^{3+}}$ в образцах практически одинаковы при увеличении числа m или обрывов, или ослаблений обменных связей, вызванных появлением или кислородных вакансий, или ионов $\mathrm{Fe^{4+}}$:

$$H_{\rm hf}({\rm Fe^{3+}}; m) = H_{\rm hf}({\rm Fe^{3+}}; 0) + m\Delta H_{\rm hf}({\rm Fe^{3+}}),$$
 (4)

$$\delta(\text{Fe}^{3+}; m) = \delta(\text{Fe}^{3+}; 0) + m\Delta\delta(\text{Fe}^{3+}),$$
 (5)

$$\varepsilon(\text{Fe}^{3+}; m) = \varepsilon(\text{Fe}^{3+}; 0) + m\Delta\varepsilon(\text{Fe}^{3+}).$$
 (6)


Здесь $H_{\rm hf}({\rm Fe^{3+}}; 0), \, \varepsilon({\rm Fe^{3+}}; 0)$ и $\delta({\rm Fe^{3+}}; 0)$ — значения сверхтонкого поля, изомерного сдвига и квадрупольного смещения для парциального спектра ионов Fe^{3+} с m=0, т.е. со всеми 6 обменными связями $Fe^{3+}-O^{2-}-Fe^{3+}$ при отсутствии в ближайшем окружении кислородных вакансий и ионов Fe^{4+} ; $\Delta H_{hf}(Fe^{3+})$, $\Delta \delta(Fe^{3+})$ и $\Delta \varepsilon (\text{Fe}^{3+})$ — изменения сверхтонкого поля, изомерного сдвига и квадрупольного смещения при или обрыве, или ослаблении одной обменной связи. Использование описанной выше модели позволило адекватно описать мёссбауэровские спектры замещенных ферритов лантана $La_{1-x}Ca_xFeO_{3-\nu}$, полученных при температуре 85 К: в результате расшифровки спектров значения нормированного функционала χ^2 лежали в интервале 0.93-1.16, при этом, как видим на рис. 3, отсутствовали систематические отклонения в разностных спектрах.

На рис. 4 представлены зависимости от концентрации Са относительных интенсивностей парциальных спектров всех ионов Fe^{3+} и ионов Fe^{4+} для исходных и отожженных в вакууме образцов, полученные в результате модельной расшифровки экспериментальных мёссбауэровских спектров.

Как видно на рисунке, с повышением концентрации Са в исходных образцах интенсивность парциального спектра, соответствующего ${\rm Fe}^{4+}$, растет, а для $x \ge 0.5$ падает, доходя до нуля при x=1 (CaFeO_{2.5}).

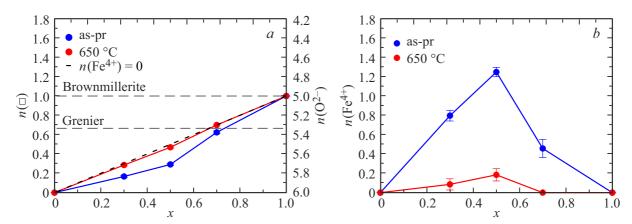
Используя данные, полученные в результате модельной расшифровки, для синтезированных и отожженных в вакууме при $650\,^{\circ}\mathrm{C}$ образцов можно получить зависимости относительных интенсивностей $I(\mathrm{Fe}^{3+};m)$ парциальных спектров ионов Fe^{3+} от числа m или оборванных, или ослабленных обменных связей, вызванных появлением или кислородных вакансий, или ионов Fe^{4+} в ближайшем окружении ионов Fe^{3+} , которые изображены на рис. 5. В то же время, если предположить случайное распределение кислородных вакансий и ионов Fe^{4+} по своим кристаллографическим позициям, то можно посчитать вероятности p наличия в ближайших катионном и анионном окружениях атома Fe катиона Fe^{4+} , кислородной вакансии \square и иона кислорода O^{2-} :

$$p(\text{Fe}^{4+}) = y$$
, $p(\Box) = \gamma/3 = (x - y)/6$,
 $p(O^{2-}) = (3 - \gamma)/3 = 1 - (x - y)/6$, (7)

Рис. 4. Зависимости относительных интенсивностей I спектров ионов Fe^{3+} и Fe^{4+} от содержания Ca(x) в исходных (as-pr) образцах и в образцах, отожженных при 650 °C в вакууме.


а также вероятность появления или кислородной вакансии, или иона Fe^{4+} , т.е. или обрыва, или ослабления обменных связей $p(\Box\vee\mathrm{Fe}^{4+})$:

$$p(\Box \lor Fe^{4+}) = p(\Box) + p(Fe^{4+}) - p(\Box)p(Fe^{4+})$$
$$= x/6 + y5/6 - xy/6 + y^2/6.$$
(8)


На рис. 5 для сравнения в соответствии с (8) изображены также биномиальные распределения числа m обрывов или ослаблений обменных связей. Как видим, предположение о случайном распределении кислородных вакансий и ионов $\mathrm{Fe^{4+}}$ применимо только при $x \leq 0.5$ для исходных и при $x \leq 0.3$ для отожженных образцов. С увеличением x, когда начинают формироваться упорядоченные фазы (с кислородно-вакансионным упорядочением), это предположение перестает работать.

С ростом концентрации Са происходит перераспределение вкладов в мёссбауэровский спектр от различных структурных состояний ${\rm Fe}^{3+}$.

После вакуумного отжига, когда ионы Fe^{4+} переходят в Fe^{3+} , картина заметно меняется (рис. 5, b). Особенно сильно это проявляется для парциальных спектров $I(\text{Fe}^{3+}; m = 0)$ и $I(\text{Fe}^{3+}; m = 2)$. В итоге с ростом концентрации Са их соотношение для x = 1составляет 1:1, что соответствует браунмиллеритной фазе Ca₂Fe₂O₅ с отношением слоев с октаэдрическим и тетраэдрическим кислородным окружением ионов Fe^{3+} , равным 1:1. Для x = 0.7 в отожженных образцах соотношение интенсивностей парциальных спектров $I({\rm Fe^{3+}};\,m=0)/I({\rm Fe^{3+}};\,m=2)$ составляет ~ 2 :1. Оно соответствует фазе Гренье, в которой отношение слоев с октаэдрическим и тетраэдрическим кислородным окружением равно 2:1 [17,28,35]. Вклады остальных парциальных спектров с ростом концентрации Са стремятся к нулю. Можно заключить, что в отожженных

Рис. 5. Зависимости относительных интенсивностей $I(\mathrm{Fe^{3+}};m)$ (черные кружки, соединенные линиями) парциальных спектров атомов $\mathrm{Fe^{3+}}$ от числа m обрывов или ослаблений обменных связей, вызванных появлением или кислородных вакансий, или ионов $\mathrm{Fe^{4+}}$, для образцов $\mathrm{La_{1-x}Ca_xFeO_{3-y}}$: a) исходных и b) отожженных в вакууме при $650\,^{\circ}\mathrm{C}$. Красным цветом изображены биномиальные распределения числа m обрывов или ослаблений обменных связей.

Рис. 6. Зависимости от концентрации Са среднего числа a) кислородных вакансий $n\square$ и ионов кислорода $n(O^{2-})$, и b) катионов Fe⁴⁺ nFe⁴⁺, в ближайших анионном и катионном окружениях атома Fe в исходных (as-pr) и отожженных в вакууме ортоферритах La_{1-x} Ca_x FeO_{3- γ}.

образцах, начиная с x = 0.5, кислород и вакансии начинают перестраиваться для формирования вакансионноупорядоченных фаз.

На рис. 6 для сравнения представлены зависимости от концентрации Са среднего числа кислородных вакансий $n(\Box)$ и ионов кислорода $n(\mathrm{O}^{2-})$ (a), а также катионов Fe^{4+} $n(\mathrm{Fe}^{4+})$ (b), в ближайших анионном и катионном окружениях атома Fe для исходных и отожженных в вакууме ортоферритов $\mathrm{La}_{1-x}\mathrm{Ca}_x\mathrm{FeO}_{3-y}$, рассчитанных в соответствии с (3).

Как видим, в исходных (as-prepared — as-pr) образцах в области x=0.5 существует характерная особенность, которая практически не проявляется в отожженных образцах. Эта особенность связана с наличием в ближайшем катионном окружении атома Fe ионов Fe⁴⁺ (рис. 6,b). В отожженных образцах, в которых очень мало ионов Fe⁴⁺, зависимость числа вакансий (и соответственно ионов O^{2-}) от концентрации Ca становится практически линейной (рис. 6,a).

В результате расшифровки мёссбауэровских спектров в рамках выбранной модели для исходных и отожженных в вакууме при 650 °C (650AV) образцов определены сверхтонкие параметры $H_{\rm hf}$, δ и ε для всех парциальных спектров. В таблице 2 приведены значения этих параметров для парциальных спектров ионов ${\rm Fe}^{3+}$ с шестью ($H_{\rm hf}({\rm Fe}^{3+};\,0),\,\delta({\rm Fe}^{3+};\,0),\,\varepsilon({\rm Fe}^{3+};\,0)$) и четырьмя ($H_{\rm hf}({\rm Fe}^{3+};\,2),\,\delta({\rm Fe}^{3+};\,2),\,\varepsilon({\rm Fe}^{3+};\,2)$) обменными связями ${\rm Fe}^{3+}-{\rm O}^{2-}-{\rm Fe}^{3+},\,$ характерными для крайних составов исследуемой системы — LaFeO3 и CaFeO2.5, а также для парциального спектра ионов ${\rm Fe}^{4+}$ ($H_{\rm hf}({\rm Fe}^{4+}),\,\delta({\rm Fe}^{4+}),\,\varepsilon({\rm Fe}^{4+})$).

После значений сверхтонких параметров в скобках приводятся стандартные отклонения их статистических погрешностей, которые в случае фиксации параметров равнялись нулю.

Как следует из таблицы 2, для сверхтонких магнитных полей $H_{\rm hf}({\rm Fe^{3+}};0)$ при замещении ионов ${\rm La^{3+}}$ на ионы ${\rm Ca^{2+}}$ наблюдается их уменьшение на $\sim 20\,{\rm kOe},$

вызванное изменением температуры магнитного упорядочения из-за уменьшения среднего числа обменных связей $Fe^{3+}-O^{2-}-Fe^{3+}$. Сдвиги $\delta(Fe^{3+};0)$ с увеличением концентрации Са²⁺ практически не меняются, поскольку они определяются в первую очередь наличием ближайшего октаэдрического кислородного окружения. При этом значения $\delta(\mathrm{Fe^{3+}};0)$ близки к соответствующим значениям сдвига δ для незамещенного феррита LaFeO₃, в котором все ионы Fe³⁺ участвуют во всех шести обменных связях Fe^{3+} $-O^{2-}$ $-Fe^{3+}$. Наиболее заметные изменения с увеличением концентрации ионов Са²⁺ наблюдаются для квадрупольных смещений $\varepsilon(\text{Fe}^{3+}; 0)$, обусловленные гетеровалентным замещением La³⁺ на Са²⁺ и, как результат, увеличением степени неоднородности (модуля градиента) электрического поля в области расположения ионов Fe^{3+} и их ядер Fe^{57} .

Для сверхтонких параметров парциальных спектров ионов Fe^{3+} с четырьмя обменными связями $Fe^{3+}-O^{2-}-Fe^{3+}$, которые возникают в процессе замещения La^{3+} на Ca^{2+} , с ростом концентрации Ca наблюдается уменьшение сверхтонкого магнитного поля $H_{\rm hf}(Fe^{3+};\,2)$ и сдвига $\delta(Fe^{3+};\,2)$, а также увеличение квадрупольного смещения $\varepsilon(Fe^{3+};\,2)$, значения которых приближаются к значениям сверхтонких параметров иона Fe^{3+} в тетраэдрической позиции ортоферрита кальция $CaFeO_{2.5}$ (табл. 1).

Анализ полученных в результате модельной расшифровки мёссбауэровских спектров концентрационных зависимостей параметров $\Delta H_{\rm hf}({\rm Fe^{3+}})$, $\Delta \delta({\rm Fe^{3+}})$ и $\Delta \varepsilon({\rm Fe^{3+}})$ показывает, что при или обрыве, или ослаблении одной обменной связи ${\rm Fe^{3+}}-{\rm O^{2-}}-{\rm Fe^{3+}}$ сверхтонкое поле $H_{\rm hf}({\rm Fe^{3+}})$ и изомерный сдвиг $\delta({\rm Fe^{3+}})$ уменьшаются — поле на $20-40\,{\rm kOe}$, сдвиг на $0.03-0.1\,{\rm mm/s}$, а квадрупольное смещение $\varepsilon({\rm Fe^{3+}})$ увеличивается на $0-0.3\,{\rm mm/s}$. При этом изменения поля, сдвига и квадрупольного смещения возрастают с увеличением концентрации ${\rm Ca^{2+}}$ для исходных образцов, начиная с x=0.5, а для отожженных образцов — с x=0.3.

Таблица 2. Значения сверхтонких (СТ) параметров парциальных спектров ионов Fe^{3+} с шестью ($H_{hf}(Fe^{3+}; 0)$, $\delta(Fe^{3+}; 0)$, $\epsilon(Fe^{3+}; 0)$) и четырьмя ($H_{hf}(Fe^{3+}; 2)$, $\delta(Fe^{3+}; 2)$, $\epsilon(Fe^{3+}; 2)$) обменными связями $Fe^{3+} - O^{2-} - Fe^{3+}$, а также парциального спектра ионов Fe^{4+} ($H_{hf}(Fe^{4+})$, $\delta(Fe^{4+})$, $\epsilon(Fe^{4+})$ |bf), для исходных и отожженных в вакууме при 650 °C (650AV) образцов ортоферритов $La_{1-x}Ca_xFeO_{3-\gamma}$

		Исходный о	бразец		
СТ-параметры	x = 0.0	x = 0.3	x = 0.5	x = 0.7	x = 1.0
$H_{\rm hf}({\rm Fe}^{3+};0),{\rm kOe}$	556.6(6)	546.9(1.5)	544.7(1.8)	545.0(2.2)	540.1(6)
$\delta(\text{Fe}^{3+}; 0), \text{ mm/s}$	0.433(2)	0.432(7)	0.440(10)	0.477(8)	0.432(3)
$\varepsilon(\mathrm{Fe^{3+}};0),\mathrm{mm/s}$	-0.037(2)	-0.027(7)	-0.071(9)	-0.146(8)	-0.275(2)
$H_{\rm hf}({\rm Fe}^{3+}; 2), {\rm kOe}$	_	506.0(1.9)	491.5(2.0)	467.9(2.4)	473.2(6)
$\delta(\text{Fe}^{3+}; 2), \text{ mm/s}$	_	0.369(11)	0.411(9)	0.317(16)	0.245(3)
$\varepsilon(\text{Fe}^{3+}; 2), \text{ mm/s}$	_	0.002(11)	0.008(9)	0.326(15)	0.354(2)
$H_{\rm hf}({\rm Fe}^{4+})$, kOe	_	256(2)	264(1)	250(4)	_
$\delta(\mathrm{Fe}^{4+})$, mm/s	_	-0.07(2)	-0.08(2)	-0.02(6)	_
$\varepsilon(\mathrm{Fe}^{4+})$, mm/s	_	0.00(2)	-0.01(2)	0.00(0)	_
		650AV	7		
СТ-параметры	x = 0.0	x = 0.3	x = 0.5	x = 0.7	x = 1.0
$H_{\rm hf}({\rm Fe}^{3+};0),{\rm kOe}$	566.8(1.1)	552.3(1.0)	560.2(1.2)	554.1(2.0)	537.5(6)
$\delta(\text{Fe}^{3+}; 0), \text{ mm/s}$	0.463(3)	0.440(3)	0.448(4)	0.483(8)	0.445(3)
$\varepsilon(\mathrm{Fe^{3+}};0),\mathrm{mm/s}$	-0.033(3)	-0.010(3)	-0.025(4)	-0.169(8)	-0.265(3)
$H_{\rm hf}({\rm Fe}^{3+}; 2), {\rm kOe}$	_	505.4(2.5)	479.4(2.1)	475.2(2.2)	471.5(6)
$\delta(\text{Fe}^{3+}; 2), \text{ mm/s}$	_	0.318(25)	0.354(21)	0.273(17)	0.265(3)
$\varepsilon(\mathrm{Fe}^{3+}; 2), \mathrm{mm/s}$	_	-0.010(3)	0.232(21)	0.328(16)	0.348(3)
$H_{\rm hf}({ m Fe}^{4+})$, kOe	_	253(13)	273(7)	_	_
$\delta(\mathrm{Fe}^{4+})$, mm/s	_	-0.06(0)	-0.06(0)	_	-
$\varepsilon(\mathrm{Fe^{4+}})$, mm/s	_	0.01(0)	0.00(0)	_	_

Описанное выше поведение сверхтонких параметров парциальных мёссбауэровских спектров ионов Fe³⁺ связано как с формированием вакансионно-упорядоченных фаз, которое приводит к существенному изменению локальной структуры ортоферритов, так и с заметными искажениями кристаллической решетки из-за разницы в ионных радиусах La и Ca.

4. Заключение

С помощью рентгеновской дифракции и мёссбауэровской спектроскопии проведены исследования особенностей структуры замещенного феррита лантана $\text{La}_{1-x}\text{Ca}_x\text{FeO}_{3-\gamma}$, как в синтезированном состоянии, так и после вакуумного отжига при 650 °C, в зависимости от содержания Са (x=0-1.0). На основании полученных

результатов проанализировано количественное соотношение разных ближайших окружений ионов Fe^{3+} в зависимости от концентрации Са и их перераспределение в ходе вакуумного отжига. Анализ экспериментальных данных позволяет сделать следующие выводы.

- ullet С ростом концентрации Са уменьшается объем кристаллической решетки, приходящийся на одну формульную единицу $V_{\rm cell}$; вакуумный отжиг приводит к его увеличению.
- Образец с малым содержанием кальция $La_{0.7}Ca_{0.3}FeO_{3-\gamma}$, как и чистый феррит лантана $LaFeO_3$, имеет ромбическую структуру, которая не изменяется и после вакуумного отжига. Замещенные ферриты с большим содержанием кальция (x=0.5 и 0.7) являются двухфазными, причем в исходном состоянии они содержат фазы Pbnm и Γ ренье,

- а отожженном Гренье и $Pm\overline{3}m$. Превращение $Pbnm \to Pm\overline{3}m$ в образцах с $x \ge 0.5$ связано, повидимому, с образованием микродоменной структуры, которая состоит из разориентированных доменов с размерами в несколько десятков нанометров и дает рентгеновскую картину перовскитного куба. Этот факт подробно описан в литературе [28–31,36].
- Из низкотемпературных мёссбауэровских данных определено количество каждого валентного состояния Fe, число кислородных вакансий и содержание кислорода для всех исследуемых образцов. В исходных образцах максимальное количество ионов Fe^{4+} имеет образец с x=0.5.
- Показано, что с ростом концентрации Са происходит перераспределение вкладов в мёссбауэровский спектр от различных структурных состояний $\mathrm{Fe^{3+}}$; кроме того, соотношение вкладов изменяется в процессе вакуумного отжига. Исходя из сравнения с моделью случайного распределения вкладов, показано, что как в исходных, так и в отожженных образцах ферритов с $x \geq 0.7$ кислород и вакансии перестраиваются для формирования вакансионно-упорядоченных фаз, такое перестроение наблюдается и в образце с x = 0.5 после вакуумного отжига.
- \bullet Вакуумный отжиг приводит к уменьшению числа различных локальных окружений ионов Fe^{3+} , то есть делает структуру менее дефектной.

Благодарности

Авторы благодарны Центру коллективного пользования научным оборудованием ИФТТ РАН за предоставленные экспериментальные возможности для проведения структурных исследований.

Финансирование работы

Работа выполнена при поддержке Министерства науки и высшего образования РФ в рамках Госзадания Института физики твердого тела им. Ю.А. Осипьяна РАН (075-00370-24-04).

Конфликт интересов

Авторы сообщают об отсутствии конфликта интересов.

Список литературы

- M. High, C.F. Patzschke, L. Zheng, D. Zeng, O. Gavalda-Diaz, N. Ding, K.H.H. Chien, Z. Zhang, G.E. Wilson, A.V. Berenov, S.J. Skinner, K.L. Sedransk Campbell, R. Xiao, P.S. Fennell, Q. Song. Nature Commun. 13, 1, 5109 (2022).
- [2] S. Hu, L. Zhang, H. Liu, Z. Cao, W. Yu, X. Zhu, W. Yang. J. Power Sources 443, 227268 (2019).
- [3] D. Mishra, J. Nanda, S. Parida, K.J. Sankaran, S. Ghadei. J. Sol-Gel Sci. Technol. 111, 2, 381 (2024). https://doi.org/10.1007/s10971-024-06452-3

- [4] N. Suresh Kumar, K. Chandra Babu Naidu. J. Materiomics 7, 5, 940 (2021). https://doi.org/10.1016/j.jmat.2021.04.002
- [5] X. Su, H. Shan, Y. Tian, W. Guo, P. Zhao, L. Xue, Y. Zhang. J. Environ. Chem. Eng. 13, 3, 116517 (2025)
- [6] P. Goel, S. Sundriyal, V. Shrivastav, S. Mishra, D.P. Dubal, K.-H. Kim, A. Deep. Nano Energy 80, 105552 (2021). https://doi.org/10.1016/j.nanoen.2020.105552
- [7] E.K. Abdel-Khalek, D.A. Rayan, A.A. Askar, M.I.A. Abdel Maksoud, H.H. El-Bahnasawy. J. Sol-Gel Sci. Technol, 97, 1, 27 (2021).
- Y. Shin, K.-Y. Doh, S.H. Kim, J.H. Lee, H. Bae, S.-J. Song,
 D. Lee, J. Mater. Chem. A 8, 9, 4784 (2020).
 https://doi.org/10.1039/c9ta12734h
- [9] J.B. Goodenough. In: Progress in Solid State Chemistry, v. 5 / Ed. H. Reiss. Pergamon, London (1971). P. 145.
- [10] J.B. Goodenough. In: Magnetism and the Chemical Bond, v. 1 / Ed. F. Albert Cotton. Interscience, London (1963). P. 154
- [11] P.D. Battle, N.C. Gibb, S. Nixon. J. Solid State Chem. 79, 1, 75 (1989).
- [12] В.Д. Седых, О.Г. Рыбченко, А.И. Дмитриев, В.И. Кулаков, А.М. Гапочка, В.С. Русаков. ФТТ 66, 11, 1973 (2024).
 [V.D. Sedykh, O.G. Rybchenko, A.I. Dmitriev, V.I. Kulakov, A.M. Gapochka, V.S. Rusakov. Phys. Solid State 66, 11, 1189 (2024).]
- [13] M. Romero, R.W. Gómez, V. Marquina, J.L. Pérez-Mazariego, R. Escamilla. Physica B 443, 90 (2014).
- [14] S. Palimar, S.D. Kaushik, V. Siruguri, D. Swain, A.E. Viegas, C. Narayana, N.G. Sundaram. Dalton Trans. 45, 34, 13547 (2016).
- [15] J.E. Auckett, G.J. McIntyre, M. Avdeev, H. De Bruyn, T.T. Tan, S. Li, C.D. Ling. J. Appl. Cryst. 48, 1, 273 (2015).
- [16] R. Ghani, M.S. Mahboub, S. Zeroual, M. Mimouni, O. Ben Ali, B. Hani, M. Ghougali. Phys. Chem. Solid State 23, 2, 249 (2022).
- [17] J. Grenier, N. Ea, M. Pouchard, M.M. Abou-Sekkina. Mater. Res. Bull. 19, 10, 1301 (1984).
- [18] D.J. Goossens, L.S.F. Henderson, S. Trevena, J.M. Hudspeth, M. Avdeev, J.R. Hester. J. Solid State Chem. 196, 238 (2012). http://dx.doi.org/10.1016/j.jssc.2012.06.029
- [19] V.A. Kolotygin, E.V. Tsipis, M.V. Patrakeev, J.C. Waerenborgh, V.V. Kharton. Mater. Lett. 239, 167 (2019). https://doi.org/10.1016/j.matlet.2018.11.180
- [20] В.Д. Седых, О.Г. Рыбченко, Н.В. Барковский, А.И. Иванов, В.И. Кулаков. ФТТ 63, 10, 1648 (2021).
 https://doi.org/10.21883/FTT.2021.10.51418.128
 [V.D. Sedykh, O.G. Rybchenko, N.V. Barkovskii, A.I. Ivanov, V.I. Kulakov. Phys. Solid State 63, 10, 1775 (2021).]
- [21] V. Sedykh, O. Rybchenko, V. Rusakov, S. Zaitsev, O. Barkalov, E. Postnova, T. Gubaidulina, D. Pchelina, V. Kulakov. J. Phys. Chem. Solids 171, 111001 (2022). https://doi.org/10.1016/j.jpcs.2022.111001
- [22] V. Sedykh, V. Rusakov, O. Rybchenko, A. Gapochka, K. Gavrilicheva, O. Barkalov, S. Zaitsev, V. Kulakov. Ceram. Int. 49, 15, 25640 (2023). https://doi.org/10.1016/j.ceramint.2023.05.105
- [23] R.D. Shannon. Acta Cryst. A 32, 5, 751 (1976).
- [24] M.E. Matsnev, V.S. Rusakov. AIP Conf. Proceed. **1489**, *1*, 178 (2012). https://doi.org/10.1063/1.4759488
- [25] В.Д. Седых, О.Г. Рыбченко, В.С. Русаков, А.М. Гапочка, А.И. Дмитриев, Е.А. Першина, С.В. Зайцев, К.П. Мелетов, В.И. Кулаков, А.И. Иванов. ФТТ **67**, *1*, 206 (2025).

- [26] K. Zhou, H. Cao, K. Gao, J. Shen, Z. Lu, Z. Wu, M. Liu. Modern Phys. Lett. B 37, 35, 2350188 (2023).
- [27] A.N. Nadeev, S.V. Tsybulya, E.Yu. Gerasimov, N.A. Kulikovskaya, L.A. Isupova. J. Structural Chem. 51, 5, 891 (2010).
- [28] P.M. Price, N.D. Browning, D.P. Butt. J. Am. Ceram. Soc. 98, 7, 2248 (2015). https://doi.org/10.1111/jace.13474
- [29] M. Vallet-Regí, J. González-Calbet, M.A. Alario-Franco, J.-C. Grenier, P. Hagenmuller. J. Solid State Chem. 55, 3, 251 (1984).
- [30] M.A. Alario-Franco, J.M. Gonzalez-Calbet, M. Vallet-Regí, J.-C. Grenier. J. Solid State Chem. 49, 2, 219 (1983).
- [31] M.A. Alario-Franco, M.J.R. Henche, M. Vallet, J.M.G. Calbet, J.-C. Grenier, A. Wattiaux, P. Hagenmuller. J. Solid State Chem. 46, 1, 23 (1983).
- [32] J.C. Grenier, L. Fournès, M. Pouchard, P. Hagenmuller,
 S. Komornicki. Mater. Res. Bull. 17, 1, 55 (1982).
 https://doi.org/10.1016/0025-5408(82)90183-0
- [33] G.A. Sawatzky, F. van der Woude. J. Physique Colloq. 35, C6, 47 (1974).
- [34] В.И. Николаев, В.С. Русаков. Мёссбауэровские исследования ферритов. Изд-во Моск. Ун-та, М. (1985). 224 с.
- [35] Y. Shin, G. Galli. npj Comput. Mater. 9, 1, 218 (2023). https://doi.org/10.1038/s41524-023-01175-5
- [36] T.C. Gibb. J. Solid State Chem. 74, 1, 176 (1988).

Редактор Е.В. Толстякова