12,08

Спинодальная архитектура эпоксифенольных композиций

© Д.В. Новиков

Санкт-Петербургский государственный лесотехнический университет им. С.М. Кирова,

Санкт-Петербург, Россия E-mail: dvnovikov65@mail.ru

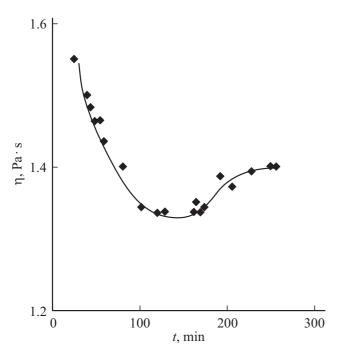
Поступила в Редакцию 20 августа 2025 г. В окончательной редакции 20 августа 2025 г. Принята к публикации 29 августа 2025 г.

Методом электронной микроскопии изучено фазовое разделение в полимерных композиционных покрытиях, полученных на жести путем термического отверждения эквимолярной смеси эпоксидного (ЕО) и фенолформальдегидного (РО) олигомеров в этилцеллозольве при вариации количества ортофосфорной кислоты, химически взаимодействующей с ЕО и РО. Обсуждаются условия формирования и характерные черты спинодальной архитектуры эпоксифенольных композиций — кластеров двух взаимосвязанных фаз, обогащенных продуктами отверждения ЕО и РО соответственно. Показано, что спинодальный распад смеси, содержащей ЕО в виде монофосфатов, способен инициировать образование в композиции внутреннего перколяционного кластера сшитых молекул ЕО. Фрактальная микроструктура обеспечивает высокие показатели адгезионной прочности и химической стойкости покрытия.

Ключевые слова: эпоксифенольные защитные покрытия, электронная микроскопия, фазовое разделение, фрактальные кластеры, спинодальный распад.

DOI: 10.61011/FTT.2025.09.61628.232-25

1. Введение


Для создания защитных покрытий на металлах используются эпоксифенольные композиции, формируемые обычно термическим отверждением смеси эпоксидного (ЕО) и фенолформальдегидного (РО) олигомеров в растворителе [1,2]. Они сочетают в себе свойства продуктов отверждения ЕО и РО в отдельности. Известно, что твердые эпоксидные смолы выступают как хорошие диэлектрики, обладают высокой адгезией ко многим материалам и стойкостью к действию агрессивных сред. В свою очередь, изделия на основе РО имеют хорошую химическую стойкость и твердость, но уступают в эластичности [2]. Поэтому важной технологической задачей является регулирование структуры сшитых полимерных композиций при выборе способа сопряжения компонентов. Эта задача представляет особый интерес и в теоретическом аспекте вследствие плохой совместимости ЕО и РО олигомеров в растворе.

Для повышения совместимости компонентов перед получением эпоксифенольных композиций по стандартной рецептуре принято проводить форконденсацию раствора смеси ЕО и РО путем перемешивания в течение $60-120\,\mathrm{min}$ при температуре $T=393\,\mathrm{K}$. На конечной стадии процесса вводится активная добавка — ортофосфорная кислота (PhAc), способствующая отверждению смеси [1–4]. Такой способ форконденсации жестко фиксирует рецептуру смеси, а также отличается продолжительностью и высоким энергопотреблением.

Известно, что при форконденсации отсутствует химическое взаимодействие между ЕО и РО, а происходит изменение состава и числа агрегатов молекул олигоме-

ров [1,3,4]. В работах [3-5] были изучены структурнокинетические аспекты этого процесса. В результате чего был установлен немонотонный вид кинетических кривых изменения вязкости η во времени t при сдвиговом течении растворов. Было показано, что ход кривых $\eta(t)$ зависит от молярного отношения компонентов $n_1(EO)/n_2(PO)$, скорости сдвига g и температуры T [3,5]. С увеличением времени обычно наблюдается снижение вязкости, сменяемое последующим ростом, переходящим к насыщению [3,4]. На рис. 1 по данным работы [3] представлена кривая $\eta(t)$ изменения вязкости раствора в ходе форконденсации смеси ЕО и РО при приготовлении лака EP-547 [6]. Минимум кривой $\eta(t)$ при $t \sim 120 \, \mathrm{min}$ (рис. 1) отвечает минимальному размеру частиц в растворе и определяет оптимальное время форконденсации [4] для получения наиболее однородной химической сетки сшитого полимера. По данным электронной микроскопии (ЕМ) [3], плотность такой сетки флуктуирует на масштабе порядка 50 nm. При $t > 120 \, \text{min}$ проходят процессы укрупнения частиц в растворе [4] и усиливаются эффекты фазового разделения, что приводит к формированию неоднородной топологической структуры композиций.

Важно отметить, что в ходе форконденсации по классической схеме [4] обычно не рекомендуется введение в раствор добавок, способствующих ассоциации частиц. Например, PhAc и EO способны легко химически взаимодействовать друг с другом с образованием продуктов присоединения линейного и разветвленного строения [7,8] вплоть до сшитых гелей [8]. Поэтому в присутствии PhAc трансформируется кластерная структура раствора, и его вязкость существенно **1740 Д.В.** Новиков

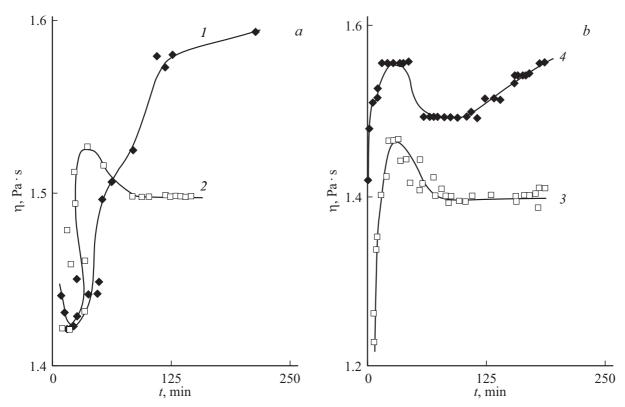
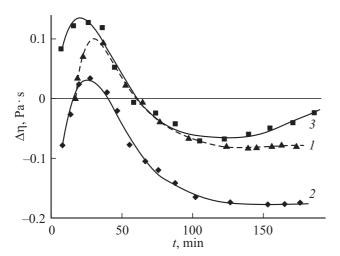


Рис. 1. Кинетическая кривая изменения вязкости η смеси ЕО и РО во времени t форконденсации. Смесь приготовлена по стандартной рецептуре лака EP-547. Соотношение олигомеров $n_1(\mathrm{EO})/n_2(\mathrm{PO}) = 0.6$. Скорость сдвига $g = 81\,\mathrm{s}^{-1}$, температура $T = 393\,\mathrm{K}$. По данным работы [3].


возрастает. По этой причине предлагается исключать использование PhAc при форконденсации и хранении растворов смеси EO и PO олигомеров [4]. Следует указать, что PhAc и PO также вступают в химическую реакцию между собой. Однако возможный прирост массы образующихся при этом частиц незначителен по сравнению с реакцией между PhAc и EO [9].

В работе [10] были подробно изучены зависимости $\eta(t)$ при введении PhAc в раствор эквимолярной смеси олигомеров на начальном этапе форконденсации. Концентрация c PhAc, рассчитываемая по уравнению $c=n_3/(n_1+n_2)$ с помощью чисел молей компонентов $n_1(\mathrm{EO}),\ n_2(\mathrm{PO})$ и $n_3(\mathrm{PhAc}),$ варьировалась в широком интервале значений c=0-0.6 [10]. Этот интервал более чем на порядок перекрывает значение c=0.05, обычно используемое для отверждения композиций [4].

На рис. 2 по данным работы [10] приведены кривые $\eta(t)$ изменения вязкости растворов в ходе форконденсации смеси ЕО и РО с различным содержанием активной добавки PhAc. В отсутствии PhAc (рис. 2, кривая I) кривая $\eta(t)$ имеет минимум около значения $t=25\,\mathrm{min}$, после чего наблюдается рост вязкости с замедляющейся скоростью. С этой точки зрения кривая I и кривая $\eta(t)$ на рис. 1 подобны друг другу, а отличия между ними обусловлены разницей значений молярного отношения олигомеров и температуры. Введение

Рис. 2. Кинетические кривые изменения вязкости η смеси ЕО и РО во времени t форконденсации. Соотношение олигомеров $n_1(\text{EO})/n_2(\text{PO}) = 1$. Скорость сдвига $g = 81 \, \text{s}^{-1}$, температура $T = 333 \, \text{K}$. Содержание PhAc: $c = 0 \, (I)$, 0.09 (2), 0.13 (3) и 0.20 (4). По данным работы [10].

Рис. 3. Влияние PhAc на "избыточную" вязкость $\Delta \eta$ смеси EO и PO в ходе форконденсации. $n_1(\text{EO})/n_2(\text{PO})=1$. Содержание PhAc: c=0.09 (I), 0.13 (2) и 0.20 (3). По данным работы [10].

РһАс в смесь олигомеров принципиально изменяет кривые $\eta(t)$ (рис. 2, кривые 2-4). В этом случае кривые $\eta(t)$ имеют максимум при $t\sim 30\,\mathrm{min}$, если концентрация c РһАс в смеси олигомеров $(n_1/n_2=1)$ удовлетворяет интервалу значений c=0.07-0.20. За максимумом по шкале времени следует падение вязкости в пределах от 2% (c=0.07) до 5% (c=0.20), после чего вязкость либо достигает предельного значения (c<0.17), либо снова возрастает (c>0.17). В области значений 0< c<0.07 максимум на кривых $\eta(t)$ отсутствует [5], и с ростом t стадия роста вязкости переходит в стадию насыщения.

Важную информацию о роли PhAc в процессе форконденсации дают кинетические зависимости "избыточной" вязкости $\Delta \eta$ растворов смеси олигомеров (рис. 3). Величина $\Delta \eta$ представляет собой разницу между значениями вязкости растворов, содержащих добавку PhAc и без нее (контрольный раствор).

Кривые $\Delta \eta(t)$, полученные при вариации концентрации c PhAc в растворе смеси олигомеров, имеют немонотонный вид с максимумом при $t_{\rm max}=25-40\,{\rm min}$. Точка экстремума лежит в верхней полуплоскости графиков функций $\Delta \eta(t)$. Это означает, что в присутствии PhAc на начальном этапе форконденсации вязкость раствора растет и в точке максимума превышает вязкость контрольного раствора. Это согласуется с ростом размера частиц [4]. Однако после достижения максимума вязкость испытывает резкое падение, и величина $\Delta \eta$ становится отрицательной, что означает снижение вязкости по сравнению с контрольным раствором и свидетельствует о глубоких структурных изменениях, вызванных химическими превращениями в растворе [7,8].

Максимум на кинетических кривых $\eta(t)$ и $\Delta \eta(t)$ и последующее резкое падение вязкости при $t>t_{\rm max}$ являются признаками происходящего в растворе смеси компонентов неравновесного фазового перехода упоря-

дочения при самоорганизации ансамбля частиц [11]. Механизм такого перехода предопределяет поведение вязкости на больших временах форконденсации (см. рис. 2 и 3). Особый интерес вызывает релаксация вязкости при ее падении к некоторому предельному значению (рис. 2, кривые 2 и 3; рис. 3, кривые 1 и 2). Достижение предельного значения вязкости свидетельствует об установлении квазистационарного равновесия между агрегатами молекул в растворе смеси олигомеров. При этом как сама предельная вязкость, так и время ее установления зависят от содержания PhAc, достигая минимума при безразмерной концентрации PhAc, равной $c \sim 0.13$ (рис. 2, кривая 3). Время достижения устойчивого значения вязкости следует рассматривать как оптимальное время формирования раствора форконденсата перед его отверждением. Достижение кинетической устойчивости смеси компонентов, сокращение времени и энергопотребления являются основными преимуществами использования PhAc на начальной стадии процесса форконденсации. Однако эти преимущества имеют место при строгом контроле состава и вязкости рабочего раствора [10].

Объяснение кинетических зависимостей $\eta(t)$ в отсутствии и при наличии PhAc в растворе смеси олигомеров требует различных подходов. Минимум на кривой $\eta(t)$ (рис. 2, кривая 1) можно трактовать как результат суперпозиции процессов распада и образования агрегатов молекул разного типа [3], а объяснение максимума (рис. 2, кривые 2-4) должно затрагивать процессы самоорганизации частиц при фазовом разделении, наблюдаемом [10] после термического отверждения полимерных покрытий.

Фазовое разделение в растворе смеси ЕО и РО может индуцироваться [12] конкурентными химическими взаимодействиями PhAc с олигомерами при возникновении областей, сильно различающихся по подвижности частиц. Механизмы процесса разделения в этом случае должны предопределяться согласно [12] глубиной химического превращения и зависеть от времени t форконденсации и концентрации c PhAc.

В работе [10] методом ЕМ были обнаружены различные типы фазового разделения в химической пространственной сетке полимерных покрытий, полученных на жести при термическом отверждении растворов форконденсатов смеси ЕО и РО с различной концентрацией *с* PhAc. Время форконденсации составляло 120 min, т.е. было оптимальным согласно реокинетическим данным для рекомендованного значения $c \sim 0.13$ (рис. 2 и 3). С уменьшением параметра c по данным [10] прослеживается постепенное усиление эффектов фазового разделения в покрытиях. Относительный избыток PhAc (c > 0.2) в растворе смеси олигомеров приводит к образованию в полимерной матрице отдельных включений — нанокластеров сшитых молекул РО. Интервал 0.04 < c < 0.2 соответствует микрофазной структуре покрытий, а в отсутствии PhAc полимерная композиция содержит протяженные, независимые друг от друга **1742 Д.В. Новиков**

участки двух фаз, обогащенных продуктами отверждения EO и PO соответственно [10]. Важно отметить, что в работе [10] структурный анализ образцов полимерных композиций осуществлялся путем цифровой обработки изображений поверхности на масштабе $R < 1.5\,\mu\mathrm{m}$. Так как реальный масштаб неоднородностей в ряде образцов составляет несколько микрометров, полученные ранее результаты не могут составить полную картину эволюции микроструктуры полимерных композиций при изменении содержания PhAc в смеси олигомеров.

Отметим также, что в более поздней работе [13] была обнаружена требующая объяснения немонотонная зависимость полной поверхностной энергии γ полимерных покрытий от параметра c, причем минимум γ соответствует значению $c\sim0.13$ и согласуется с максимальными значениями адгезионной прочности и химической стойкости покрытий [14].

В настоящей работе подробно изучены структурные аспекты фазового разделения в образцах эпоксифенольных композиций, полученных в работе [10]. Цель работы — объяснение немонотонного изменения свойств образцов по мере усиления в них эффектов фазового разделения, вызванного химическими реакциями в растворах форконденсата смеси олигомеров. Для этой цели получены корреляционные функции типа плотностьплотность для кластеров фаз в масштабном диапазоне $0.5-4\mu m$, изучены индикатрисы распределения плотности микрофаз и рассчитаны параметры микроструктуры полимерных композиций.

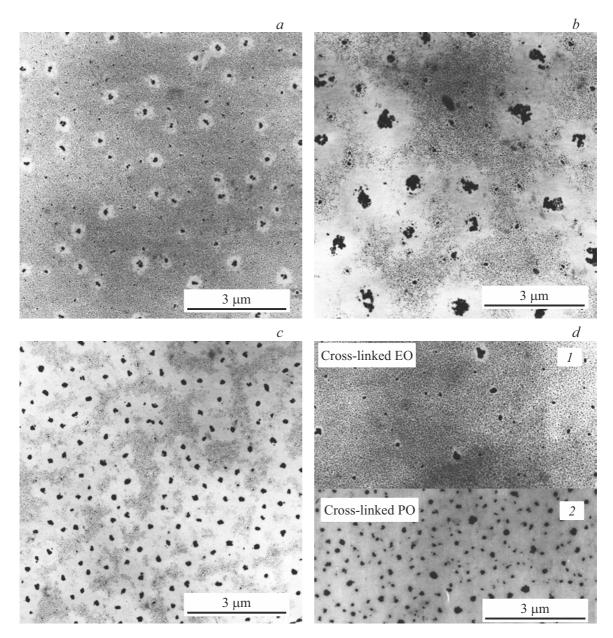
2. Методика эксперимента

В работе использовались образцы смол: эпоксидиановой Е-05 (ЕО) с эпоксидным числом 1.8 и фенолформальдегидной (РО) на основе дифенилопропана и формальдегида (Компания "Пигмент" Россия) со среднечисленной молекулярной массой 2850 и 1030 соответственно. На основе эквимолярной смеси олигомеров готовился раствор в этилцеллозольве концентрацией 20%, соответствующей образованию флуктуационной сетки зацеплений частиц [5]. Раствор подвергался форконденсации — стадии энергичного перемешивания раствора при $T=333~\mathrm{K}$ в присутствии PhAc. Время форконденсации составляло 120 min. Введение PhAc в раствор осуществлялось в начальный момент форконденсации. Безразмерная концентрация PhAc варьировалась в диапазоне c=0-0.6.

Полимерные композиционные покрытия на жести толщиной $4-6\,\mu{\rm m}$ формировались путем полива растворов форконденсатов на подложку с последующим их отверждением на воздухе в течение $10\,{\rm min}$ при $T=483\,{\rm K}$.

Микроструктура полимерных покрытий изучалась с помощью электронно-микроскопического метода декорирования поверхности образцов наночастицами хлорида серебра, создаваемых при вакуумном термическом напылении [15]. Двумерные изображения угольных реплик подвергались цифровому статистическому

анализу межчастичных расстояний в ансамблях не менее 8000 наночастиц на площади $\sim 80\,\mu\text{m}^2$. Пространственные корреляции типа плотность—плотность исследовались с использованием радиальных функций g(R) и индикатрис относительной плотности распределения наночастиц по методикам [16,17].

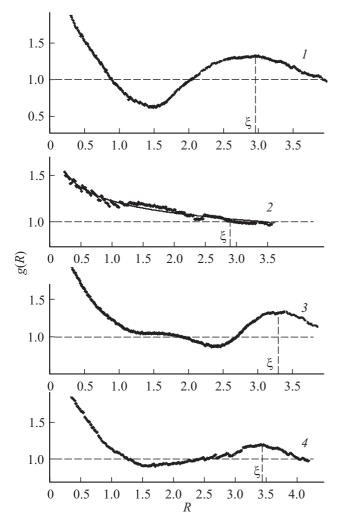

3. Результаты и их обсуждение

Декорированная хлоридом серебра поверхность полимерных покрытий содержит области локализации фракций мелких (размером 20—30 nm) и крупных (размером 150—500 nm) частиц AgCl (рис. 4). Неоднородная микроструктура поверхности обусловливает различную прочность связи наночастиц с функциональными группами сшитого полимера [16]. Хинонметидные группы, формирующиеся при отверждении композиций в присутствии PO, способствуют восстановлению хлорида серебра до зародышей металлического серебра — центров роста относительно крупных частиц AgCl. Скопления или ансамбли более мелких частиц AgCl отображают фазу, обогащенную сшитыми молекулами EO.

При отсутствии PhAc в ходе форконденсации раствора смеси олигомеров процесс отверждения композиции приводит к образованию протяженных областей локализации двух фаз, представляющих собой раздельно сшитые EO и PO (рис. 4,d). Относительный избыток PhAc ($c \geq 0.2$) в растворе приводит к формированию химической сетки эпоксифенольной композиции с четко ограниченными включениями нанокластеров продуктов отверждения PO олигомера. Нанокластеры имеют почти сферическую форму и размер 400-600 nm (рис. 4,a). Так как сплошность полимерной матрицы не нарушается, можно заключить, что нанокластеры образуются по механизму нуклеации и роста в растворе форконденсата смеси олигомеров [18].

При уменьшении содержания PhAc до критического значения $c^* \sim 1/6$ полимерная композиция приобретает лабиринтную структуру вследствие микрофазового разделения в растворе (рис. 4,c). Такая структура формируется взаимосвязанными кластерами двух фаз, корреляционная длина ξ которых составляет несколько микрометров. Величина ξ более чем на порядок превышает гидродинамический радиус агрегатов молекул в растворе каждого из двух олигомеров [3]. Такая архитектура композиции характерна для спинодального распада в бинарной системе [19] и формируется в ходе форконденсации раствора смеси олигомеров в момент достижения раствором предельной вязкости (рис. 2, кривые 2 и 3).

Переход к режиму спинодального распада смеси компонентов при критическом значении $c^* \sim 1/6$ объясняется изменением структуры аддуктов PhAc и EO. В эквимолярной смеси олигомеров значение $c^* \sim 1/6$ соответствует условию $n_3/n_1 \sim 1/3$, при котором на одну молекулу PhAc приходится три молекулы EO. Так как все три гидроксильные группы PhAc способны


Рис. 4. Электронные микрофотографии декорированной хлоридом серебра поверхности образцов полимерных покрытий на жести. Содержание PhAc: c=0.20 (a), 0.13 (b), 0.09 (c) и 0 (d). На панели d: (1) и (2) — фрагменты поверхности, относящиеся к продуктам отверждения EO и PO соответственно.

реагировать с эпоксидными группами ЕО, то в растворе с высокой скоростью протекает реакция образования трехзамещенного монофосфата ЕО по схеме [8]:

Триэфир может подвергаться гидролизу с образованием ди- и моноэфиров [8]. При $c>c^*$ раствор содержит сильно разветвленные олигофосфаты EO с высокой молекулярной массой [4].

Это затрудняет микрофазовое разделение в смеси олигомеров, а отверждение смеси приводит к образованию густой химической сетки полимера. Такая пространственная сетка имеет более низкую адгезию к подложке и более высокие внутренние напряжения, приводящие к снижению защитных характеристик полимерного покрытия [20].

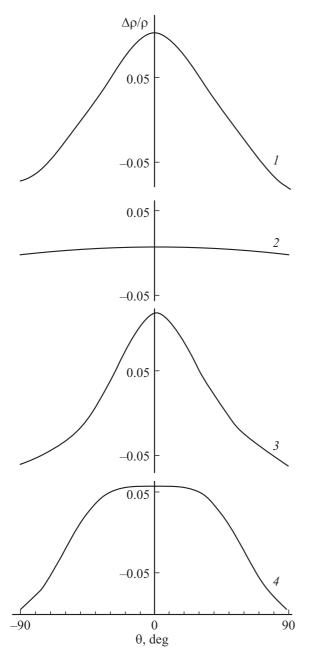
Спинодальный распад смеси компонентов при условии $c < c^*$ делает процесс структурообразования сшитого

Рис. 5. Радиальные функции g(R) типа плотность—плотность для кластеров фазы, обогащенной продуктами отверждения ЕО. Полимерные покрытия получены из растворов форконденсатов смеси олигомеров в режиме спинодального распада. Шаг сканирования изображения поверхности $0.1\,\mu\mathrm{m}$. Содержание PhAc: c=0.17 (I), 0.13 (2), 0.09 (3) и 0.04 (4).

полимера очень чувствительным к изменению состава, концентрации раствора и толщины полимерного слоя [16], а также природы подложки [13].

На рис. 5 представлены "крупнозернистые" [17] радиальные функции g(R) распределения плотности ρ ансамблей декорирующих наночастиц на поверхности образцов полимерных покрытий, полученных в режиме спинодального распада смеси компонентов в области значений параметра c=0.04-0.17. Функции g(R) относятся к кластерам фазы, обогащенной продуктами отверждения эпоксидного компонента.

Плотность ρ флуктуирует, и ее флуктуации в общем случае приводят к немонотонному изменению функций g(R) с ростом масштаба R. При этом корреляционные функции g(R) имеют максимум (рис. 5, кривые I,3 и I4), типичный для материалов с так называемой "спинодальной" архитектурой [21]. Положение максимума


отвечает периоду ξ пространственной модуляции плотности кластеров фаз. Величина ξ находится в интервале $3-3.5\,\mu\text{m}$, а отношение площадей кластеров фаз составляет 2:3 в пользу фазы с преобладанием сшитых молекул PO.

В серии образцов полимерных покрытий выделяется образец, имеющий отличную от других топологическую структуру. Этот образец отвечает содержанию c = 0.13PhAc в смеси (рис. 4, b). В данном случае корреляции типа плотность-плотность описываются функцией g(R), спадающей по степенному закону $g(R)\infty R^{D-2}$ для фрактальных объектов с фрактальной размерностью D [22] (рис. 5, кривая 2). Величина D составляет 1.86 ± 0.03 и близка к размерности внутреннего перколяционного кластера частиц в двумерном пространстве (D = 91/48) [22]. Тело такого кластера сформировано сшитыми молекулами ЕО, а полости заполнены продуктами отверждения РО. При этом соотношение площадей фаз составляет 3:2 и является обратным относительно образцов сравнения. Такая инверсия фаз в пользу эпоксидной составляющей композита является энергетически выгодной, так как степень самоассоциации молекул ЕО в этилцеллозольве на два порядка выше по сравнению с РО [3]. Энергетически выгодная конфигурация фаз объясняет минимальное значение полной поверхностной энергии у данного полимерного покрытия в ряду изученных [13].

Фрактальная структура эпоксифенольной композиции на масштабе ξ отличается изотропным распределением плотности кластеров фаз. Об этом свидетельствуют индикатрисы относительного изменения плотности $\Delta \rho/\rho$ распределения декорирующих частиц (рис. 6). Аксиальная текстура поверхности, обычно сопровождающая микрофазовое разделение в образцах покрытий (рис. 6, кривые 1,3,4), в этом случае полностью отсутствует (рис. 6, кривая 2).

Образование фрактальных структур при спинодальном распаде не является обязательным процессом. Однако в области перехода через спинодаль за счет самоорганизации кластеров фаз [23] могут возникать динамические фрактальные структуры [24]. Устойчивость таких структур может значительно возрастать в зависимости от состава фаз и соотношения их объемов, как это имеет место в рассматриваемом случае. "Спинодальные" структурированные материалы, благодаря их уникальным механическим свойствам, интенсивно исследуются в последнее время [21,25].

Важным обстоятельством является взаимосвязь содержания PhAc в растворе форконденсата смеси олигомеров и плотности фазы эпоксидного компонента в полимерной композиции. Об этом свидетельствует влияние управляющего параметра c на плотность квазирешетки декорирующих частиц, соотносимых с областями локализации сшитых молекул EO. Тип квазирешетки определяется координационным числом m и наиболее вероятным расстоянием r между частицами. Значения m и r, устанавливаемые по площади и положению пика

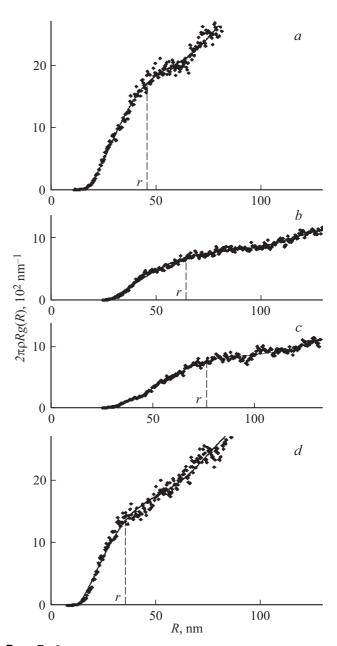
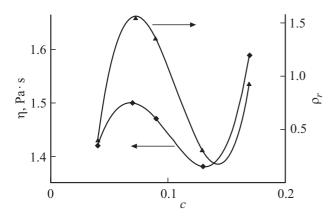


Рис. 6. Индикатрисы относительного изменения (по отношению к средней по поверхности) плотности $\Delta \rho/\rho$ наночастиц AgCl на поверхности образцов полимерных покрытий. Полимерные покрытия получены из растворов форконденсатов смеси олигомеров в режиме спинодального распада. Содержание PhAc: c=0.17 (I), 0.13 (I), 0.09 (I) и 0.04 (I). Ось ординат (I) соответствует оси текстуры пленок — направлению с максимальным значением I0.

функции $2\pi\rho Rg(R)$ радиального распределения частиц (рис. 7), позволяют рассчитать плотность квазирешетки [26].


Расчет показывает, что в интервале 0.04 < c < 0.2 значений параметра c (в режиме спинодального распада смеси компонентов) фазе сшитого ЕО в композициях соответствуют изоморфные квадратные квазирешетки де-

корирующих частиц с одним координационным числом $m\sim 4$ при различном шаге трансляции r (рис. 7,b,c). При c<0.04 и c>0.17 имеют место квазирешетки гексагонального типа $(m\sim 6)$ с различной локальной плотностью частиц (рис. 7,a,d). Сравнение плотности квазирешеток декорирующих частиц в образцах покрытий позволило оценить значения относительной плотности ρ_r кластеров фазы сшитого EO в зависимости от содержания c PhAc в композиции. Относительно контрольного образца покрытия (c=0) величина ρ_r испытывает осцилляции по шкале параметра c и в интервале 0.04 < c < 0.2 изменяется в строгом соответ-

Рис. 7. Функции радиального распределения декорирующих частиц для кластеров фазы, обогащенной продуктами отверждения ЕО. Шаг сканирования изображения поверхности 6 nm. Содержание PhAc: c=0 (a), 0.04 (b), 0.13 (c) и 0.2 (d).

Д.В. Новиков

Рис. 8. Зависимости относительной плотности ρ_r (по отношению к контрольному образцу покрытия, полученного в отсутствие PhAc) фазы сшитого EO в композиции и предельной вязкости η форконденсата смеси олигомеров от параметра c.

ствии с предельной вязкостью η раствора форконденсата смеси олигомеров (рис. 8). Это является признаком устойчивости кластеров молекул в ходе формирования композиций. Глобальный минимум функции $\rho_r(c)$, как и следовало ожидать, соответствует фрактальной микроструктуре и минимуму полной поверхностной энергии полимерного покрытия.

4. Заключение

Настоящая работа изменяет традиционные представления [4] о жесткой связи между однородной топологической структурой и улучшенными эксплуатационными свойствами эпоксифенольных защитных покрытий. Полученные результаты показывают, что высокие показатели адгезионной прочности и химической стойкости присущи микронеоднородным композициям типа взаимосвязанных кластеров двух фаз, обогащенных продуктами отверждения ЕО и РО соответственно. В этом случае длина ξ пространственных корреляций типа "плотность-плотность" для кластеров фаз составляет несколько микрометров и более чем на порядок превышает значение ξ флуктуаций плотности в единой химической сетке сшитого эпоксифенольного полимера [3,4]. Периодичность распределения и анизотропия плотности кластеров фаз позволяют говорить о так называемой "спинодальной" архитектуре композиций. Такой способ сопряжения составляющих композиции достигается при добавлении PhAc в раствор смеси олигомеров на начальной стадии процесса форконденсации под контролем мольного соотношения компонентов и изменения вязкости раствора во времени.

Активная добавка PhAc, взаимодействуя в растворе с молекулами олигомеров, избирательно снижает подвижность образующихся при этом частиц и, тем самым, способна структурировать систему компонентов по типу спинодального распада бинарной жидкости. Неравновесный фазовый переход (спинодальный распад)

в ходе форконденсации приводит к снижению вязкости раствора до устойчивого во времени предельного значения. Возможность и продолжительность такого перехода упорядочения существенно зависят от количества c добавки PhAc.

При вариации управляющего параметра c реализуются различные механизмы фазового разделения в растворе форконденсата смеси олигомеров, что обусловливает немонотонное изменение свойств в ряду образцов формируемых эпоксифенольных композиций.

Критическое значение $c^* \sim 1/6$ безразмерной концентрации c PhAc отвечает преимущественному образованию монофосфатов EO в растворе эквимолярной смеси компонентов, в результате чего возможно формирование в эпоксифенольной композиции внутреннего перколяционного кластера сшитых молекул EO. Полости такого кластера заполнены продуктами отверждения PO. Фрактальная топологическая структура химической сетки сшитого полимера обеспечивает экстремум свойств покрытий, в частности, минимум полной поверхностной энергии [13], а также максимумы адгезионной прочности и химической стойкости [14].

Конфликт интересов

Автор заявляет об отсутствии конфликта интересов.

Список литературы

- [1] З.А. Кочнова, Т.А. Хрисанова, М.Ф. Сорокин. Лакокрасочные материалы и их применение **2**, 82 (1989).
- [2] А.П. Алиева, Ф.А. Мамедзаде, М.Н. Амирасланова. Промышленное производство и использование эластомеров 1, 8 (2018).
- [3] А.Н. Красовский, Д.В. Новиков, В.Н. Филиппов, В.Д. Запорожец, Л.Ш. Нигманова. ЖПХ 76, 304 (2003).
- [4] З.А. Кочнова, С.Ю. Тузова, Е.И. Ахметьева, И.Ю. Горбунова, Г.М. Цейтлин. Высокомолек. соед. 48A, 1990 (2006).
- [5] А.Н. Красовский, В.Н. Филиппов. ЖПХ 76, 1000 (2003).
- [6] Лакокрасочные материалы для защиты консервной тары / Под ред. С.М. Лялюшко. НИИТЭХИМ, М. (1981). 35 с.
- [7] М.Ф. Сорокин, З.А. Кочнова, Л.П. Николаев, Л.П. Петрова. Труды МХТИ им. Д.И. Менделеева **110**, 63 (1980).
- [8] M. Vybornyi, Y. Vyborna, R. Haner. Chem. Soc. Rev. 48, 4347 (2019).
- [9] М.А. Устиновская, М.В. Крыловская. Успехи в химии и химической технологии XXXII, 13, 100 (2018).
- [10] А.Н. Красовский, Д.В. Новиков, В.Н. Филиппов. ЖПХ 77, 1382 (2004).
- [11] J.H. Simmons, P.B. Macedo, A. Napolitano, W.K. Haller. Discuss. Faraday. Soc. **50**, 155 (1970).
- [12] R. Williams, B.A. Rosenberg, J-P. Pasco. Adv.Polym.Sci. 128, 95 (1997).
- [13] А.Н. Красовский, С.В. Мякин, Д.В. Новиков, Л.Ш. Боридько, В.А. Корниенко. В книге: Традиции и инновации. Материалы научной конференции, посвященной 187-й годовщине образования Санкт-Петербургского государственного технологического института (технического университета) (2015). С. 36.

- [14] В.Н. Филиппов. Автореф. канд. дис. СПбГУКиТ, СПб (2004). 28 с.
- [15] Г.И. Дистлер, В.П. Власов, Ю.М. Герасимов. Декорирование поверхности твердых тел. Наука, М. (1976). 111 с.
- [16] Д.В. Новиков, А.Н. Красовский, В.Н. Филиппов. ФТТ 56, 2246 (2014).
- [17] Д.В. Новиков. ФТТ 66, 799 (2024).
- [18] Heterophase Network Polymers: Synthesis, Characterization, Properties. Eds. B.A. Rosenberg, G.M. Sigalov. Taylor & Francis Books. London (2001). 336 p.
- [19] Ю.С. Липатов, В.В. Шилов. Успехи химии LIII, 1197 (1984).
- [20] И.И. Курмакова, В.А. Огарев. Лакокрасочные материалы и их применение. **4**, 7 (1986).
- [21] M. Hsieh, B. Endo, Y. Zhang, J. Bauer, L. Valdevit. JMPS 125, 401 (2019).
- [22] Е. Федер. Фракталы / Пер. с англ. Ю.А. Данилова, А.М. Шукурова. Мир, М. (1991). 254 с. [J. Feder. Fractals. Plenum Press, N.Y., London (1988). 260 р.].
- [23] Д.В. Новиков. ФТТ 60, 1829 (2019).
- [24] А.В. Антонов, Н.Ф. Бункин, А.В. Краснослободцев, А.В. Лебедев, Г.А. Ляхов, А.И. Маляровский. ЖЭТФ **104**, 2761 (1993).
- [25] F. Senhora, E. Sanders, G. Paulino. Adv. Mater. 34, 26 (2022).
- [26] Д.В. Новиков, А.В. Варламов. Поверхность. 10, 95 (1993).

Редактор А.Н. Смирнов