05,07,13

# Влияние электрических и термических условий на тепловое расширение керамики $Ba_{0.97}Bi_{0.02}TiO_3$ в области фазового перехода $Pm\bar{3}m \leftrightarrow P4mm$

© В.Д. Фокина<sup>1</sup>, М.В. Горев<sup>1,2</sup>, В.С. Бондарев<sup>1,2</sup>, И.Н. Флёров<sup>1</sup>

E-mail: fokina@iph.krasn.ru

Поступила в Редакцию 1 августа 2025 г. В окончательной редакции 2 сентября 2025 г. Принята к публикации 17 сентября 2025 г.

Выполнены исследования влияния различных комбинаций и условий воздействия электрического поля и температуры на тепловое расширение керамики  $Ba_{0.97}Bi_{0.02}TiO_3$  в области сегнетоэлектрического фазового перехода  $Pm\overline{3}m \leftrightarrow P4mm$ . Установлена последовательность термических/электрических процессов, необходимая для получения надежно воспроизводимых результатов при термоциклировании. Показана возможность целенаправленного варьирования в пределах  $\sim (20-30)\,\%$  величин аномальных коэффициента теплового расширения и деформации соответственно вблизи и вдали от температуры перехода, что, несомненно, может быть использовано на стадии разработки керамических элементов для миниатюрных электромеханических устройств.

Ключевые слова: фазовые переходы, сегнетоэлектрик, тепловое расширение, электрическое поле.

#### DOI: 10.61011/FTT.2025.09.61622.220-25

## 1. Введение

При поиске и конструировании новых сегнетоэлектрических материалов, перспективных, в частности, для использования в качестве функциональных элементов в электромеханических устройствах, необходимо исследовать не только их свойства, но и характер и степень их чувствительности к внешним воздействиям: температуре T, электрическому полю E, гидростатическому p и одноосному  $\sigma$  давлению и т.д., которые можно рассматривать в качестве инструментов, позволяющих целенаправленно варьировать физические свойства. Так как нередко при определенных условиях материалы могут демонстрировать различные по природе релаксационные и гистерезисные явления, необходимо также установление зависимости свойств от последовательности термических/электрических процессов, в результате которых образец был приведен к равновесному термодинамическому состоянию, предшествующему конкретному последующему экспериментальному исследованию. В сегнетоэлектриках таким свойством является поляризация, поведение и величина которой к тому же существенно зависят от физико-химического качества образцов и размерного фактора (монокристалл, керамика, тонкая пленка) [1–3].

При приложении внешнего электрического поля симметрия сегнетоэлектрического кристалла даже в параэлектрической фазе вынужденно изменяется в соответствии с принципом Кюри: сохраняются лишь элементы

симметрии кристаллической решетки, общие с элементами симметрии воздействия. Таким образом, тип искажения кристалла зависит от направления вектора поля. Например, при приложении электрического поля по направлению [110] кубической фазы  $Pm\bar{3}m$  вблизи температуры перехода в тетрагональную фазу P4mm,  $T_1$ , в монокристалле  $BaTiO_3$  наблюдалась смесь тетрагональных и ромбических доменов, тогда как при более высокой температуре индуцированное полем однофазное состояние характеризовалось ромбической симметрией, совпадающей с симметрией воздействия [4].

Более сложный отклик физических свойств на воздействие внешнего электрического поля наблюдается в керамических материалах, в том числе, на основе титаната бария, которые находят все более широкое применение. Действительно, в фазе  $Pm\bar{3}m$  в каждом кристаллите существует произвольная ориентация кристаллической решетки и в случае отсутствия текстуры керамический образец представляет собой изотропную систему. Внешнее поле индуцирует индивидуальные искажения в кристаллитах в соответствии со степенью рассогласования направлений осей решетки и вектора поля. При охлаждении под полем в тетрагональную фазу Р4тт в каждом кристаллите формируются домены с преимущественной ориентацией спонтанной поляризации вдоль направления, заданного полем, что, в свою очередь, приводит к появлению анизотропии.

Информацию об условиях и обратимости перехода между изотропным и анизотропным состояниями в кера-

 $<sup>^1</sup>$ Институт физики им. Л.В. Киренского СО РАН — обособленное подразделение ФИЦ КНЦ СО РАН, Красноярск, Россия

 $<sup>^2</sup>$  Институт инженерной физики и радиоэлектроники, Сибирский федеральный университет, Красноярск, Россия

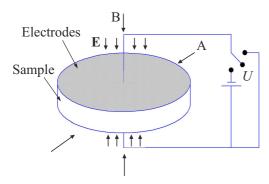
мике можно получить не только путем довольно сложных исследований поляризации. В соответствии с термодинамической теорией фазовых переходов, величина и поведение аномальной линейной спонтанной деформации и коэффициента теплового линейного расширения определяются спонтанной поляризацией, а именно,  $\Delta(\Delta L/L) \propto P^2$  и  $\Delta lpha \propto (\partial P^2/\partial T)_E$  [1]. Таким образом, тепловое расширение является хотя и косвенной, но важной и надежной характеристикой поведения поляризации как в непосредственной окрестности температуры фазового перехода, где функция  $\Delta \alpha(T)$  имеет экстремум, так и в искаженной фазе вдали от температуры перехода, где функция  $\Delta(\Delta L/L)(T)$  стремится к насыщению. Более того, исследование деформации позволяет получить ценную информацию о возможности и степени изменения линейных/объемных размеров керамики в электрических полях при разных температурах.

Вследствие того, что в керамических твердых растворах на основе титаната бария параметром фазовых переходов является поляризация, исследования различных физических эффектов в таких материалах в условиях воздействия электрического поля являются весьма информативными и активно ведутся на протяжении многих лет [1,2,5–10]. Однако в силу разных обстоятельств влияние электрического поля на тепловое расширение, насколько нам известно, не изучалось.

Лишь недавно нами были выполнены такого исследования для керамического  $Ba_{1-x}Bi_{2x/3}TiO_3(x=0.03) \equiv Ba_{0.97}Bi_{0.02}TiO_3$  (BBT), которые показали, что химическое давление и электрическое поле вызывают рост температуры фазового перехода  $Pm\bar{3}m \leftrightarrow P4mm$  и уменьшение аномальной части коэффициента теплового расширения [11]. Эти результаты согласуются с данными выполненных ранее исследований теплового расширения и диэлектрической проницаемости системы твердых растворов  $Ba_{1-x}Bi_{2x/3}TiO_3$  (x=0-0.05) при E=0 [12]. В то же время в последней работе было обнаружено, что при x > 0.02 на фазовой диаграмме T - xвместо свойственных ВаТіО3 трех фазовых переходов  $Pm\bar{3}m \leftrightarrow P4mm \leftrightarrow C2mm \leftrightarrow R3m$  наблюдаются лишь два превращения  $Pm\bar{3}m \leftrightarrow P4mm \leftrightarrow R3m$ . В соответствии с анализом, выполненным в работе [13], при гетеровалентном замещении  ${\rm Bi}^{3+} o {\rm Ba}^{2+}$  компенсация заряда происходит за счет образования вакансий в позициях, занимаемых барием. Заряженные дефекты создают в кристаллической решетке случайные электрические поля, которые при увеличении концентрации висмута растут и приводят к возникновению неоднородных сегнетоэлектрических состояний и выклиниванию промежуточной ромбической фазы С2тт.

В настоящей работе продолжены эксперименты по изучению влияния электрической и термической предыстории образца, а также различных комбинаций внешних воздействий на деформацию и коэффициент теплового расширения ВВТ с целью определения условий как для получения надежно воспроизводимых результатов

при термоциклировании между фазами тетрагональная  $\leftrightarrow$  кубическая  $\leftrightarrow$  тетрагональная, так и для целенаправленного варьирования линейных размеров керамического образца.


# 2. Образцы и экспериментальные методы

Твердый раствор ВВТ был приготовлен в результате твердофазной реакции  $0.97 \text{BaCO}_3 + 0.01 \text{Bi}_2 \text{O}_3 + \text{TiO}_2 \rightarrow \text{Ba}_{0.97} \text{Bi}_{0.02} \text{TiO}_3 + 0.97 \text{CO}_2$  в соответствии с методикой, описанной в работе [6]. После тщательного перетирания в течение одного часа смесь исходных материалов была спрессована под давлением  $100 \, \text{MPa}$  в виде дисков  $(d=7 \, \text{mm}, \, h=1.1 \, \text{mm})$ . В качестве связки добавлялась паста OPTAPIX (Zschimmer et Schwarz). После синтеза продолжительностью  $2 \, \text{h}$  при  $1100 \, ^{\circ} \, \text{C}$  образцы подвергались отжигу в атмосфере кислорода в течение  $15 \, \text{h}$  при  $850 \, ^{\circ} \, \text{C}$ . На образцы наносились электроды путем распыления золота в вакууме.

Характеризация структуры и качества керамических образцов выполнена путем рентгеноструктурных исследований при комнатной температуре на порошковом дифрактометре Наоуиап с  $\text{Си-}K_\alpha$  излучением и линейным детектором. Шаг детектора  $2\theta$  составлял  $0.01^\circ$  с экспозицией в каждой точке в течение  $0.2\,\text{s}$ . Анализ экспериментальной дифрактограммы по методу Ритвельда с использованием программы TOPAS  $4.2\,[14]$  показал, что, во-первых, уточнение является стабильным с низкими R-факторами ( $R_{wp}=6.45,\ R_p=4.53,\ \chi^2=3.61$ ), во-вторых, как и следовало ожидать, образцы характеризуются тетрагональной симметрией ( $P4mm,\ Z=1$ ), в-третьих, какие-либо посторонние фазы, а также текстура, по крайней мере, на поверхностях перпендикулярных оси керамического диска отсутствуют.

Параметры элементарной ячейки (a=3.99612(17) Å; c=4.02771(17) Å, V=64.318(6) ų) близки к параметрам BaTiO₃ (a=3.99117(40) Å; c=4.03015(49) Å, V=64.198(15) ų) [11], но, как видно, гетеровалентное замещение  $\mathrm{Bi}^{3+}\to\mathrm{Ba}^{2+}$  привело, во-первых, к увеличению и уменьшению соответственно параметров a и c, во-вторых, к увеличению объема элементарной ячейки и, в-третьих, к уменьшению параметра тетрагональности c/a: 1.010 (BT)  $\to 1.008$  (BBT). Размер кристаллитов в керамике варьируется в пределах 300-800 nm.

Исследования температурных зависимостей линейной деформации  $\Delta L/L(T)$  и коэффициента теплового линейного расширения  $\alpha(T)$  проводились на индукционном дилатометре DIL-402C фирмы Netzsch, в конструкцию которого были внесены изменения, позволяющие прикладывать к электродам образца напряжение в пределах  $U \leq 600 \, \text{V}$ . Для калибровки и учета расширения измерительной системы использовался эталон из плавленого кварца. Содержание последовательных циклов измерений заключалось в проведении экспериментов в варьируемых условиях: нагрев-охлаждение в отсутствие (E=0)



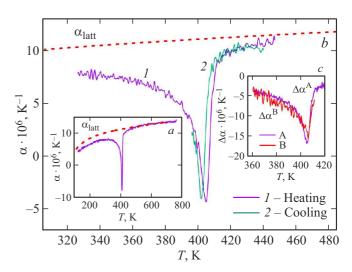
**Рис. 1.** Схематическое представление вариантов Аи В-измерения линейного теплового расширения при фиксированном направлении вектора электрического поля **E**.

и при приложении ( $E_1 = 2.72 \, \text{kV/cm}$  и  $E_2 = 5.45 \, \text{kV/cm}$ ) электрического поля, а также при короткозамкнутых электродах образца (SC — short circuit).

Результаты рентгеноструктурных исследований свидетельствуют об отсутствии текстуры в исследуемом керамическом образце, что позволяет рассматривать ВВТ в качестве изотропной среды, несмотря на тетрагональную симметрию при комнатной температуре. Однако приложение внешнего электрического поля неизбежно должно приводить к появлению в образце анизотропии. Поэтому в настоящей работе измерения теплового расширения проводились вдоль двух взаимно перпендикулярных направлений при фиксированном направлении приложения электрического поля: по диаметру образца, т.е. ортогонально направлению E (вариант A), и по толщине таблетки, т.е. параллельно направлению поля (вариант B) (рис. 1).

С целью выяснения степени зависимости деформации  $\Delta L/L(T)$  и коэффициента теплового расширения  $\alpha(T)$  от термической и электрической предыстории на каждом этапе измерений использовались различные сочетания граничных условий и процессов в циклах нагрев—охлаждение:

- 1) ZFH (zero field heating) нагрев в условиях E=0 или SC (short-circuit короткозамкнутые электроды);
- 2) ZFC (zero field cooling) охлаждение при E=0 или SC;
  - 3) FH (field heating) нагрев,  $E \neq 0$ ;
  - 4) FC (field cooling) охлаждение,  $E \neq 0$ ;
- 5) FHaFC (field heating after field cooling) нагрев при  $E \neq 0$  через 3 часа после FC;
- 6) ZFHaFC (zero field heating after field cooling) нагрев при E=0 или SC через 3 часа после FC.


В процессе исследований было обнаружено, что хронологическая последовательность циклов измерений (см. таблицу) играет значительную роль для правильного представления о механизме формирования аномального теплового расширения, связанного с фазовым переходом.

## 3. Результаты и обсуждение

Результаты измерения теплового расширения образца ВВТ в отсутствие внешнего электрического поля представлены на рис. 2 в виде температурных зависимостей коэффициента линейного теплового расширения  $\alpha(T)$ . Несмотря на то, что в задачи работы входило исследование влияния граничных электрических и термических условий на тепловое расширение только в области перехода  $Pm\bar{3}m \leftrightarrow P4mm$ , для корректного определения аномальных и решеточных вкладов в  $\Delta L/L(T)$  и  $\alpha(T)$ , соответственно связанных и несвязанных с поляризацией, необходимо было выполнить эксперименты в широком интервале температур (рис. 2, a). Видно, что в твердом растворе Ва<sub>0.97</sub>Ві<sub>0.02</sub>ТіО<sub>3</sub> с небольшой концентрацией  $Bi^{3+}$ , замещающего  $Ba^{2+}$ , только переход между кубической и тетрагональной фазами сопровождается значительной аномалией lpha(T). Изменение коэффициента расширения при наблюдавшемся в работе [12] низкотемпературном превращении  $P4mm \leftrightarrow R3m$  практически не регистрируется. Решеточный вклад  $\alpha_{\text{latt}}(T)$  в суммарное тепловое расширение, показанный штриховой линией на рис. 2, a, был определен по ранее разработанной методике, показавшей, что наиболее корректно поведение решеточной части коэффициента линейного теплового расширения описывается соотношением [15]

$$A_{\text{latt}}(T) = aT + bC_D(T, \Theta_D),$$

где  $a,b,\Theta_D$  — подгоночные параметры, а  $C_D(T,\Theta_D)$  — теплоемкость в модели Дебая. Величина температуры Дебая для ВВТ  $\Theta_D \approx 500\,\mathrm{K}$  ненамного отличается от параметра, характерного для чистого титаната



**Рис. 2.** Температурные зависимости коэффициента линейного теплового расширения  $\alpha(T)$  при E=0 (вариант A): a — в широком интервале температур, b — в окрестности  $T_1$  в режимах нагрева (I) и охлаждения (2). Штриховая линия — решеточный вклад  $\alpha_{\rm latt}(T)$ . c — температурное поведение аномальных коэффициентов линейного теплового расширения  $\Delta \alpha^{\rm A}(T)$  и  $\Delta \alpha^{\rm B}(T)$ , определенных при E=0 соответственно в вариантах измерений A и B.

Таблица. Хронологическая последовательность и содержание циклов для вариантов А и В измерений теплового расширения

| Вариант А          |                        | Вариант В |                    |                        |          |
|--------------------|------------------------|-----------|--------------------|------------------------|----------|
| № цикла            | Процесс                | E, kV/cm  | № цикла            | Процесс                | E, kV/cm |
| 1                  | ZFH                    | 0         | 1                  | ZFH                    | SC       |
|                    | ZFC                    | 0         |                    | ZFC                    | SC       |
|                    | $\tau=15\mathrm{h}$    |           |                    | $	au=3\mathrm{h}$      |          |
| 2                  | ZFH                    | 0         | 2                  | ZFH                    | SC       |
|                    | ZFC                    | 0         |                    | ZFC                    | SC       |
|                    | $\tau = 15 \mathrm{h}$ |           |                    | $\tau = 15 \mathrm{h}$ |          |
| 3                  | FH                     | 2.72      | 3                  | ZFH                    | SC       |
|                    | FC                     | 2.72      |                    | ZFC                    | SC       |
|                    | $	au=3\mathrm{h}$      |           |                    | $	au=3\mathrm{h}$      |          |
| 4                  | FHaFC                  | 2.72      | 4                  | ZFH                    | SC       |
|                    | FC                     | 2.72      |                    | ZFC                    | SC       |
|                    | $\tau = 15 \mathrm{h}$ |           |                    | $\tau = 15 \mathrm{h}$ |          |
| 5                  | FH                     | 5.45      | 5                  | FH                     | 5.45     |
|                    | FC                     | 5.45      |                    | FC                     | 5.45     |
| $	au=3\mathrm{h}$  |                        |           | $	au=3\mathrm{h}$  |                        |          |
| 6                  | FHaFC                  | 5.45      | 6                  | FHaFC                  | 5.45     |
|                    | FC                     | 5.45      |                    | FC                     | 5.45     |
|                    | $	au=15\mathrm{h}$     |           |                    | $\tau=15\mathrm{h}$    |          |
| 7                  | ZFH                    | 0         | 7                  | FH                     | 5.45     |
|                    | ZFC                    | 0         |                    | FC                     | 5.45     |
|                    | $	au=70\mathrm{h}$     |           |                    | $	au=3\mathrm{h}$      |          |
| 8                  | ZFH                    | 0         | 8                  | FHaFC                  | 5.45     |
|                    | ZFC                    | 0         |                    | FC                     | 5.45     |
| $	au=15\mathrm{h}$ |                        |           | $	au=15\mathrm{h}$ |                        |          |
| 9                  | ZFH                    | SC        | 9                  | FH                     | 5.45     |
|                    | ZFC                    | SC        |                    | ZFC                    | SC       |
|                    | $\tau = 15 \mathrm{h}$ |           |                    | $	au=3\mathrm{h}$      |          |
| 10                 | FH                     | 5.45      | 10                 | ZFH                    | SC       |
|                    | FC                     | 5.45      |                    | ZFC                    | SC       |
|                    | $\tau = 3  \mathrm{h}$ |           |                    | $	au=70\mathrm{h}$     |          |
| 11                 | FHaFC                  | 5.45      | 11                 | ZFH                    | SC       |
|                    | FC                     | 5.45      |                    | ZFC                    | SC       |
|                    | $\tau = 15 \mathrm{h}$ |           |                    |                        |          |
| 12                 | ZFH                    | SC        |                    |                        |          |
|                    | ZFC                    | SC        |                    |                        |          |

0

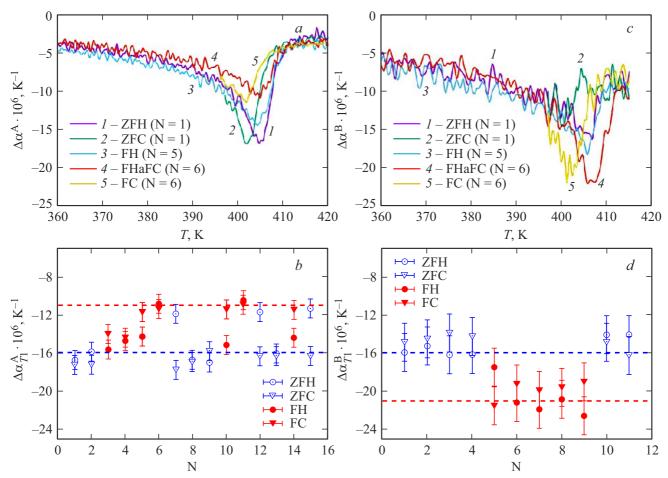
Вариант А Вариант В E, kV/cm№ цикла Процесс E, kV/cm№ цикла Процесс  $\tau = 3 \, \text{h}$ **ZFH** SC 13 SC **ZFC**  $\tau = 15 \,\mathrm{h}$ FH 5.45 14 FC 5.45  $\tau = 3 \, \mathrm{h}$ **ZFHaFC** 0 15

Таблица (продолжение).

бария  $\Theta_D \approx 430\,\mathrm{K}$  [16]. Анализ показал, что аномальный вклад в тепловое расширение, определяемый как  $\Delta\alpha(T) = \alpha(T) - \alpha_{\mathrm{latt}}(T)$ , присутствует значительно ниже температуры фазового перехода  $T_1$  (рис. 2, a).

**ZFC** 

Во всех последующих экспериментах циклы нагревохлаждение осуществлялись в интервалах температур  $(320-450)~{\rm K}-(450-395)~{\rm K}$ . Контролирование измерительного процесса охлаждения ниже  $\sim 395~{\rm K}$  было невозможным из-за конструктивных особенностей системы терморегулирования дилатометра.


На рис. 2,b представлены температурные зависимости коэффициента линейного теплового расширения  $\alpha(T)$  (вариант A, № цикла 1, 2 в таблице), определенные в режимах нагрева и охлаждения в области перехода из кубической фазы в тетрагональную. При повторном термоциклировании наблюдалась высокая воспроизводимость результатов как относительно формы пика  $\alpha(T)$ , так и его глубины, а также температуры фазового превращения, соответствующей минимуму аномалии  $\alpha(T)$ , и величины гистерезиса, которые составили соответственно  $T_1 = 404.7 \pm 0.2 \,\mathrm{K}$  и  $\delta T_1 = 2.5 \pm 0.4 \,\mathrm{K}$ .

На рис. 2, с можно видеть температурные зависимости аномальной части коэффициента теплового расширения  $\Delta \alpha^{\rm A}(T)$  и  $\Delta \alpha^{\rm B}(T)$ , определенные для случая E=0. В варианте измерений В наблюдался существенно больший разброс экспериментальных точек, обусловленный значительно меньшим размером керамического цилиндрического образца по высоте, чем по диаметру. Но несмотря на это, результаты измерений теплового расширения в двух различных направлениях оказались близки (в пределах погрешности определения), что согласуется с результатами структурных исследований, в которых было установлено отсутствие текстуры в образце при комнатной температуре. Таким образом, в отсутствие внешнего электрического поля исследованный керамический образец действительно является изотропным:  $\Delta \alpha_{T_1}^{\mathbf{A}} = \Delta \alpha_{T_1}^{\hat{\mathbf{B}}} = -16 \cdot 10^{-6} \,\mathrm{K}^{-1}.$ 

Характер и степень влияния термической и электрической предыстории образца на температурное поведение и величины  $\Delta \alpha$ , определенные в вариантах измерений A (рис. 3, a и 3, b) и В (рис. 3, c и 3, d), оказались существенно различными. На первом этапе (вариант А) изучение влияния электрического поля на тепловое расширение проводилось в условиях  $E_1 = 2.72 \,\text{kV/cm}$ . В цикле 3 (см. таблицу) наблюдалось незначительное, но все же заметное уменьшение величины аномалии коэффициента теплового расширения при  $T_1$ ,  $\Delta \alpha_{T_1}^{\rm A}$ , при измерениях в режиме нагрева по сравнению с результатами, полученными в циклах 1 и 2 при  $E=\mathbf{0}$ (рис. 3, b). При повторном нагреве (цикл 4) обнаружено дальнейшее уменьшение  $\Delta \alpha_{T_1}^{\rm A}$ . При этом в режиме охлаждения такое поведение не наблюдалось — аномалия воспроизводилась от серии к серии без изменений.

Так как величина напряженности поля  $E_1 = 2.72 \, \mathrm{kV/cm}$  является относительно небольшой по сравнению с полями, обычно используемыми для перовскитоподобных соединений, и, таким образом, не позволяет сформировать определенного представления о характере влиянии электрического поля на процесс протекания фазового превращения, то все последующие измерения были проведены при напряженности поля  $E_2 = 5.45 \, \mathrm{kV/cm}$ , соответствующей напряжению на обкладках керамического конденсатора ( $U = 600 \, \mathrm{V}$ ), максимально допустимому использованным сочетанием элементов в модернизированной дилатометрической установке.

В результате в процессе нагрева в цикле 5 аномалия  $\Delta\alpha$  заметно не изменилась по сравнению с циклом 4, тогда как при дальнейшем термоциклировании под полем (цикл 6) наблюдалось ее существенное уменьшение (рис. 3, a). Следующее за этим измерение в отсутствие поля (цикл 7) не выявило восстановления первоначальных результатов, наблюдавшихся в циклах 1 и 2 при E=0. Глубина аномалии  $\Delta\alpha$  осталась уменьшенной (рис. 3, b).



**Рис. 3.** Вверху: температурные зависимости аномальных коэффициентов линейного расширения  $\Delta\alpha(T)$ , определенные в разных электрических/термических режимах: a — вдоль поля, c — перпендикулярно полю. Внизу: величины аномальных коэффициентов линейного расширения при  $T=T_1$  в соответствии с номером цикла N: b — вдоль поля, c — перпендикулярно полю. Штриховые линии соответствуют значениям  $\Delta\alpha$  для изотропного ( $\Delta\alpha_{T_1}^{\rm A}=\Delta\alpha_{T_1}^{\rm B}=-16\cdot 10^{-6}~{\rm K}^{-1}$ ) и предельным величинам для анизотропного ( $\Delta\alpha_{T_1}^{\rm A}=-11\cdot 10^{-6}~{\rm K}^{-1}$ ;  $\Delta\alpha_{[T_1]}^{\rm B}=-21\cdot 10^{-6}~{\rm K}^{-1}$ ) состояний керамики ВВТ в поле 5.45 kV/cm.

В результате исследований в процессах охлаждения было установлено, что при одних и тех же электрических условиях, E=0 или  $E\neq 0$ , реализованных в фазе  $Pm\bar{3}m$ , величины  $\Delta\alpha_{T_1}^{\Lambda}$ , то есть в точке перехода, хорошо воспроизводятся во всех циклах (рис. 3, b). Несмотря на увеличивающийся разброс экспериментальных точек при уменьшении аномалии, видно, что при  $E\neq 0$  по сравнению с условиями E=0 значительного изменения гистерезиса не наблюдалось,  $\delta T_1=2.2\pm 0.4\,\mathrm{K}$  (рис. 3, a). Этот факт свидетельствует о том, что электрическое поле напряженностью 5.45 kV/cm практически не меняет степени близости фазового перехода первого рода  $Fm\bar{3}m \leftrightarrow P4mm$  к трикритической точке, при приближении к которой стремятся к нулю величина  $\delta T_1$  и скачок поляризации.

Дальнейшие измерения как в поле  $E_2$ , так и в отсутствие поля (циклы 8-15, вариант A) показали, что на величину и температурное поведение  $\Delta \alpha^{\rm A}$ , реализующиеся в режиме нагрева, существенное влияние оказывают граничные термические и электриче-

ские условия, в частности режим, в котором произошел предшествующий измерениям переход из кубической в тетрагональную фазу. В процессах FHaFC (циклы 6, 11) и ZFHaFC (циклы 7, 12, 15) величины аномального коэффициента расширения оказались близки друг к другу,  $\Delta \alpha_{T_1}^{
m A} = -11 \cdot 10^{-6} \, {
m K}^{-1}$ (рис. 3, b). В случае охлаждения в условиях E=0аномалии в последующих процессах нагрева (циклы  $8-10,\ 13,\ 14)$  составили  $\Delta lpha_{T_1}^{\rm A} = -16\cdot 10^{-6}\,{
m K}^{-1},$  то есть соответствовали величинам, наблюдавшимся в циклах 1 и 2 (рис. 3, b). Таким образом, для случая измерений теплового расширения в направлении перпендикулярном направлению приложенного электрического поля  $E_2 = 5.45 \, \mathrm{kV/cm}$ , было установлено существование интервала предельных значений  $\Delta \alpha_{T_1}^{\rm A}$ , соответствующих изотропному и анизотропному состояниям керамики BBT. Стоит отметить, что величины аномального коэффициента теплового расширения, определенные в процессах охлаждения, также соответствуют этому интервалу.

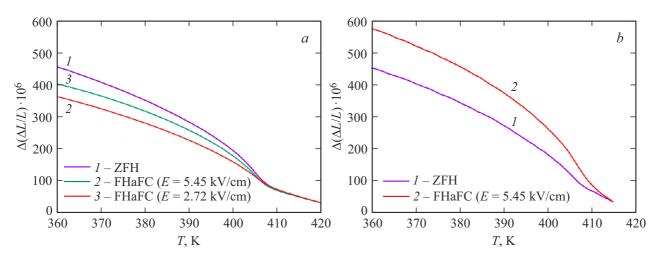
Учитывая, что после цикла измерений под полем существует возможность остаточного нескомпенсированного заряда на обкладках керамического конденсатора, были проведены измерения не только при E=0 (цикл 12), но и с предварительно короткозамкнутыми электродами в сегнетоэлектрической фазе с целью деполяризации образца (рис. 1). Из рис. 3, b видно, что это не привело к значительному изменению величины  $\Delta \alpha_{T_1}^{\rm A}$  по сравнению с результатами, полученными в циклах 7 и 15 с разомкнутыми электродами. Таким образом, описанная процедура SC не способствовала переводу исследуемого образца в исходное изотропное состояние.

При измерении коэффициента теплового расширения в соответствии с вариантом В (рис. 1), то есть в направлении, совпадающем с направлением электрического поля, обнаружены следующие явления. Как было сказано выше, при E=0 зависимости и величины  $\Delta \alpha^{\rm A}(T)$ и  $\Delta \alpha^{\rm B}(T)$  практически совпадают (рис. 2, c). Однако характер влияния электрического поля на аномалии, определенные в разных направлениях измерений, оказался существенно разным — при  $E \neq 0$  в варианте А аномалии уменьшаются, в варианте В — увеличиваются (рис. 3, a и 3, c). Многократные измерения  $\alpha^{\rm B}(T)$  при различном сочетании процессов в циклах (см. таблицу) показали, что, как и в случае А, для поля  $E_2 = 5.45 \,\mathrm{kV/cm}$  разность предельных величин  $\Delta \alpha_{T_1}^\mathrm{B}$ , соответствующих изотропному и анизотропному состояниям керамики ВВТ, составила  $\sim 5 \cdot 10^{-6} \, \mathrm{K}^{-1}$  (рис. 3, d).

В кубической фазе Ртя керамического образца кристаллиты ориентированы случайным образом и поэтому в результате перехода в фазу P4mm при E=0направление возникновения спонтанной поляризации в каждом кристаллите также является случайным и это определяет изотропное состояние образца (рис. 2, c). Однако при охлаждении в условиях  $E \neq 0$  существует преимущественное направление поляризации, совпадающее с вектором внешнего электрического поля, что проявляется в наблюдаемой анизотропии аномального теплового расширения, характеризующейся существенно разными предельными параметрами:  $\Delta lpha_{T_1}^{\rm A} = -11 \cdot 10^{-6} \, {\rm K}^{-1}$  и  $\Delta lpha_{T_1}^{\rm B} = -21 \cdot 10^{-6} \, {\rm K}^{-1}$  (рис. 3, b и 3, d). В пользу вышеприведенных рассуждений свидетельствует анализ последовательности циклов 9 и 10 (таблица, вариант В), когда выключение внешнего поля и закорачивание электродов было произведено в высокотемпературной (параэлектрической) фазе после завершения процесса FH. После этого в результате охлаждения в условиях SC образец вернулся в исходное изотропное состояние величина аномалии  $\Delta lpha_{T_1}^{\mathrm{B}}$  в цикле 10 совпала с результатами первых измерений при E=0 (циклы 1-4) (рис. 3, b).

Несмотря на заметный разброс экспериментальных точек (рис. 3, b и 3, d), в обоих вариантах измерений были обнаружены последовательности процессов, приводящие к реализации величин  $\Delta \alpha_{T_1}$  внутри интервала предельных значений: А — FH в циклах 10 и 14

после ZFC соответственно в циклах 9 и 13; В — FH в цикле 5 после ZFC в цикле 4. Это явление обусловлено изменением степени поляризованности керамического образца в разных направлениях за счет появления в фазе P4mm индуцированной поляризации, соосной вектору внешнего электрического поля.


До сих пор рассматривались особенности влияния электрических и термических условий на величины коэффициентов теплового расширения, главным образом, в окрестности фазового перехода  $Pm\bar{3}m \leftrightarrow P4mm$ . Совокупность полученных экспериментальных данных свидетельствует об отсутствии заметного влияния на тепловое расширение времени выдержки образца в тетрагональной фазе между циклами измерений, что подтверждается результатами измерений в последовательных циклах 5-6-7-8-9, реализованных в варианте В (см. таблица и рис. 3,d).

Для получения сведений о тепловом расширении в широком интервале температур более информативным является анализ поведения связанной со структурным превращением аномальной деформации, которая определяется следующим образом:  $\Delta(\Delta L/L)(T) = \int \Delta \alpha(T) \mathrm{d}T$  (рис. 4).

Из рис. 4 следует, что для деформаций в двух исследованных направлениях образца, как и для  $\Delta \alpha$ , характерно существование индивидуальных интервалов значений, расширяющихся по мере удаления температуры от точки фазового перехода. Для изотропного состояния образца величины и температурное поведение  $\Delta(\Delta L/L)(T)$ , определенные в процессах ZFH, в пределах погрешности измерений совпадают (кривые 1 на рис. 4 а и 4b). Кривые 2 демонстрируют нарастание анизотропии при  $T < T_1$ , которая характеризуется разницей деформаций, измеренных в направлениях А и В, и при  $360 \, \mathrm{K} \,$  составляет  $\sim 200 \cdot 10^{-6} . \,$  В пользу достоверности полученных и обсуждаемых данных для поля 5.45 kV/cm, свидетельствуют также результаты измерений в процессе FHaFC цикла 4 при напряженности поля 2.72 kV/cm: кривая 3 на рис. 4, a находится в интервале предельных значений  $\Delta(\Delta L/L)(T)$ . Видно, что увеличение поля в два раза сопровождается практически пропорциональным уменьшением деформации.

Анализ зависимостей деформации в процессах охлаждения не проводился, так как по объясненным выше техническим причинам эти сведения были получены в очень узком интервале температур тетрагональной фазы  $(T_1-10\,\mathrm{K}).$ 

В работе не дискутируются также природа и величина отрицательного коэффициента теплового расширения и их связь со степенью тетрагональности кристаллической решетки c/a, которая в исследованном твердом растворе оказалась меньше на  $\sim 0.2\,\%$  по сравнению с ВаТіО $_3$ . Для подобного анализа необходимо располагать, как минимум, сведениями о зависимостях  $\Delta(\Delta L/L)(T,E)$  и  $\Delta\alpha(T,E)$ , а также структурными данными для ряда замещенных соединений ВВТ с различной



**Рис. 4.** Температурные зависимости аномальной деформации, определенные в разных режимах измерений: a — вдоль поля, b — перпендикулярно полю.

концентрацией висмута. Соответствующие исследования будут выполнены нами в ближайшем будущем.

Таким образом, варьирование условий осуществления циклов нагрев/охлаждение даже в электрических полях невысокой напряженности позволяет существенно влиять на поведение теплового расширения керамики ВВТ как в окрестностях фазового перехода  $Pm\bar{3}m \leftrightarrow P4mm$ , так и глубоко в тетрагональной фазе. За счет прямой связи линейной деформации и коэффициента теплового линейного расширения с поляризацией,  $\Delta(\Delta L/L) \propto P^2$  и  $\Delta \alpha \propto (\partial P^2/\partial T)_E$  [1], возможно варьирование и характера поведения (т. е. скорости изменения), и величины поляризации.

С одной стороны, полученные результаты, несомненно, можно рассматривать как свойственные не только перовскитоподобным, но и любым другим керамическим сегнетоэлектрикам. С другой стороны, они представляют и практический интерес, например, при конструировании электромеханических устройств с управляемыми линейными размерами функционального элемента: рабочие тела в схемах сбора отработанной энергии, тепловые ключи в миниатюрных электрокалорических рефрижераторах, и др.

# 4. Заключение

Проведены исследования теплового расширения сегнетоэлектрической керамики  $Ba_{0.97}Bi_{0.02}TiO_3$  в области фазового перехода  $Pm\bar{3}m \leftrightarrow P4mm$  и в тетрагональной фазе при различных граничных термических и электрических условиях. Эксперименты выполнены для двух вариантов соотношения направлений измерения удлинения и вектора электрического поля: ортогональное (вариант A) и параллельное (вариант B). Определены условия осуществления термоциклирования, позволяющие реализовать изотропное и анизотропное состояния образца, определяемые из температурных зависимостей

аномальной линейной деформации и коэффициента линейного теплового расширения.

Гетеровалентное замещение  ${\rm Bi}^{3+} \to Ba^{2+}$  вызвало изменение параметров ячейки в фазе P4mm, сопровождающееся уменьшением степени тетрагональности c/a по сравнению с  ${\rm BaTiO_3}$ .

Не обнаружено надежно регистрируемого изменения коэффициента теплового расширения в области низкотемпературного фазового перехода  $P4mm \leftrightarrow R3m$ , наблюдавшегося в диапазоне температур  $\sim (210-220)\,\mathrm{K}$  при исследовании диэлектрической проницаемости ВВТ [12], что, в частности, может быть обусловлено сильным размытием аномалии  $\Delta\alpha$  в керамическом образце.

Электрическое поле не оказывает существенного влияния на степень близости к трикритической точке перехода  $Fm\overline{3}m \leftrightarrow P4mm$  в ВВТ, на что указывает практически неизменная величина температурного гистерезиса  $\delta T_1 \approx 2.5 \ {\rm K}$ , зарегистрированного при термоциклировании в условиях E=0 и  $E=5.45 \ {\rm kV/cm}$ .

Равенство величин аномальных коэффициентов теплового расширения  $\Delta \alpha_{T_1}^{\rm A} = \Delta \alpha_{T_1}^{\rm B} = -16 \cdot 10^{-6} \, {\rm K}^{-1}$ , определенных в соответствии с вариантами геометрии измерений А и В, свидетельствует об изотропности керамического образца ВВТ при E=0 и соответствует результатам структурных исследований, показавшим отсутствие текстуры. Анизотропия аномального теплового расширения, возникающая в образце при охлаждении из кубической фазы в условиях  $E \neq 0$  и регистрируемая в процессе последующего нагрева, характеризуется существенно разными предельными для  $E = 5.45 \, \mathrm{kV/cm}$  величинами  $\Delta \alpha_{T_1}^{\mathrm{A}} = -11 \cdot 10^{-6} \, \mathrm{K}^{-1}$  и  $\Delta \alpha_{T_1}^{\mathrm{B}} = -21 \cdot 10^{-6} \, \mathrm{K}^{-1}$ . Значительное изменение обоих аномальных коэффициентов  $\Delta lpha_{T1}^{
m A}$  и  $\Delta lpha_{T_1}^{
m B}$  относительно величины, характерной для образца в изотропном состоянии, обусловлено керамической природой образца: при охлаждении в условиях  $E \neq 0$  в каждом кристаллите существует преимущественное направление поляризации, совпадающее с вектором электрического поля, в то время как при E=0 направление возникновения спонтанной поляризации является случайным.

Похожая ситуация характерна и для поведения деформации в тетрагональной фазе, но вдали от температуры перехода  $Fm\overline{3}m \leftrightarrow P4mm$ , где при  $T_1-50\,\mathrm{K}$  и  $E_2=5.45\,\mathrm{kV/cm}$  отличие предельных величин деформаций, возникающих в изотропном и анизотропном состоянии BBT, достигает  $\sim (20-30)\,\%$ .

Уменьшение напряженности поля сопровождается пропорциональным сужением интервала предельных значений  $\Delta \alpha_{T_1}$  и  $\Delta (\Delta L/L)$ .

## Благодарности

Рентгенографические и дилатометрические данные получены с использованием оборудования Красноярского регионального центра коллективного пользования ФИЦ КНЦ СО РАН.

### Финансирование работы

Работа выполнена в рамках научной тематики Госзадания ИФ СО РАН.

#### Конфликт интересов

Авторы заявляет, что у него нет конфликта интересов.

## Список литературы

- [1] Г.А. Смоленский В.А. Боков, В.А. Исупов, Н.Н. Крайник, Р.Е. Пасынков, М.С. Шур. Сегнетоэлектрики и антисегнетоэлектрики. Наука, Л. (1971). 477 с.
- [2] Б.А. Струков, А.П. Леванюк. Физические основы сегнетоэлектрических явлений в кристаллах. Наука, М. (1983) 240 с.
- [3] М. Лайнс, А. Гласс. Сегнетоэлектрики и родственные им материалы. Мир, М. (1981) 736 с.
- [4] D. Meyrhofer. Phys. Rev. 112, 2, 413 (1958).
- [5] W.J. Merz. Phys. Rev. 91, 513 (1953).
- [6] Q. Hu, Y. Tian, Q. Zhu, J. Bian, L. Jin, H. Du, D.O. Alikin, V.Ya. Shur, Y. Feng, Z. Xu, X. Wei. Nano Energy, 67, 104264 (2020).
- [7] F. Si, B. Tang, Z. Fang, H. Li, Sh. Zhang. J. Alloys Compd. 819, 153004 (2020).
- [8] P. Zhao, L. Li, X. Wang. Microstructures 3, 2023002 (2023).
- [9] M. Acosta, N. Novak, V. Rojas, S. Patel, R. Vaish, J. Koruza, G. A. Rossetti, Jr., J. Rodel. Appl. Phys. Rev. 4, 041305 (2017).
- [10] J. Fischer, C. Molin, S. E. Gebhardt, D. Hägele, J. Rudolph. J. Appl. Phys. 135, 044101 (2024).
- [11] В.Д. Фокина, М.В. Горев, В.С. Бондарев, М.С. Молокеев, И.Н. Флёров. ФТТ **66**, *10*, 1780 (2024).
- [12] М.В. Горев, И.Н. Флёров, В.С. Бондарев, М. Maglione, A. Simon. ФТТ **53**, *10*, 1969 (2011).
- [13] A. Simon, J. Ravez, M. Maglione. Solid State Sci. 7, 925 (2005).

- [14] Bruker AXS TOPAS V4: General profile and structure analysis software for powder diffraction data. — User's Manual. Bruker AXS, Karlsruhe, Germany. 2008.
- [15] M. Gorev, V. Bondarev, I. Flerov, M. Maglione, A. Simon, P. Sciau, M. Boulos, S. Guillemet-Fritsch. J. Phys.: Condens. Matter. 21, 075902 (2009).
- [16] W.N. Lawless. Phys. Rev. B 17, 1458 (1978).

Редактор А.Н. Смирнов