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Исследован нелинейный отклик намагниченности антиферромагнитных наночастиц, находящихся под

действием переменного магнитного поля крайне высокой частоты. Рассмотрен случай одноосной магнитной

анизотропии подрешеток антиферромагнетиков с наложенным вдоль легкой оси внешним постоянным полем.

Решение инерционного уравнения Ландау−Лифшица−Гильберта методом последовательных приближений

позволило получить аналитические выражения для компонент тензора нелинейной магнитной восприим-

чивости второго и третьего порядков. Рассчитан динамический магнитный гистерезис на крайне высоких

частотах в области нутационного резонанса. Показано, что как нелинейная восприимчивость, так и форма

петли гистерезиса в THz области частот существенно зависят от частоты переменного поля, а также

от времени инерционной релаксации. Продемонстрировано, что такие нелинейные эффекты, как удвоение

частоты и появление слабых субгармонических резонансных пиков, наблюдающихся в частотной области

антиферромагнитного резонанса, воспроизводятся и в области нутационного резонанса.
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1. Введение

В современных технологиях все более широкое при-

менение находят антиферромагнетики (АФМ), являю-

щиеся предметом исследования в таком важном на-

правлении как антиферромагнитная спинтроника [1–6].
АФМ — это магнитные материалы, в которых средний

магнитный момент либо равен нулю, либо достаточ-

но мал по сравнению с магнитными моментами, при-

сутствующими внутри этих материалов [7]. Изучение

динамики намагниченности АФМ имеет также важное

значение для развития спинтроники, магноники и дру-

гих областей науки, техники и биомедицины [8–10].
АФМ могут быть изоляторами, металлами, полуме-

таллами или полупроводниками и значительно более

распространены, чем ферромагнетики (ФМ), которые

преимущественно являются металлами [11]. АФМ встре-

чаются как естественные, так создаются искусственно.

В естественных АФМ небольшая намагниченность мо-

жет быть результатом наличия слабой асимметрии в гео-

метрии почти коллинеарных намагниченностей спино-

вых подрешеток АФМ. Так называемые
”
синтетические“

АФМ, как правило, образуют искусственные материалы

со связанными взаимодействием слоями ФМ типа. Ан-

типараллельные намагниченности спиновых подрешеток

в АФМ подразумевают нечувствительность к паразит-

ным магнитным полям [12], что является одним из

преимуществ этих материалов. Другим полезным свой-

ством АФМ является более быстрая спиновая динамика,

чем в ФМ [13]. Так, из-за сильного обменного взаимо-

действия между спиновыми подрешетками антиферро-

магнитный резонанс может наблюдаться в терагерцовом

частотном диапазоне [14,15], тогда как ферромагнит-

ный резонанс из-за более слабого поля, обусловленно-

го магнитной анизотропией, находится в гигагерцовом

диапазоне частот [13,15]. В настоящее время весьма

востребованными в новых технологических разработ-

ках являются магнитные наноструктуры, обладающие

свойством сверхбыстрого перемагничивания. При этом

в сверхбыстрых динамических процессах существенную

роль играет инерционность намагниченности [16,17].

Теоретические исследования [18–22] показали, что

инерционность намагниченности приводит к нутаци-

онному движению вектора намагниченности, которое

накладывается на его регулярную прецессию вокруг

эффективного поля. Нутация намагниченности проявля-

ется в виде нутационного резонанса (HP) в ФМ [22–25]
и АФМ [25–27] в терагерцовом (THz) диапазоне частот,
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а также в виде нутационных волн [28–30]. Эксперимен-
тальное подтверждение инерционной динамики намаг-

ниченности представлено в работах [31,32], где описан

обусловленный инерционностью намагниченности НР,

наблюдаемый в тонких ферромагнитных пленках NiFe,

CoFeB и Co на THz частотах. В основе теоретических

исследований инерционной динамики намагниченности

лежит уравнение Ландау−Лифшица−Гильберта (ЛЛГ),
дополненное инерционным членом. На микроскопиче-

ском уровне разработан ряд теоретических моделей,

приводящих к инерционному уравнению ЛЛГ. Среди них

можно отметить исследования, основанные на вычисле-

нии корреляции крутящего момента [33], на обобщении

модели поверхности Ферми [34], на применении метода

анализа электронной структуры [35], на рассмотрении

релятивистской cпиновой динамики [36,37], и др. Напри-

мер, в [36] показано, что появление инерционного члена

в обобщенном уравнении ЛЛГ является следствием

учета релятивистских членов более высокого порядка

при рассмотрении спин-орбитального взаимодействия по

сравнению с теми, что приводят к затуханию Гильберта.

В случае АФМ для описания динамики намагниченно-

стей его подрешеток используется система взаимосвя-

занных инерционных уравнений ЛЛГ. Далее для просто-

ты нами рассматриваются АФМ с двумя идентичными

подрешетками, для которых инерционные уравнения

ЛЛГ имеют вид [25,27]

Ṁi = γ[He f f
i ×Mi ] +

α

M0

[Mi × Ṁi ] +
τ

M0

[Mi × M̈i ],

(1)
где Mi — намагниченность i-ой подрешетки (i = 1, 2),
γ — гиромагнитное отношение, α — безразмерный па-

раметр затухания, τ — время инерционной релаксации,

M0 = |Mi | — абсолютная величина векторов намагни-

ченностей идентичных подрешеток идеального АФМ,

которая не меняется в процессе движения. Эффективное

поле каждой из подрешеток H
e f f
i представляет собой

совокупность нескольких полей. Наряду с внешними

магнитными постоянным H0 и переменным Hac полями

и внутренним полем HK , обусловленным магнитной

анизотропией, оно включает в себя также поле H3,

обусловленное обменным взаимодействием между под-

решетками, а именно

H
e f f
i = H0 + Hac + H

i
K + H

i
3.

Если величина внешнего переменного поля мала

h = Hac/HK ≪ 1, где Hac = |Hac | и HK — максимальное

значение поля анизотропии HK , уравнение (1) можно ре-

шить с помощью теории линейного отклика, исходящей

из линейной зависимости между величиной переменного

поля и суммарной намагниченностью АФМ M(t) и

позволяющей получить выражения для тензора линей-

ной магнитной восприимчивости АФМ [27]. В сильных

переменных полях линейная зависимость между полем и

намагниченностью не выполняется в силу нелинейности

инерционного уравнения ЛЛГ. В этом случае в стаци-

онарном отклике намагниченности на переменное поле

возникают колебания не только с частотой поля, как в

линейном случае, но и появляются гармоники основной

частоты, а также наблюдается ряд других нелинейных

эффектов [7,38]. При значительных амплитудах внешне-

го поля учет нелинейных эффектов необходим для более

точных расчетов компонент тензора восприимчивости

АФМ, петли и площади динамического магнитного

гистерезиса (ДМГ), индуцированного полем двулуче-

преломления, и в ряде других приложений [38–46],
где наряду с амплитудой важную роль играет частота

внешнего переменного поля. Определенный интерес вы-

зывает также случай наложения на сильное переменное

поле постоянного поля и возможность с его помощью

менять характеристики отклика и проявление других

эффектов [47].
Возникновение НР в THz области спектра приводит

к появлению ДМГ на этих частотах. Хотя нелинейные

эффекты и ДМГ в неинерционном режиме изучены

достаточно хорошо, в том числе и в условиях теплового

шума [44–54], в инерционном режиме на частотах в

области НР подобные исследования проводились лишь

для ферромагнитных частиц [38]. Данная работа по-

священа исследованию нелинейной восприимчивости и

ДМГ АФМ на крайне высоких частотах в области НР.

Нелинейные поправки к линейной части восприимчиво-

сти АФМ вычисляются путем решения инерционного

уравнения ЛЛГ методом последовательных приближе-

ний с сохранением членов второго и третьего порядка.

Анализируется также влияние инерционности, величи-

ны постоянного поля и частоты переменного поля на

магнитную восприимчивость и на ДМГ в THz области

частот.

2. Динамика намагниченности АФМ
в сильном переменном поле

Эффективное магнитное поле i-ой подрешетки в урав-

нении (1) определяется как

H
e f f
i (t) = −

1

µ0

∂V (M1,M2, t)

∂Mi

, (2)

где µ0 — магнитная постоянная, V (M1,M2, t) — плот-

ность магнитной энергии АФМ [7]. Для простоты далее

мы рассматриваем АФМ с подрешетками, обладающи-

ми одноосной магнитной анизотропией. В этом случае

функция V (M1,M2, t) имеет вид

V (M1,M2, t) =
3

M2
0

M1M2

−
∑

i=1,2

(

K
(MieY )2

M2
0

+ µ0H0(eYMi) + µ0Haceiωt(eZMi)

)

,

(3)
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Рис. 1. Геометрия задачи: легкая ось внутреннего потенциала

направлена вдоль оси Y , а внешние постоянное и переменное

поля задаются как H0 = H0eY и Hac(t) = Hac eiωt
eZ .

где H0 — величина постоянного магнитного поля,

Hac — амплитуда переменного поля, ω — частота пере-

менного поля, 3 — параметр обменного взаимодействия

между подрешетками, K — константа одноосной магнит-

ной анизотропии подрешеток, eX , eY и eZ — единичные

вектора вдоль осей X ,Y и Z. Геометрия задачи показана

на рис. 1, где оси симметрии (легкие оси) подрешеток и

постоянное поле H0 = H0eY ориентированы вдоль оси Y ,

а переменное поле направлено поперек легких осей

Hac(t) = Haceiωt
eZ . Трехмерная поверхность, изображен-

ная на рис. 1, определяется как поверхность постоянного

значения функции

F(ϑ, ϕ) = V̄ (ϑ, π − ϑ, ϕ, π + ϕ) − V̄ (ϑ0
1 , ϑ

0
2 , ϕ

0
1, ϕ

0
2),

где функция V̄ определяется выражением (3) без учета

переменного поля. Далее мы рассматриваем случай

относительно небольшого постоянного поля, а именно

0 < H0 <
√

2(K + 3)/(µ0M0), при котором положения

минимумов функции V̄ задаются углами ϑ0
1 = ϑ0

2 = π/2,

ϕ0
1 = π/2 и ϕ0

2 = 3π/2 [27].

Поскольку ориентация каждого из векторов Mi од-

нозначно определяется парой сферических координат

(ϑi , ϕi), то с учетом выражения (2) уравнение (1) может
быть представлено в сферических координатах в виде

системы четырех скалярных уравнений [5]

τ ϑ̈i + αϑ̇i − ϕ̇i sinϑi − τ ϕ̇2
i cosϑi sinϑi + ∂ϑi

U = 0, (4)

τ ϕ̈i sinϑi + αϕ̇i sinϑi + ϑ̇i

+ 2τ ϑ̇i ϕ̇i cos ϑi + cscϑi∂ϕi
U = 0, (5)

где U ≡ γV/µ0M0 — нормированная плотность магнит-

ной энергии (3) и i = 1, 2. Функцию U удобно записать

в виде суммы двух членов U = Ū + Ũeiωt , где

Ũ = −ωac

∑

i=1,2

cosϑi (6)

— плотность зеемановской энергии, обусловленной вза-

имодействием намагниченностей подрешеток с внешним

переменным полем, а функция Ū включает в себя все

остальные виды потенциальных энергий и задается как

Ū = ω3

(

sinϑ1 sinϑ2 cos(ϕ1 − ϕ2) + cos ϑ1 cos ϑ2

)

−
∑

i=1,2

(

ωK

2
sin2 ϑi sin

2 ϕi + ω0 sinϑi sinϕi

)

. (7)

Параметры ω3 = γH3 = γ3/(µ0M0), ωK = γHK =
= 2γK/(µ0M0), ω0 = γH0 и ωac = γHac в выражени-

ях (6) и (7) имеют размерность частоты и связаны, со-

ответственно, с обменным взаимодействием, магнитной

анизотропией и зеемановским взаимодействием с внеш-

ними постоянным и переменным магнитными полями.

Временну́ю эволюцию угловых координат ϑi = ϑi(t)
и ϕi = ϕi(t), удовлетворяющих системе уравнений (4)
и (5), можно представить в виде суперпозиций коле-

баний с частотами kω и амплитудами (ϑk
i , ϕ

k
i ) около

положений равновесия (ϑ0
i , ϕ

0
i ), определяемых миниму-

мами функции Ū . Соответственно, решение системы

уравнений (4) и (5) удобно представить в виде рядов

Фурье

ϑi(t) =

∞
∑

k=−∞

ϑk
i eikωt , ϕi(t) =

∞
∑

k=−∞

ϕk
i eikωt , (8)

где мы ограничиваемся рассмотрением только членов с

k ≤ 3 из-за быстро возрастающей сложности аналитиче-

ских выражений для амплитуд (ϑk
i , ϕ

k
i ) с ростом индек-

са k . Поскольку значения углов ϑi(t) и ϕi(t) действи-

тельны, коэффициенты Фурье в выражениях (8) должны

удовлетворять условиям ϑk
i = (ϑ−k

i )∗ и ϕk
i = (ϕ−k

i )∗.
Подставляя выражения (8) в систему уравне-

ний (4) и (5), учитывая, что |ϑ0
i | ≫ |ϑ1

i | ≫ |ϑ2
i | . . .

и |ϕ0
i | ≫ |ϕ1

i | ≫ |ϕ2
i | . . ., и группируя слагаемые при сте-

пенях eikωt , обладающих одинаковой малостью, можно

получить систему уравнений для амплитуд гармоник.

Для k = 1 эта система имеет вид

(τ ω2 − iωα)ϑ1
i + iω sinϑ0

i ϕ
1
i

−
∑

j=1,2

(Ūϑiϑ j
ϑ1

j + Ūϑiϕ j
ϕ1

j ) = Ũϑi
, (9)

−iω sinϑ0
i ϑ

1
i + (τ ω2 − iωα) sin2 ϑ0

i ϕ
1
i

−
∑

j=1,2

(Ūϕiϑ j
ϑ1

j + Ūϕiϕ j
ϕ1

j ) = Ũϕi
. (10)

Здесь учтено, что Ūϑi

∣

∣

θ=θ0
= 0 и Ūϕi

∣

∣

θ=θ0
= 0, но

Ūϑi

∣

∣

θ=θ0
=0 и Ūϕi

∣

∣

θ=θ0
=0, где θ0=(ϑ0

1 , ϑ
0
2 , ϕ

0
1 , ϕ

0
2) —
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положение минимума функции Ū и θ(t) =
=

(

ϑ1(t), ϑ2(t), ϕ1(t), ϕ2(t)
)

.

Уравнения (9) и (10) удобно представить в матричной

форме

(τ ω2
I− iωD− U)θ1 = F1, (11)

где I — единичная матрица,

D =











α − sinϑ0
1 0 0

sin−1 ϑ0
1 α 0 0

0 0 α − sinϑ0
2

0 0 sin−1 ϑ0
2 α











, (12)

U =



























Ūϑ1ϑ1 Ūϑ1ϕ1
Ūϑ1ϑ2 Ūϑ1ϕ2

Ūϕ1ϑ1

sin2 ϑ0
1

Ūϕ1ϕ1

sin2 ϑ0
1

Ūϕ1ϑ2

sin2 ϑ0
1

Ūϕ1ϕ2

sin2 ϑ0
1

Ūϑ2ϑ1 Ūϑ2ϕ1
Ūϑ2ϑ2 Ūϑ2ϕ2

Ūϕ2ϑ1

sin2 ϑ0
2

Ūϕ2ϕ1

sin2 ϑ0
2

Ūϕ2ϑ2

sin2 ϑ0
2

Ūϕ2ϕ2

sin2 ϑ0
2



























(13)

— системные матрицы,

F1 =















Ũϑ1

sin−2 ϑ0
1Ũϕ1

Ũϑ2

sin−2
ϑ0
2Ũϕ2















(14)

— свободный вектор, а

θ1 =















ϑ1
1

ϕ1
1

ϑ1
2

ϕ1
2















(15)

— вектор искомых амплитуд в разложениях (8).
Аналогично получаются матричные уравнения для

векторов θk , которые в общем виде записываются как

(τ k2ω2
I− ikωD− U)θk = Fk . (16)

Выражения для свободных векторов Fk при k = 2

и k = 3 приведенны в Приложении. Формальное реше-

ние уравнения (16) имеет вид

θk = (τ k2ω2
I− ikωD− U)−1

Fk . (17)

3. Компоненты тензора магнитной
восприимчивости АФМ

Вектора θk из уравнения (17) позволяют

рассчитать компоненты тензора восприимчивостей

χ̂(k) = χ̂′(k)(ω) − i χ̂′′(k)(ω) n-го порядка, которые

являются коэффициентами в разложении декартовых

компонент вектора намагниченности Mx , MY и MZ

по степеням eikωt

MX(t) = M0

∑

i=1,2

sin

( ∞
∑

k=0

ϑk
i eikωt

)

cos

( ∞
∑

k=0

ϕk
i eikωt

)

= MC
X +

∞
∑

k=1

χ
(k)
XZ (ω)Hk

aceikωt, (18)

MY (t) = M0

∑

i=1,2

sin

( ∞
∑

k=0

ϑk
i eikωt

)

sin

( ∞
∑

k=0

ϕk
i eikωt

)

= MC
Y +

∞
∑

k=1

χ
(k)
YZ (ω)Hk

ac eikωt, (19)

MZ(t) = M0

∑

i=1,2

cos

( ∞
∑

k=0

ϑk
i eikωt

)

= MC
Z +

∞
∑

k=1

χ
(k)
ZZ (ω)Hk

aceikωt, (20)

где MC
X , MC

Y и MC
Z — не зависящие от времени части

вектора M, определяемые как

MC
X = M0

∑

i=1,2

sinϑ0
i cosϕ

0
i , (21)

MC
Y = M0

∑

i=1,2

sinϑ0
i sinϕ

0
i , (22)

MC
Z = M0

∑

i=1,2

cos ϑ0
i . (23)

Выражая χ
(1)
GZ(ω) (G = X ,Y, Z) через элементы век-

тора θ1 с помощью формул (18)−(20), получаем в

линейном приближении следующие выражения

χ
(1)
XZ (ω)Hac = M0

∑

i=1,2

(ϑ1
i cos ϑ

0
i cosϕ

0
i − ϕ1

i sinϑ
0
i sinϕ

0
i ),

(24)

χ
(1)
Y Z (ω)Hac = M0

∑

i=1,2

(ϑ1
i cos ϑ

0
i sinϕ

0
i + ϕ1

i sinϑ
0
i cosϕ

0
i ),

(25)

χ
(1)
ZZ (ω)Hac = −M0

∑

i=1,2

ϑ1
i sinϑ

0
i . (26)

Здесь зависимость от частоты ω содержится в

элементах вектора θ1 (см. уравнение (17)). Уравне-

ния (17) и (24)−(26) позволяют произвести числен-

ный расчет компонент тензора линейной восприим-

чивости. Результаты расчета действительной и мни-

мой частей χ
(1)
ZZ (ω) показаны на рис. 2 для следу-

ющих значений параметров: α = 0.01, ωKτ = 0.005,

ω3/ωK = 10 и ω0/ωK = 0.1, 1.5, 3. В слабом внеш-

нем поле наблюдается прецессия суммарной намаг-

ниченности подрешеток АФМ, как единого вектора,
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Рис. 2. Действительная χ̄′
(1)
ZZ (a) и мнимая χ̄′′

(1)
ZZ (b) части компоненты нормированного тензора линейной восприимчивости

χ̄
(1)
ZZ = χ

(1)
ZZ HK/M0 (уравнение (24)) в зависимости от частоты ω/ωK при α = 0.01, ωKτ = 0.005, ω3/ωK = 10 и различных

значениях ω0/ωK .

что приводит к возникновению только одного резо-

нансного пика, как в области антиферромагнитного,

так и в области нутационного резонансов (кривая 1

на рис. 2, b). При увеличении внешнего поля в обоих

областях появляются два резонансных пика. Частоты

антиферромагнитных резонансов можно оценить как

ω
p
± ∼

√

ωK(2ω3 + ωK) ± ω0 [27]. Частоты более слабых

НР оцениваются как ωn
± ∼ τ −1 + ωK + ω3 ± ω0 [27].

С уменьшением величины внешнего поля H0 частотное

разделение между пиками сокращается, и они сливаются

при H0 = 0. Данные результаты находятся в соответстви-

ями с результатами работ [26,27]. Следует отметить, что

для χ
(1)
Y Z (ω) получается нулевое значение. Аналогичный

результат получается при расчетах нелинейной воспри-

имчивости ФМ [38] и приводит к важному эффекту

удвоения частоты сигнала, который мы опишем на

примере расчета нелинейной восприимчивости второго

порядка.

Выражая компоненты тензора нелинейной восприим-

чивости второго порядка χ
(2)
GZ(ω) (G = X ,Y, Z) через эле-

менты векторов θ1 и θ2 с помощью формул (18)−(20),
получаем следующие выражения

χ
(2)
XZ(ω)H2

ac = M0

∑

i=1,2

(

ϑ2
i cos ϑ

0
i cosϕ

0
i − ϕ2

i sinϑ
0
i sinϕ

−
(ϑ1

i )2 + (ϕ1
i )

2

2
sinϑ0

i cosϕ
0
i − ϑ1

i ϕ
1
i cos ϑ

0
i sinϕ

0
i

)

,

(27)

χ
(2)
YZ (ω)H2

ac = M0

∑

i=1,2

(

ϑ2
i cos ϑ

0
i sinϕ

0
i + ϕ2

i sinϑ
0
i cosϕ

0
i

−
(ϑ1

i )2 + (ϕ1
i )

2

2
sinϑ0

i sinϕ
0
i + ϑ1

i ϕ
1
i cos ϑ

0
i cosϕ

0
i

)

,

(28)

χ
(2)
ZZ (ω)H2

ac = M0

∑

i=1,2

(

−
(ϑ1

i )2

2
cos ϑ0

i − ϑ2
i sinϑ

0
i

)

. (29)

Решение уравнения (17) при k = 1, 2 и подстанов-

ка этого решения в формулы (27)−(29) позволя-

ют произвести численный расчет компонент тензо-

ра восприимчивости второго порядка. Расчеты пока-

зывают, что здесь наблюдается обратная картина по

сравнению с линейной восприимчивостью, а имен-

но χ
(2)
ZZ (ω) = 0, тогда как χ

(2)
Y Z (ω) 6= 0. Таким образом,

стационарный отклик намагниченности вдоль легкой

оси подрешеток АФМ на переменное поле с часто-

той ω наблюдается с удвоенной частотой 2ω, а именно

MY (t) − MC
X = χ

(2)
YZ (ω)H2

ac ei2ωt + . . .. Это явление хоро-

шо изучено для ФМ и АФМ на частотах вблизи фер-

ромагнитного и антиферромагнитного резонансов [7].
Важно отметить, что здесь мы отмечаем наличие этого

эффекта в АФМ на частотах вблизи НР. В данном случае

наблюдается прямая аналогия с этим же эффектом,

описанным нами ранее в ФМ на крайне высоких часто-

тах [38]. Аналогия связана со схожей геометрией задачи,

а именно в слабом внешнем постоянном поле, направ-

ленном вдоль легкой оси подрешеток, расположение

минимумов функции плотности магнитной энергии (без
учета переменного поля) подрешеток ферромагнитно-

го типа соответствуют расположению минимумов этой

функции в ФМ при том же направлении постоянного

поля. С увеличением величины постоянного поля рас-

положение минимумов функции плотности магнитной

энергии АФМ меняется, что обуславливает различные

состояния АФМ в зависимости от величины и направ-

ления внешнего постоянного поля [7,27]. Проявление

нелинейных эффектов в других состояниях АФМ тре-

бует отдельных исследований.

Компоненты тензора нелинейной восприимчивости

третьего порядка χ
(3)
GZ(ω) (G = X ,Y, Z) получаются
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Рис. 3. Действительная χ̄′
(3)
ZZ (a) и мнимая χ̄′′

(3)
ZZ (b) компоненты нормированного тензора восприимчивости в третьего порядка

χ̄
(3)
ZZ = χ

(3)
ZZ H3

K/M0 (уравнение (24)) в зависимости от частоты ω/ωK при α = 0.01, ωKτ = 0.005, ω3/ωK = 10 и различных

значениях ω0/ωK .

из уравнений (17) и (24)−(26) при k = 3, а именно

χ
(3)
XZ (ω)H3

ac = M0

∑

i=1,2

[

−(ϑ2
i ϕ

1
i + ϑ1

i ϕ
2
i ) cos ϑ

0
i sinϕ

0
i

− (ϑ1
i ϑ

2
i + ϕ1

i ϕ
2
i ) sinϑ

0
i cosϕ

0
i

+

(

ϑ3
i −

(ϑ1
i )3

6
−

1

2
ϑ1

i (ϕ1
i )

2

)

cos ϑ0
i cosϕ

0
i

−

(

ϕ3
i −

(ϕ1
i )

3

6
−

1

2
(ϑ1

i )2ϕ1
i

)

sinϑ0
i sinϕ

0
i

]

,

(30)

χ
(3)
YZ (ω)H3

ac = M0

∑

i=1,2

[

−(ϑ1
i ϑ

2
i + ϕ1

i ϕ
2
i ) sinϑ

0
i sinϕ

0
i

+ (ϑ2
i ϕ

2
i + ϑ1

i ϕ
2
i ) cos ϑ

0
i cosϕ

0
i

+

(

ϑ3
i −

(ϑ1
i )3

6
−

1

2
ϑ1

i (ϕ1
i )

2

)

cos ϑ0
i sinϕ

0
i

+

(

ϕ3
i −

(ϕ1
i )

3

6
−

1

2
(ϑ1

i )2ϕ1
i

)

sinϑ0
i cosϕ

0
i

]

,

(31)

χ
(3)
ZZ (ω)H3

ac =M0

∑

i=1,2

((

(ϑ1
i )3

6
−ϑ3

i

)

sinϑ0
i −ϑ1

i ϑ
2
i cos ϑ

0
i

)

.

(32)

Частотные зависимости действительной и мнимой ча-

стей χ
(3)
ZZ (ω) при α = 0.01, ωKτ = 0.005, ω3/ωK = 10

и ω0/ωK = 0.1, 1.5, 3 приведены на рис. 3.

Заметим, что χ
(3)
XX(ω) содержит дополнительную суб-

гармонику НР при ω = ωNR/3 (см. вкладки на рис. 3).

Генерация субгармоник аналогична проявлению суб-

гармоник в нелиненых колебаниях под воздействием

внешней переменной силы [55].

4. Динамический магнитный
гистерезис на сверхвысоких
частотах

Динамический магнитный гистерезис (ДМГ) инду-
цируется внешним переменным полем и имеет боль-
шое практическое значение, поскольку обуславливает
нагрев магнитных материалов этим полем [2–4]. Ви-
зуально петля ДМГ представляет собой плоскую па-
раметрическую кривую в прямоугольных координатах.
По оси абсцисс этих координат удобно отображать
нормированную величину внешнего переменного поля
h(t) = Re[Hac(t)]/Hac = cosωt, а по оси ординат — нор-
мированную величину декартовой компоненты намагни-
ченности m(t) = Re[MG(t)]/M0, где t меняется в преде-
лах периода колебаний T = 2π/ω, а индекс G = X ,Y, Z

характеризует рассматриваемую компоненту вектора
намагниченности M. Площадь петли ДМГ связана с
энергией, поглощаемой материалом за период T , тогда
как форма, наклон и положение геометрического центра
петли зависят как от величины внешнего постоянного
поля, так и от величины и частоты внешнего перемен-
ного поля [38,47]. Тогда как ДМГ хорошо изучен как в
низкочастотной части спектров магнитных материалов,
так и в области ферромагнитных и антиферромагнитных
резонансов [38,47,56], на крайне высоких частотах он
практически не исследовался. Так в работе [38] приве-
дены данные о ДМГ в ферромагнитных наночастицах на
частотах в области НР. Здесь мы приводим результаты
расчета ДМГ на крайне высоких частотах для антифер-
ромагнитных частиц.
Уравнение (18) позволяет получить изображение пет-

ли гистерезиса для G = X , показанной на рис. 4−7.
На рис. 4 варьируется частота переменного поля ω в
области НР. Наглядно видно, что по мере удаления
от частоты НР ωNR ∼ τ −1 происходит схлопывание
петли, что обусловлено уменьшением поглощения элек-
тромагнитной энергии вдали от резонансной линии, и
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как следствие — уменьшением площади петли ДМГ.

Вдали от резонансной линии петля ДМГ вырождается

в отрезок.

Роль постоянного поля наглядно показано на рис. 5,

где варьируемым параметром является величина внеш-

него постоянного поля. С увеличение величины внешне-

го поля наблюдается смещение максимума поглощения

(см. рис. 2). По мере того, как частота, на которой

наблюдается ДМГ, удаляется от максимума поглощения,

площадь петли уменьшается. Этот эффект аналогичен

эффекту на рис. 4, с той лишь разницей, что там

расстояние от несущей частоты и резонансной частоты

изменяется варьированием несущей частоты, а здесь —

варьированием резонансной частоты с помощью внеш-

него поля. Зависимости частот НР в АФМ от внешнего

поля описаны в [27].
На рис. 6 показано влияние изменения параметра

затухания на форму ДМГ. Поскольку параметр зату-

хания определяет полуширину линии поглощения, то

его увеличение ведет к увеличению поглощения на

частоте, близкой к резонансной. Как следствие, уве-

личивается площадь петли ДМГ. Однако, с увеличе-
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)

1 : ω τ = 0.001K

2 : ω τ = 0.003K

3 : ω τ = 0.01K

1

2
3

Рис. 7. ДМГ при α = 0.01, ωτ = 1, ω3/ωK = 10, ω0/ωK = 1,

ωac/ωK = 0.5 и различных значениях инерционного времени τ .
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нием полуширины линии уменьшается ее амплитуда.

При заметном уменьшении поглощения, площадь петли

опять уменьшается, что демонстрируется на рис. 6.

Наконец, на рис. 7 представлена зависимость ДМГ

от времени инерционной релаксации. Этот параметр

определяет частоту НР ωNR ∼ τ −1, поэтому с умень-

шением τ увеличивается ωNR и происходит увеличение

расстояния от зондирующей и резонансной частотами.

Такой же эффект как на рис. 5, только теперь он

вызван изменением резонансной частоты не внешним

полем, а изменением времени инерционной релаксации.

С удалением от резонанса поглощение падает и площадь

петли ДМГ уменьшается.

В слабых внешних постоянных полях, направленных

вдоль легкой оси подрешеток АФМ, позиции миниму-

мов функций плотности магнитной энергии подрешеток

АФМ расположены аналогично минимумам функций

плотности магнитной энергии ФМ. В этом случае пло-

щадь и наклон петли ДМГ АФМ можно оценить по

формулам, приведенным в работе [38] (см. также [47])
для ФМ.

5. Заключение

Исследован нелинейный стационарный отклик на пе-

ременное поле намагниченности АФМ, находящегося

под комбинированным воздействием переменного и по-

стоянного полей. Область применимости предыдущих

исследований нелинейных эффектов в антиферромаг-

нитных наночастицах ограничена использованием урав-

нения ЛЛГ, которое не учитывает инерционные эф-

фекты и не позволяет воспроизвести НР в спектрах

магнитной восприимчивости на крайне высоких часто-

тах. Как показали исследования последних лет [18–32],
для изучения сверхбыстрых релаксационных процессов

и свойств магнитных материалов, проявляющихся в

магнитных полях крайне высокой частоты, где инер-

ционные эффекты играют существенную роль, необхо-

димо использовать обобщенное инерционное уравнение

ЛЛГ. Решение методом последовательных приближений

инерционных уравнений ЛЛГ, описывающих динамику

намагниченностей подрешеток АФМ в приближении их

тождественности, позволило вывести аналитические вы-

ражения для компонент тензора нелинейной восприим-

чивости второго и третьего порядка. При этом получен-

ные выражения для линейной части восприимчивости

находятся в полном согласии с независимыми иссле-

дованиями [26,27]. Ряд нелинейных эффектов, которые

хорошо изучены в частотной области АФМ резонанса,

такие как появление резонансов на частотах кратных

частоте переменного поля, а также возникновение пе-

ременной компоненты намагниченности на удвоенной

частоте внешнего переменного поля, воспроизводятся в

области НР АФМ. Эти нелинейные эффекты обусловле-

ны наличием анизотропии в магнитной среде и нелиней-

ностью уравнения ЛЛГ. Инерционный член, вводимый

в уравнение ЛЛГ как феноменологически [18,22], так

и выводимый на основе теоретического рассмотрения

этого явления на микроскопическом уровне [33–37], при-
водит к наличию собственных (нутационных) колебаний
на крайне высоких частотах. Наличие же диссипативного

члена в уравнении ЛЛГ ведет к тому, что собственные

колебания намагниченности затухают, а вынужденные

колебания имеют конечную амплитуду при совпадении

возбуждающей частоты с собственными частотами и

конечную ширину резонансных линий. Приведенные рас-

четы, справедливы для антиферромагнитных наночастиц.

Результаты могут быть обобщены для рассмотрения

магнитных характеристик тонких антиферромагнитных

пленок и объемных антиферромагнетиков в тех слу-

чаях, когда специфика задачи позволяет ограничиться

использованием выражения для магнитной энергии (3)
(например, без учета спиновых волн, неоднородной

намагниченности образцов и т. п.).
Рассчитан ДМГ на крайне высоких частотах, соот-

ветствующих области НР (см. рис. 4−7). Показано,

что нелинейная восприимчивость и форма ДМГ суще-

ственно зависят от величин постоянного и переменного

полей, а также от динамических параметров намагничен-

ности, например, от времени инерционной релаксации.

Результаты могут быть использованы для практических

приложений. Например, для моделирования и интерпре-

тации сверхбыстрых процессов переключения [16,17].
Кроме того, через оценку площади гистерезиса можно

судить о нагревательных свойствах магнитных нано-

частиц под действием крайне высокочастотных полей.

Наконец, дополнительные резонансы, возникающие в

сильных переменных полях на крайне высоких часто-

тах в спектрах АФМ, могут представлять интерес для

будущих экспериментальных исследований.

Приложение

Вектор F2 в уравнении (16) при k = 2 имеет вид

F2 =











a1 + Rϑ1

b1 + Rϕ1

a2 + Rϑ2

b2 + Rϕ2











+ Ũθ1, (33)

где элементы a i , bi и Rx i
задаются как

a i = −ϕ1
i

(

iωϑ1
i cos ϑ

0
i −

1

2
τ ω2ϕ1

i sin 2ϑ
0
i

)

, (34)

bi = −(2τ ω2 − iωα)ϑ1
i ϕ

1
i sin 2ϑ

0
i − iω(ϑ1

i )2 cos ϑ0
i , (35)

Rx i
=

1

2

∑

j,k=1,2

(

Ūx iϑ jϑk
ϑ1

j ϑ
1
k + Ūx iϕ jϕk

ϕ1
jϕ

1
k

+ Ūx iϑ jϕk
ϑ1

j ϕ
1
k + Ūx iϕ jϑk

ϕ1
jϑ

1
k

)

. (36)

Матрица Ũ в уравнении (33) получается из матрицы U

(см. уравнение (13)) путем замены в последней Ū → Ũ .
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Вектор F3 в уравнении (16) при k = 3 представляется

в виде

F3 =











c1 + R̃ϕ1
+ Pϑ1

d1 + R̃ϕ1
+ Pϕ1

c2 + R̃ϑ2 + Pϑ2

d2 + R̃ϕ2
+ Pϕ2











, (37)

где элементы R̃x i
получаются из элементов Rx i

путем

замены в последних Ū → Ũ , а элементы c i , di и Px i

задаются как

c i = τ ω2ϕ1
i (ϑ

1
i ϕ

1
i cos 2ϑ

0
i + 2ϕ2

i sin 2ϑ
0
i )

− iω

[

(ϑ2
i ϕ

1
i + 2ϑ1

i ϕ
2
i ) cos ϑ

0
i −

1

2
(ϑ1

i )2ϕ1
i sinϑ

0
i

]

,

(38)

di = 3iωϑ1
i ϑ

2
i cos ϑ

0
i −

1

2
iω(ϑ1

i )3 sinϑ0
i − (3τ ω2 − iωα)

×
[

(ϑ1
i )2ϕ1

i cos 2ϑ
0
i + (ϑ2

i ϕ
1
i + 2ϑ1

i ϕ
2
i ) sin 2ϑ

0
i

]

,

(39)

Px i
=

∑

j,k=1,2

(

Ūx iϑ jϑk
ϑ1

j ϑ
2
k + Ūx iϕ jϕk

ϕ1
jϕ

2
k + Ūx iϑ jϕk

ϑ1
j ϕ

2
k

+ Ūx iϕ jϑk
ϕ1

jϑ
2
k

)

+
1

6

∑

j,k,l=1,2

(

Ūx iϑ jϕkϕl
ϑ1

j ϕ
1
kϕ

1
l + Ūx iϕ jϑkϕl

× ϕ1
jϑ

1
k ϕ

1
l + Ūx iϕ jϕkϑl

ϕ1
jϕ

1
kϑ

1
l + Ūx iϕ jϕkϕl

ϕ1
jϕ

1
kϕ

1
l

+ Ūx iϕ jϑkϑl
ϕ1

jϑ
2
k ϑ

1
l + Ūx iϑ jϕkϑl

ϑ1
j ϕ

1
kϑ

1
l

+ Ūx iϑ jϑkϕl
ϑ1

j ϑ
1
k ϕ

1
l + Ūx iϑ jϑkϑl

ϑ1
j ϑ

1
k ϑ

1
l

)

.

(40)
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[11] P. Němec, M. Fiebig, T. Kampfrath, A.V. Kimel. Nat. Phys.

14, 229 (2018).
[12] P. Wadley, B. Howells, J. Zelezny, C. Andrews, V. Hills,

R.P. Campion, V. Novak, F. Freimuth, Y. Mokrousov,

A.W. Rushforth, K.W. Edmonds, B.L. Gallagher, T. Jungwirth.

Science 351, 587 (2016).
[13] A. Kirilyuk, A.V. Kimel, Th. Rasing. Rev. Mod. Phys. 82,

2731 (2010).
[14] T. Kampfrath, A. Sell, G. Klatt, A. Pashkin, S.F. Mährlein,
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[20] D. Böttcher, J. Henk. Phys. Rev. B 86, 020404(R) (2012).
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